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ABSTRACT
This paper deals with the polynomial linear system solving with

errors (PLSwE) problem. More specifically, we solve linear sys-

tems with univariate polynomial coefficients via an evaluation-

interpolation technique assuming that errors can occur before the

interpolation step. In this framework, the number of evaluations

needed to recover the solution depends on the parameters of the

linear system (degrees, size) and on the number of errors.

Our work is part of a series of papers about PLSwE aiming to

reduce this number of evaluations, which is crucial since it affects

the complexity. We proved in [7] that if errors are randomly dis-

tributed, the bound on the number of evaluations can be lowered

with respect to the error rate.

In this paper, following the approach of [9], we improve the

results of [7] in two directions. First, we propose a new bound on the

number of evaluations, lowering the dependency on the parameters

of the linear system, based on the work of [5]. Second, we introduce

an early termination strategy in order to handle the unnecessary

increase of the number of evaluations due to the overestimation of

the output degrees and of the number of errors.
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1 INTRODUCTION
Solving polynomial linear systems (PLS) 𝐴(𝑥)𝒚(𝑥) = 𝒃 (𝑥) with
univariate polynomial coefficients over a finite field F𝑞 is a clas-

sical computer algebra problem. When 𝐴 is a nonsingular square

matrix and 𝒃 is a vector, the solution 𝒚(𝑥) is a unique vector of

rational functions. In order to reconstruct this solution, we use the

evaluation-interpolation technique. This technique can be paral-

lelized considering a network of 𝐿 computing nodes and assuming

that each 𝑗th node evaluates 𝐴(𝛼 𝑗 ) and 𝒃 (𝛼 𝑗 ) and solves the eval-

uated system 𝒚 𝑗 = 𝐴(𝛼 𝑗 )−1𝒃 (𝛼 𝑗 ), given some distinct evaluation

points 𝛼 𝑗 . The nodes then send 𝒚
1
, . . . ,𝒚𝐿 to a master node which

finally performs a vector rational function reconstruction (a.k.a.
vector Cauchy interpolation) to recover the solution 𝒚(𝑥). Note
that if one wants to take advantage of the common denominator

of 𝒚(𝑥), then vector Cauchy interpolation should be replaced by

simultaneous rational function reconstruction [8, 15, 16]; in this

paper we do not consider this case.

As in [3, 9], this paper focuses on a scenario in which the nodes

could make errors, possibly computing 𝒚 𝑗 ≠ 𝒚(𝛼 𝑗 ). In this case,

the master node performs a vector Cauchy interpolation with errors
in order to recover the solution 𝒚(𝑥). The problem that the mas-

ter node has to face, i.e. recovering the solution 𝒚(𝑥) of the PLS
given its evaluations, some of which are erroneous, is what we call

Polynomial Linear System Solving with Errors (PLSwE). In order

to solve PLSwE, in [3, 9] the authors generalize the polynomial in-

terpolation with errors (i.e. decoding Reed-Solomon (RS) codes) to

rational functions interpolation with errors. The goal is to minimize

the number 𝐿 of evaluation points needed to recover the solution

or equivalently to maximize the bound on the number of errors

(decoding radius) that we could correct. In [3, 9] they can correct

up to the unique decoding radius, similarly to classical RS codes.

Moreover, in [9] they show a second way to bound 𝐿 by exploiting

the linear algebra setting as in [5].

More recently, in [7] we present an algorithm that corrects er-

rors beyond the unique decoding radius (equivalently with fewer

evaluation points than [3, 9]). The idea is that the PLSwE problem

is a generalization of the decoding of the Interleaved Reed Solomon

codes (IRS). IRS codes can be seen as the simultaneous evaluation

of a vector of polynomials. The interleaved structure allows one

to construct decoders able to correct beyond the unique decod-

ing radius [2, 4, 17–19], asymptotically reaching the optimal error

correction capability of the Shannon bound [20] when the vector

dimension grows. In return, IRS decoders may fail to correct a small

fraction of errors, provided that errors are uniformly distributed.

The same goes for our generalization [7] and for the present work.
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Our first contribution consists in the combination of the advan-

tages of IRS decoding techniques from [7] with the evaluation count

of [9] which exploits the linear algebra setting (see Section 3).

Recall that our goal is to lower the number of evaluations in

order to reduce the number of computing nodes, at the expense of

potentially increasing the complexity of interpolation by the master

node. All the bounds on the number of evaluations introduced for

PLSwE solving depend on some upper bounds on the degrees of

the solution𝒚(𝑥) and on the number of errors. These upper bounds

could overestimate the actual degrees and number of errors, leading

to a significant overestimation of the number of evaluations needed.

In this paper, we propose an early termination technique (as in [9]),

an adaptive strategy which iteratively increments the number of

evaluations until the actual parameters are reached. Compared to

the similar strategy proposed by [12, 14] in a no-errors context,

our approach differs in two ways: they propose output sensitive

algorithms, i.e. they stop at a number of evaluations that depends

only on the degrees of the output. In our case, we stop at a number

of evaluations which depends on both the values of the output

parameters and their corresponding bounds (we could say that we

are semi-output sensitive). In return, their approach is only heuristic

whereas our stop criterion is proven (with high probability w.r.t.
the error distribution only in the case of IRS codes generalization).

Early termination strategies consider a number of evaluations

which is iteratively incremented. Furthermore, our techniques re-

quire an error upper bound 𝜏 to work. Thus, how can we determine

an upper bound 𝜏 on the number of errors when this number in-

creases along with the number of evaluations? Our first approach

(Section 4.2) to solve this problem consists to fix an error bound

𝜏 which is related to the largest possible number of evaluations.

In Section 4.3 we present a second approach, coming from [9–11],

that considers an error bound 𝜏 which (linearly) depends on the

number of evaluations 𝐿. In this second setup, we are able to save

some more evaluations w.r.t. to the number we get using a fixed

error bound.

Compared to the early termination techniques of [9], we decrease

the number of evaluation points. In return, our algorithm may fail

for a small fraction of errors; we give an estimation of the success

probability of our algorithm in presence of random errors.

To sum up, our contribution consists in proposing an early ter-

mination strategy which, benefits from the IRS decoding approach,

is sensitive to the real number of errors, and also considers an error

bound which is linearly dependent on the number of evaluations.

To the best of our knowledge, the dependency on the real number

of errors is original in the literature.

The paper is organized as follows: in Section 2 we recall the

scenario of PLSwEwith results revisited from literature, in Section 3

we present a new bound on the number of evaluation points needed

for PLSwE solving in presence of random errors and finally in

Section 4 we introduce an early termination algorithm that succeeds

for almost all errors.

2 POLYNOMIAL LINEAR SYSTEM SOLVING
WITH ERRORS

Let F𝑞 be a finite field of order 𝑞. Consider a polynomial linear

system (PLS),

𝐴(𝑥)𝒚(𝑥) = 𝒃 (𝑥) (1)

where 𝐴 ∈ F𝑞 [𝑥]𝑛×𝑛 is nonsingular and 𝒃 ∈ F𝑞 [𝑥]𝑛 . This sys-
tem admits only one solution 𝒚 = 𝒗

𝑑
∈ F𝑞 (𝑥)𝑛 , i.e. a vector of

rational functions with the same denominator. We assume that

gcd(gcd𝑖 (𝑣𝑖 ), 𝑑) = 1 and that 𝑑 is monic.

Evaluation-interpolation [13] is a classic technique for solving

PLS. It consists in: evaluating 𝐴 and 𝒃 at 𝐿 distinct evaluation

points 𝛼 𝑗 ; pointwise solving 𝒚 𝑗 = 𝐴(𝛼 𝑗 )−1𝒃 (𝛼 𝑗 ); and interpolating

𝒚 ∈ F𝑞 (𝑥)𝑛 given the evaluated solutions 𝒚 𝑗 = 𝒚(𝛼 𝑗 ) and the de-

gree bounds 𝑁, 𝐷 such that 𝑁 > deg(𝒗) := max1≤𝑖≤𝑛 (deg(𝑣𝑖 )) and
𝐷 > deg(𝑑). In this work, we suppose that the evaluated matrices

𝐴(𝛼 𝑗 ) are still full rank. Notice that this implies that 𝑑 (𝛼 𝑗 ) ≠ 0. Oth-

erwise by 𝐴(𝛼 𝑗 )𝒗 (𝛼 𝑗 ) = 𝑑 (𝛼 𝑗 )𝒃 (𝛼 𝑗 ) then 𝒗 (𝛼 𝑗 ) = 0, contradicting

gcd(𝒗 (𝑥), 𝑑 (𝑥)) = 1. In [9], the authors also handle the rank drops

of the evaluated matrices 𝐴(𝛼 𝑗 ) in their scenario. We are confident

that with our techniques we could also handle this case, and we

leave it to future work.

We now introduce the number of evaluation points

L := min(𝑁 + 𝐷 − 1︸      ︷︷      ︸
L𝑅𝐹𝑅

,max(deg(𝐴) + 𝑁, deg(𝒃) + 𝐷)︸                                  ︷︷                                  ︸
L𝑃𝐿𝑆

), (2)

where deg(𝐴) := max1≤𝑖, 𝑗≤𝑛 (deg(𝑎𝑖, 𝑗 (𝑥))). Recall thatL𝑅𝐹𝑅 is the

minimum number of evaluation points needed to uniquely interpo-

late a vector of rational functions (i.e. vector Cauchy interpolation)
[6, Section 5.7]. On the other hand, L𝑃𝐿𝑆 is the minimum number

of evaluation points needed to uniquely recover a rational function

which is a solution of a PLS [5]. Note that L𝑃𝐿𝑆 and L𝑅𝐹𝑅 can be

compared when the bounds 𝑁, 𝐷 are tight: if 𝑁 = deg(𝒗) + 1 and

𝐷 = deg(𝑑) + 1, then (L𝑃𝐿𝑆 < L𝑅𝐹𝑅) ⇔ (deg(𝑑) > deg(𝐴)) [9,
Theorem 3.1].

Error model. In this work, as in [3, 9], we adapt the evaluation-

interpolation technique in order to handle a scenario where errors

occur. More specifically, we assume that some errors could be in-

troduced before the interpolation step, i.e. 𝒚 𝑗 ≠ 𝒚(𝛼 𝑗 ) for some 𝑗 .

We can then write 𝒚 𝑗 = (𝒗/𝑑) (𝛼 𝑗 ) + 𝒆 𝑗 for some 𝒆 𝑗 ∈ F𝑛𝑞 . Denoting
𝐸 := { 𝑗 | 𝒚 𝑗 ≠ 𝒚(𝛼 𝑗 )} the error support, we get that 𝒆 𝑗 ≠ 0 for any
𝑗 ∈ 𝐸.

In this work, we focus on the following problem,

Definition 2.1 (Polynomial linear system solvingwith errors (PLSwE)).
Under the framework of this section, the PLSwE problem consists

in recovering the solution 𝒚(𝑥) = 𝒗 (𝑥)
𝑑 (𝑥) of a PLS (1), given

• 𝐿 distinct evaluation points 𝛼 𝑗 in F𝑞 ,

• the matrix 𝑌 ∈ F𝑛×𝐿𝑞 whose columns are the vectors 𝒚 𝑗 ,
• the degrees deg(𝐴), deg(𝒃) and the degree bounds𝑁, 𝐷 such

that 𝑁 > deg(𝒗), 𝐷 > deg(𝑑) and 1 ≤ 𝑁, 𝐷 ≤ 𝐿,

• an error bound 𝜏 ≥ |𝐸 | = |{ 𝑗 | 𝒚 𝑗 ≠ 𝒚(𝛼 𝑗 )}|.

Application to distributed computations. The evaluation interpola-

tion technique can be easily parallelized by considering a set of 𝐿

computing nodes and a master node. In this model, the master node

sends 𝛼 𝑗 , 𝐴(𝑥), 𝒃 (𝑥) to each computing node which returns 𝒚 𝑗 . We



consider the computing nodes as black boxes as in [3], meaning

that we are not supposed to know how they compute the 𝒚 𝑗 ’s. The
master node must then solve a PLSwE to output the solution 𝒚(𝑥)
of the PLS.

Resolution method for PLSwE and previous results. In order to solve

PLSwE, we study the set S𝑌,𝑁+𝜏,𝐷+𝜏 of solutions

(𝝋,𝜓 ) = (𝜑1, . . . , 𝜑𝑛,𝜓 ) ∈ F𝑞 [𝑥]𝑛+1 of the key equations

𝜑𝑖 (𝛼 𝑗 ) = 𝑦𝑖, 𝑗𝜓 (𝛼 𝑗 ), deg(𝜑𝑖 ) < 𝑁 + 𝜏, deg(𝜓 ) < 𝐷 + 𝜏 (3)

for any 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝐿. This approach comes from [3, 7, 9]

and it is the generalization of the Welch-Berlekamp method [1] for

decoding Reed-Solomon codes. Note that the key equations (3) are

the vector generalization of the classic computer algebra problem

of the Cauchy interpolation [6, Section 5.7]. In this framework, it

is crucial to determine the smallest number of evaluation points

𝐿 needed to guarantee the uniqueness of a solution of these key

equations, where uniqueness is defined as follows. We say that

S𝑌,𝑁+𝜏,𝐷+𝜏 has a unique solution if S𝑌,𝑁+𝜏,𝐷+𝜏 ≠ {(0, 0)} and for

all (𝝋,𝜓 ), (𝝋 ′,𝜓 ′) ∈ S𝑌,𝑁+𝜏,𝐷+𝜏 \ {(0, 0)}, we have equality 𝝋/𝜓 =

𝝋 ′/𝜓 ′ of the corresponding rational functions.

Let Λ :=
∏
𝑗 ∈𝐸 (𝑥 − 𝛼 𝑗 ) be the error locator polynomial, i.e.

the monic polynomial whose roots are the erroneous evaluation

points. If 𝒚(𝑥) = 𝒗 (𝑥)/𝑑 (𝑥) is the solution of (1) then (Λ𝒗,Λ𝑑) ∈
S𝑌,𝑁+𝜏,𝐷+𝜏 . Indeed,Λ(𝛼 𝑗 ) (𝑣𝑖 (𝛼 𝑗 )−𝑦𝑖, 𝑗𝑑 (𝛼 𝑗 )) = 0 for any 1 ≤ 𝑖 ≤ 𝑛

and 1 ≤ 𝑗 ≤ 𝐿. Moreover, deg(Λ𝒗) < 𝑁 + 𝜏, deg(Λ𝑑) < 𝐷 + 𝜏 .
If the degree bounds and the error bound are not tight, we get

also other solutions, i.e. S𝑌,𝑁+𝜏,𝐷+𝜏 ⊇ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 ,
where

𝛿𝑁+𝜏,𝐷+𝜏 := min(𝑁 +𝜏− (deg(𝒗) + |𝐸 |), 𝐷 +𝜏− (deg(𝑑) + |𝐸 |)). (4)
Note that 𝛿𝑁+𝜏,𝐷+𝜏 is defined so that deg(𝑥𝑖Λ𝒗) < 𝑁 + 𝜏 and

deg(𝑥𝑖Λ𝑑) < 𝐷 + 𝜏 for 𝑖 < 𝛿𝑁+𝜏,𝐷+𝜏 . Finally, note that S𝑌,𝑁+𝜏,𝐷+𝜏
has unique solution when S𝑌,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩

0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 .
In [3, 9] is provided the minimum number of points which guar-

antees the uniqueness of the solution. The following proposition

is a restatement of this result using definitions and notations of

this paper. We later prove this result in a more general context (see

Proposition 4.1).

Proposition 2.2. Under the setting of Definition 2.1, if
𝐿 ≥ 𝐿𝐾𝑃𝑆𝑊 := L+2𝜏 , thenS𝑌,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩

0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 .

We now recall how the solution set can be computed.

Remark 2.3. Let V𝑚,𝑝 = (𝛼 𝑗−1

𝑖
)1≤𝑖≤𝑚
1≤ 𝑗≤𝑝

and let 𝐷𝑖 be the diagonal

matrix whose diagonal elements are 𝒚𝑖 . The coefficient matrix of

the homogeneous linear system related to (3) is

𝑀𝑌,𝑁+𝜏,𝐷+𝜏 =
©«
V𝐿,𝑁+𝜏 −𝐷1V𝐿,𝐷+𝜏

. . .
.
.
.

V𝐿,𝑁+𝜏 −𝐷𝑛V𝐿,𝐷+𝜏

ª®®¬
and S𝑌,𝑁+𝜏,𝐷+𝜏 = ker(𝑀𝑌,𝑁+𝜏,𝐷+𝜏 ).

If S𝑌,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩, remark that the minimal degree

solution (𝝋𝑚𝑖𝑛,𝜓𝑚𝑖𝑛) of S𝑌,𝑁+𝜏,𝐷+𝜏 with𝜓𝑚𝑖𝑛 monic is (Λ𝒗,Λ𝑑).
This minimal monic solution can be obtained by computing a col-

umn echelon form of 𝑀𝑌,𝑁+𝜏,𝐷+𝜏 [3, 9] or a basis of the F𝑞 [𝑥]-
module generated by S𝑌,𝑁+𝜏,𝐷+𝜏 using e.g. [15, 16].

We denote by FindSolution(𝑌, 𝑁 + 𝜏, 𝐷 + 𝜏) the algorithm that

computes (𝒗, 𝑑) from S𝑌,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩ using one of the
above methods. Note that we can recover (𝒗, 𝑑) from (Λ𝒗,Λ𝑑) by
dividing by Λ = gcd(Λ𝒗,Λ𝑑).

3 NEW BOUND FOR PLSWE
In this section, we combine the advantages of IRS decoding tech-

niques from [7] with the number of evaluations of [9] which exploits

the linear algebra setting.

We briefly recall that an IRS codeword is the multipoint evalua-

tion of a vector of polynomials of bounded degrees. In [7] we have

remarked that if 𝒚(𝑥) ∈ F𝑞 [𝑥]𝑛 (i.e. 𝐷 = 1), PLSwE reduces to the

interpolation of a vector of polynomials with errors, i.e. exactly the

problem of decoding IRS codewords. A naive method to decode IRS

codes would be to apply componentwise the decoding techniques

of classic Reed-Solomon codes. In this way we can correct up to

the unique decoding radius 𝜏0 := ⌊ 𝐿−𝑁
2
⌋. Indeed, from a coding

theory point of view, Proposition 2.2 tells us that we can uniquely

decode IRS codewords when 𝐿 ≥ 𝑁 + 2𝜏 , i.e. up to 𝜏0 ≥ |𝐸 |. But,
the interleaved structure of IRS codes allows to correct beyond the

unique decoding radius, or equivalently with fewer evaluations

[2, 4, 17–19]. In return, IRS decoding may fail to correct a small

fraction of errors, provided that errors are uniformly distributed.

In [7] we have generalized IRS decoding to the rational function

case of PLSwE, and we have shown that we can reconstruct the

solution with 𝐿𝐺𝐿𝑍19 := 𝑁 +deg(𝑑)−1+|𝐸 |+
⌈
|𝐸 |
𝑛

⌉
evaluation points

for almost all errors. However, we have assumed to know exactly

the actual degree of the denominator 𝑑 and the actual number of

errors |𝐸 |.
In this section we present two main contributions. Our first

contribution (see Theorem 3.1) consists in relaxing these constraints,

only requiring upper bounds on these parameters. Our second

contribution is the introduction of another number of evaluations

which takes into account deg(𝐴), deg(𝒃) of the PLS (1) as in [5, 9].

Theorem 3.1. Under the setting of Definition 2.1, let 𝐿 ≥ 𝐿𝐺𝐿𝑍 :=

L+𝜏+⌈𝜏/𝑛⌉ and fix an error support 𝐸 ⊆ {1, . . . , 𝐿} such that |𝐸 | ≤ 𝜏 .
Consider the random matrix 𝑌 ∈ F𝑛×𝐿𝑞 whose columns 𝒚 𝑗 ∈ F𝑛𝑞
are such that 𝒚 𝑗 = 𝒚(𝛼 𝑗 ) =

𝒗 (𝛼 𝑗 )
𝑑 (𝛼 𝑗 ) if 𝑗 ∉ 𝐸, and 𝒚 𝑗 is uniformly

distributed if 𝑗 ∈ 𝐸. Then S𝑌,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏

with probability at least 1 − 𝐷+𝜏
𝑞 (for 𝛿𝑁+𝜏,𝐷+𝜏 defined as in (4)).

Proof. The proof is based on the following two steps:

(1) show that there exists a draw𝑊 of 𝑌 for which the corre-

sponding solution space S𝑊,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩. We

only need to prove the inclusion ⊆ since the other one is

always true;

(2) derive a bound on the probability of the event

S𝑌,𝑁+𝜏,𝐷+𝜏 ≠ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩.
(1) Consider a partition of the error support 𝐸, i.e. 𝐸 = ∪𝑛

𝑖=1
𝐼𝑖 ,

such that for any 1 ≤ 𝑖 ≤ 𝑛, |𝐼𝑖 | ≤ ⌈|𝐸 |/𝑛⌉. Such a partition exists

since 𝑛⌈|𝐸 |/𝑛⌉ ≥ |𝐸 |. For any 𝑗 ∈ 𝐸, we denote by 𝑖 𝑗 the unique

index such that 𝑗 ∈ 𝐼𝑖 𝑗 .
First assume that 𝐿𝐺𝐿𝑍 = 𝑁 + 𝐷 − 1 + 𝜏 +

⌈
𝜏
𝑛

⌉
. Construct a

matrix𝑊 whose columns𝒘 𝑗 satisfy𝒘 𝑗 =
𝒗 (𝛼 𝑗 )
𝑑 (𝛼 𝑗 ) if 𝑗 ∉ 𝐸, or 𝒗 (𝛼 𝑗 ) −



𝑑 (𝛼 𝑗 )𝒘 𝑗 = 𝜺𝑖 𝑗 when 𝑗 ∈ 𝐸 (where 𝜺𝑖 is the 𝑖th element of the

canonical basis of F𝑛𝑞 ). Consider (𝝋,𝜓 ) ∈ S𝑊,𝑁+𝜏,𝐷+𝜏 . Our goal
is to prove that 𝜓 (𝑥)𝒗 (𝑥) − 𝑑 (𝑥)𝝋 (𝑥) = 0. Combining 𝝋 (𝛼 𝑗 ) =
𝒘 𝑗𝜓 (𝛼 𝑗 ) and the equations defining𝒘 𝑗 , we get (𝜓𝒗 − 𝑑𝝋) (𝛼 𝑗 ) = 0
if 𝑗 ∉ 𝐸, or (𝜓𝒗 − 𝑑𝝋) (𝛼 𝑗 ) = 𝜓 (𝛼 𝑗 )𝜺𝑖 𝑗 if 𝑗 ∈ 𝐸. Fix 1 ≤ 𝑖 ≤ 𝑛 and

consider the 𝑖th vector component (𝜓𝑣𝑖−𝑑𝜑𝑖 ) of (𝜓𝒗−𝑑𝝋). Note that
deg(𝜓𝑣𝑖 − 𝑑𝜑𝑖 ) < 𝑁 + 𝐷 + 𝜏 − 1. We also have (𝜓𝑣𝑖 − 𝑑𝜑𝑖 ) (𝛼 𝑗 ) = 0

for 𝑗 ∉ 𝐼𝑖 . So this polynomial has at least 𝐿 − |𝐼𝑖 | roots. Since
𝐿 − |𝐼𝑖 | ≥ 𝐿 − ⌈|𝐸 |/𝑛⌉ ≥ 𝐿𝐺𝐿𝑍 − ⌈𝜏/𝑛⌉ and 𝐿𝐺𝐿𝑍 ≥ 𝑁 + 𝐷 − 1 +
𝜏 + ⌈𝜏/𝑛⌉, we get at least 𝐿 − |𝐼𝑖 | ≥ 𝑁 + 𝐷 + 𝜏 − 1 roots. Therefore,

(𝜓𝑣𝑖 − 𝑑𝜑𝑖 ) has more roots than its degree, so that (𝜓𝑣𝑖 − 𝑑𝜑𝑖 ) = 0

and𝜓 (𝑥)𝒗 (𝑥) − 𝑑 (𝑥)𝝋 (𝑥) = 0.

Now assume that 𝐿𝐺𝐿𝑍 = max(deg(𝐴) +𝑁, deg(𝒃) +𝐷) +
⌈
𝜏
𝑛

⌉
+𝜏 .

Construct a matrix𝑊 so that𝒘 𝑗 =
𝒗 (𝛼 𝑗 )
𝑑 (𝛼 𝑗 ) = 𝐴(𝛼 𝑗 )−1𝒃 (𝛼 𝑗 ) if 𝑗 ∉ 𝐸,

or 𝐴(𝛼 𝑗 )𝒘 𝑗 − 𝒃 (𝛼 𝑗 ) = 𝜺𝑖 𝑗 when 𝑗 ∈ 𝐸 (recall 𝐴(𝛼 𝑗 ) is invertible
by assumption). Consider (𝝋,𝜓 ) ∈ S𝑊,𝑁+𝜏,𝐷+𝜏 . Our goal is to
prove that 𝒑(𝑥) = 0 where 𝒑(𝑥) := 𝐴(𝑥)𝝋 (𝑥) − 𝜓 (𝑥)𝒃 (𝑥) = 0.
Combining 𝝋 (𝛼 𝑗 ) = 𝒘 𝑗𝜓 (𝛼 𝑗 ) and the equations defining𝒘 𝑗 , we get
(𝐴𝝋 − 𝒃𝜓 ) (𝛼 𝑗 ) = 0 if 𝑗 ∉ 𝐸, or (𝐴𝝋 − 𝒃𝜓 ) (𝛼 𝑗 ) = 𝜓 (𝛼 𝑗 )𝜺𝑖 𝑗 if 𝑗 ∈ 𝐸.

Fix 1 ≤ 𝑖 ≤ 𝑛, then 𝑝𝑖 (𝛼 𝑗 ) = 0 for 𝑗 ∉ 𝐼𝑖 , where 𝑝𝑖 is the 𝑖th vector

component of 𝒑. Note that deg(𝑝𝑖 (𝑥)) < max(deg(𝐴) +𝑁, deg(𝒃) +
𝐷) + 𝜏 . On the other hand 𝑝𝑖 has at least 𝐿 − |𝐼𝑖 | ≥ 𝐿𝐺𝐿𝑍 − ⌈𝜏/𝑛⌉ =
max(deg(𝐴) + 𝑁, deg(𝒃) + 𝐷) + 𝜏 roots. So we can conclude that

𝒑(𝑥) = 𝐴(𝑥)𝝋 (𝑥) − 𝜓 (𝑥)𝒃 (𝑥) = 0. Since 𝐴(𝑥)𝒗 (𝑥) = 𝑑 (𝑥)𝒃 (𝑥),
we get 𝐴(𝑥) (𝝋 (𝑥)𝑑 (𝑥) − 𝜓 (𝑥)𝒗 (𝑥)) = 0 and finally 𝝋 (𝑥)𝑑 (𝑥) −
𝜓 (𝑥)𝒗 (𝑥) = 0.

Therefore, in both cases we have 𝝋 (𝑥)𝑑 (𝑥) − 𝜓 (𝑥)𝒗 (𝑥) = 0.
Now, gcd(gcd𝑖 (𝑣𝑖 ), 𝑑) = 1 by assumption, so there exists 𝑅 ∈
F𝑞 [𝑥] such that (𝝋,𝜓 ) = (𝑅𝒗, 𝑅𝑑). By the key equations (3) we

get 0 = 𝝋 (𝛼 𝑗 ) −𝜓 (𝛼 𝑗 )𝒘 𝑗 = 𝑅(𝛼 𝑗 ) [𝒗 (𝛼 𝑗 ) − 𝒘 𝑗𝑑 (𝛼 𝑗 )] for all 𝑗 . By
construction, 𝒗 (𝛼 𝑗 ) − 𝒘 𝑗𝑑 (𝛼 𝑗 ) ≠ 0 when 𝑗 ∈ 𝐸, so 𝑅(𝛼 𝑗 ) = 0.

Therefore, there exists 𝑅′ ∈ F𝑞 [𝑥] such that 𝑅 = Λ𝑅′, hence
(𝝋,𝜓 ) = (𝑅′Λ𝒗, 𝑅′Λ𝑑). The degree constraints on (𝝋,𝜓 ) imply

deg𝑅′ < 𝛿𝑁+𝜏,𝐷+𝜏 , i.e. (𝝋,𝜓 ) ∈ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 . Finally,
we get S𝑊,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩

0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 for a draw𝑊 of

the matrix 𝑌 .

(2)We now conclude the proof by bounding the probability of the

eventS𝑌,𝑁+𝜏,𝐷+𝜏 ≠ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩. For a generic instance of𝑌 recall

that ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 ⊆ S𝑌,𝑁+𝜏,𝐷+𝜏 = ker(𝑀𝑌,𝑁+𝜏,𝐷+𝜏 ),

so that dim(ker(𝑀𝑌,𝑁+𝜏,𝐷+𝜏 )) ≥ 𝛿𝑁+𝜏,𝐷+𝜏 (see Remark 2.3). We

have rank(𝑀𝑌,𝑁+𝜏,𝐷+𝜏 ) ≤ 𝑛(𝑁 + 𝜏) +𝐷 + 𝜏 − 𝛿𝑁+𝜏,𝐷+𝜏 =: 𝜌 by the

Rank-Nullity Theorem. On the other hand, as proved above, there

exists a draw𝒘 𝑗 of 𝒚 𝑗 , for 𝑗 ∈ 𝐸, such that rank(𝑀𝑊,𝑁+𝜏,𝐷+𝜏 ) = 𝜌 .

This means that there exists a nonzero 𝜌-minor in 𝑀𝑊,𝑁+𝜏,𝐷+𝜏 .
We consider the same nonzero 𝜌-minor in 𝑀𝑌,𝑁+𝜏,𝐷+𝜏 as a mul-

tivariate polynomial 𝐶 whose indeterminates are (𝑦𝑖, 𝑗 )1≤𝑖≤𝑛,𝑗 ∈𝐸 .
We remark that we show the existence of a draw 𝒘 𝑗 of 𝒚 𝑗 , for
𝑗 ∈ 𝐸, such that 𝐶 (𝒘 𝑗 ) is nonzero. Hence, the polynomial 𝐶 is

nonzero. For any matrix 𝑌 such that (𝒚 𝑗 ) 𝑗 ∈𝐸 is not a root of𝐶 , then

S𝑌,𝑁+𝜏,𝐷+𝜏 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 . Note that the total degree

of the polynomial𝐶 is at most𝐷+𝜏 , since only the last𝐷+𝜏 columns

of the matrix𝑀𝑌,𝑁+𝜏,𝐷+𝜏 contain the variables (𝑦𝑖, 𝑗 )1≤𝑖≤𝑛,𝑗 ∈𝐸 (see

Remark 2.3).

Finally, by the Schwartz-Zippel Lemma, the polynomial𝐶 cannot

vanish inmore than a (𝐷+𝜏)/𝑞-fraction of its domain. Therefore, the

probability of S𝑌,𝑁+𝜏,𝐷+𝜏 ≠ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿𝑁 +𝜏,𝐷+𝜏 is at most

(𝐷 + 𝜏)/𝑞. □

4 EARLY TERMINATION STRATEGY
In this section, we present the early termination strategies, review

the literature about the subject [9] and contribute by including the

advantages of IRS decoding as in [7].

The bounds 𝐿𝐾𝑃𝑆𝑊 and 𝐿𝐺𝐿𝑍 on the number of evaluations 𝐿

introduced so far (see Proposition 2.2 and Theorem 3.1) depend on

the upper bounds 𝑁, 𝐷 and 𝜏 . Therefore, if 𝑁, 𝐷, 𝜏 overestimate the

degrees deg(𝒗), deg(𝑑) and the number of errors |𝐸 |, the evaluation
count 𝐿𝐾𝑃𝑆𝑊 (resp. 𝐿𝐺𝐿𝑍 ) would be too large compared to the

numberwe really need, i.e. replacing𝑁 ← deg(𝒗)+1,𝐷 ← deg(𝑑)+
1, 𝜏 ← |𝐸 | in 𝐿𝐾𝑃𝑆𝑊 (resp. 𝐿𝐺𝐿𝑍 ).

An approach to overcome this problem consists in the introduc-

tion of an early termination strategy whose goal is to decrease the

number of evaluations needed to recover a solution without know-

ing the actual degrees of the solution and the number of errors. The

strategy proposed in [9] consists in incrementing 𝐿 and introducing

a stop criterion that interrupts the computations if 𝐿 corresponds

to the actual degrees and to the actual number of errors. Whereas

[9] tried to guess a bound on the degrees of (𝒗, 𝑑) but not on the

number of errors, we introduce the parameters (a, 𝜗) that represent
attempts to bound the degrees (deg(𝒗) + |𝐸 |, deg(𝑑) + |𝐸 |) of the
minimal solution (Λ𝒗,Λ𝑑).

Let S𝑌,a,𝜗 be the set of solutions (𝝋,𝜓 ) of the key equations

𝜑𝑖 (𝛼 𝑗 ) = 𝑦𝑖, 𝑗𝜓 (𝛼 𝑗 ), deg(𝜑𝑖 ) < a, deg(𝜓 ) < 𝜗.

Recall that S𝑌,a,𝜗 ⊇ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩0≤𝑖<𝛿a,𝜗 where

𝛿a,𝜗 = min(a − (deg(𝒗) + |𝐸 |), 𝜗 − (deg(𝑑) + |𝐸 |)).

By convention, if 𝛿a,𝜗 ≤ 0 we set ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 = {(0, 0)}.

Notice that 𝛿a,𝜗 > 0 iff (a > deg(Λ𝒗) and 𝜗 > deg(Λ𝑑)). Therefore,
if a, 𝜗 do not upper bound the degrees of (Λ𝒗,Λ𝑑) then 𝛿a,𝜗 ≤ 0.

As in Proposition 2.2 and Theorem 3.1, we prove that S𝑌,a,𝜗 =

⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 if we have enough evaluations (see Propo-

sition 4.1 and Theorem 4.2). This gives us a criterion Check to

detect if a, 𝜗 are correct upper bounds on the degrees of (Λ𝒗,Λ𝑑):
(a > deg(Λ𝒗) and 𝜗 > deg(Λ𝑑)) iff 𝛿a,𝜗 > 0 iffS𝑌,a,𝜗 ≠ {(0, 0)}.
More specifically, let Check(𝑌, a, 𝜗) be the function that returns

the Boolean S𝑌,a,𝜗 != {(0, 0)}. If Check equals true, then we can

call FindSolution(𝑌, a, 𝜗) to recover (𝒗, 𝑑) from S𝑌,a,𝜗 (see Re-

mark 2.3).

We can now sketch our early termination strategy. For a number

of evaluations 𝐿 that is iteratively incremented, we compute dif-

ferent Check(𝑌, a, 𝜗) to see if there exists a, 𝜗 which upper bound

deg(Λ𝒗,Λ𝑑). As soon as the criterion is satisfied, we can output the

solution (𝒗, 𝑑) using FindSolution(𝑌, a, 𝜗).
Recall that in the early termination strategy, the number of evalu-

ations 𝐿 grows, and that our techniques require an error bound 𝜏 to

work. Thus, a natural question is to understand how we can deter-

mine an error bound 𝜏 , even though the number of errors increases

along with the number of evaluations. A first possible approach is

to fix an error bound 𝜏 which is related to the largest number of

evaluations: our early termination strategy stops when 𝐿 = 𝐿𝐾𝑃𝑆𝑊
(resp. 𝐿𝐿𝐺𝑍 ) in the worst case, and we can set 𝜏 w.r.t. this number

of evaluations (as we would have done in Sections 2, 3). The second



approach, coming from [9–11], considers an error bound 𝜏 which

(linearly) depends on the number of evaluations 𝐿. In this second

setup, we are able to save some more evaluations compared to the

fixed error bound approach.

Another significant difference from [9] consists in the reduction

of the number of evaluations which guarantees to uniquely recover

the solution in presence of random errors, based on the IRS decoding

technique as in [7].

The remainder of the section is organized as follows. In Sec-

tion 4.1, we first revisit the stop criterion of [9] and we introduce

sensitivity on the number of errors. Then we contribute by reduc-

ing the number of evaluations in presence of random errors. In

Section 4.2 we introduce early termination strategies for fixed error

bounds, in both scenarios of any error as in [9] or of random errors

as in [7]. Finally, in Section 4.3, we turn to linear error bounds

which we integrate in both these scenarios.

4.1 Uniqueness results
For any error. The uniqueness of solutions S𝑌,a,𝜗 is based on the

following Proposition 4.1, which revisits [9] and requires to extend

the definition of L (see (2))

L(a, 𝜗) := min

(
max(𝑁 − 1 + 𝜗, 𝐷 − 1 + a)

max(deg(𝐴) + a, deg(𝒃) + 𝜗)

)
.

Notice that L(𝑁, 𝐷) = L.

Proposition 4.1. Under the setting of Definition 2.1, if𝐿 ≥ 𝐿′
𝐾𝑃𝑆𝑊

with𝐿′
𝐾𝑃𝑆𝑊

(a, 𝜗, 𝜏) := L(a, 𝜗)+𝜏 thenS𝑌,a,𝜗 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 .

We remark that Proposition 2.2 is a special case of Proposi-

tion 4.1 for a = 𝑁 + 𝜏, 𝜗 = 𝐷 + 𝜏 (in which case 𝛿a,𝜗 > 0). Indeed,

𝐿′
𝐾𝑃𝑆𝑊

(𝑁 + 𝜏, 𝐷 + 𝜏, 𝜏) = L(𝑁 + 𝜏, 𝐷 + 𝜏) + 𝜏 = L + 2𝜏 = 𝐿𝐾𝑃𝑆𝑊 .

Remark that 𝐿′
𝐾𝑃𝑆𝑊

(a, 𝜗, 𝜏) is non-decreasing in both a and 𝜗 , and

that 𝐿′
𝐾𝑃𝑆𝑊

(a + 𝑖, 𝜗 + 𝑖, 𝜏) = 𝐿′
𝐾𝑃𝑆𝑊

(a, 𝜗, 𝜏) + 𝑖 for any 𝑖 ∈ Z.

Proof. We now prove that S𝑌,a,𝜗 ⊂ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩0≤𝑖<𝛿a,𝜗 , the
other inclusion being straightforward. From now on, we fix (𝝋,𝜓 ) ∈
S𝑌,a,𝜗 . Let us show that 𝒗𝜓 − 𝑑𝝋 = 0.

Assume that 𝐿 ≥ max(𝐷−1+a, 𝑁 −1+𝜗) +𝜏 . Combining for all 𝑗

the equalities𝝋 (𝛼 𝑗 ) = 𝒚 𝑗𝜓 (𝛼 𝑗 ) and (Λ𝒗) (𝛼 𝑗 ) = 𝒚 𝑗 (Λ𝑑) (𝛼 𝑗 ), we get
(Λ(𝒗𝜓 −𝑑𝝋)) (𝛼 𝑗 ) = 0. Now, we must have Λ(𝒗𝜓 −𝑑𝝋) = 0 since it
has at least 𝐿 roots and degree < |𝐸 | +max(deg(𝒗)+𝜗, deg(𝑑)+a) ≤
𝐿 by assumption. Finally, Λ ≠ 0 so 𝒗𝜓 − 𝑑𝝋 = 0.

On the other hand, assume 𝐿 ≥ max(deg(𝐴) + a, deg(𝒃) +𝜗) + 𝜏 .
For all 𝑗 , we have Λ(𝛼 𝑗 ) (𝐴(𝛼 𝑗 )𝒚 𝑗 − 𝒃 (𝛼 𝑗 )) = 0. Combining this

equation with 𝝋 (𝛼 𝑗 ) = 𝒚 𝑗𝜓 (𝛼 𝑗 ) we get (Λ(𝐴𝝋 − 𝜓𝒃)) (𝛼 𝑗 ) = 0.

Now, notice that (Λ(𝐴𝝋 − 𝜓𝒃)) has at least 𝐿 roots and degree

< |𝐸 |+max(deg(𝐴)+a, deg(𝒃)+𝜗) ≤ 𝐿 by assumption. So𝐴𝝋 = 𝜓𝒃 .
Combined with 𝐴𝒗 = 𝑑𝒃 , we get 𝐴(𝝋𝑑 − 𝒗𝜓 ) = 0. Since 𝐴 is full

rank, we obtain 𝝋𝑑 − 𝒗𝜓 = 0.
Since 𝝋𝑑 − 𝒗𝜓 = 0 and gcd(gcd𝑖 (𝑣𝑖 ), 𝑑) = 1 then there exists

𝑃 ∈ F𝑞 [𝑥] such that (𝝋,𝜓 ) = (𝑃𝒗, 𝑃𝑑). The key equations 𝝋 (𝛼 𝑗 ) =
𝒚 𝑗𝜓 (𝛼 𝑗 ) yield 𝑃 (𝛼 𝑗 ) (𝒗 (𝛼 𝑗 ) − 𝒚 𝑗𝑑 (𝛼 𝑗 )) = 0 and so 𝑃 (𝛼 𝑗 ) = 0 for

𝑗 ∈ 𝐸. This means that ∃𝑃 ′ ∈ F𝑞 [𝑥], 𝑃 = Λ𝑃 ′. Finally, (𝝋,𝜓 ) =
𝑃 ′(Λ𝒗,Λ𝑑) and the degree constraints on (𝝋,𝜓 ) imply deg 𝑃 ′ <
𝛿a,𝜗 which concludes our proof. □

For random errors. In the context of random errors, we can further

reduce the number of evaluations of Proposition 4.1 required to get

a unique solution in S𝑌,a,𝜗 .

Theorem 4.2. Under the setting of Definition 2.1, let 𝐿 ≥ 𝐿′
𝐺𝐿𝑍

where 𝐿′
𝐺𝐿𝑍
(a, 𝜗, 𝜏) := L(a, 𝜗) + ⌈𝜏/𝑛⌉, and fix an error support

𝐸 ⊆ {1, . . . , 𝐿} such that |𝐸 | ≤ 𝜏 . Consider the random matrix 𝑌

whose columns 𝒚 𝑗 ∈ F𝑛𝑞 are such that 𝒚 𝑗 =
𝒗 (𝛼 𝑗 )
𝑑 (𝛼 𝑗 ) if 𝑗 ∉ 𝐸, and 𝒚 𝑗 is

uniformly distributed if 𝑗 ∈ 𝐸.
Then S𝑌,a,𝜗 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩

0≤𝑖<𝛿a,𝜗 with probability ≥ 1 − 𝜗
𝑞 .

Note that Theorem 3.1 is a special case of Theorem 4.2 for a =

𝑁 + 𝜏, 𝜗 = 𝐷 + 𝜏 (in which case 𝛿a,𝜗 > 0). Indeed, 𝐿′
𝐺𝐿𝑍
(𝑁 + 𝜏, 𝐷 +

𝜏, 𝜏) = 𝐿𝐺𝐿𝑍 .

Proof. The proof is similar to the proof of Theorem 3.1. We

slightly adapt the first part to prove that there exists a draw𝑊

of 𝑌 for which S𝑊,a,𝜗 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 . As in Proposition

4.1, we only need to prove the inclusion ⊆. We still consider the

partition 𝐸 = ∪𝑛
𝑖=1

𝐼𝑖 such that |𝐼𝑖 | ≤ ⌈|𝐸 |/𝑛⌉ for all 𝑖 . Recall that for
any 𝑗 ∈ 𝐸, we denote by 𝑖 𝑗 the unique index such that 𝑗 ∈ 𝐼𝑖 𝑗 .

We first assume thatL(a, 𝜗) = max(𝑁−1+𝜗, 𝐷−1+a). Construct
a matrix𝑊 (as in the proof of Theorem 3.1) whose columns 𝒘 𝑗
satisfy 𝒗 (𝛼 𝑗 ) − 𝑑 (𝛼 𝑗 )𝒘 𝑗 = 0 if 𝑗 ∉ 𝐸, and 𝒗 (𝛼 𝑗 ) − 𝑑 (𝛼 𝑗 )𝒘 𝑗 = 𝜺𝑖 𝑗 if
𝑗 ∈ 𝐸. Let (𝝋,𝜓 ) ∈ S𝑊,a,𝜗 and denote 𝒑 := 𝜓𝒗 − 𝑑𝝋, and 𝑝𝑖 its 𝑖th
component. We adapt the proof that gives 𝒑(𝑥) = 0.

We deduce as before that 𝒑(𝛼 𝑗 ) = 0 for 𝑗 ∉ 𝐸, and 𝒑(𝛼 𝑗 ) =
𝜓 (𝛼 𝑗 )𝜺𝑖 𝑗 for 𝑗 ∈ 𝐸. Fix 1 ≤ 𝑖 ≤ 𝑛, then for any 𝑗 ∉ 𝐼𝑖 , 𝑝𝑖 (𝛼 𝑗 ) = 0.

Now, notice that 𝑝𝑖 has degree ≤ max(𝜗 +𝑁 − 1, 𝐷 − 1 + a) − 1 and

its number of roots is 𝐿 − |𝐼𝑖 | ≥ 𝐿 − ⌈|𝐸 |/𝑛⌉ ≥ 𝐿′
𝐺𝐿𝑍
− ⌈|𝜏 |/𝑛⌉ =

max(a + 𝐷 − 1, 𝜗 + 𝑁 − 1) and so it is the zero polynomial.

Now assume that L(a, 𝜗) = max(deg(𝐴) + a, deg(𝒃) + 𝜗). Con-
struct a matrix𝑊 such that 𝐴(𝛼 𝑗 )𝒘 𝑗 − 𝒃 (𝛼 𝑗 ) = 0 if 𝑗 ∉ 𝐸, and

𝐴(𝛼 𝑗 )𝒘 𝑗 − 𝒃 (𝛼 𝑗 ) = 𝜺𝑖 𝑗 if 𝑗 ∈ 𝐸. Let (𝝋,𝜓 ) ∈ S𝑊,a,𝜗 and denote

𝒑 := 𝐴𝝋 − 𝒃𝜓 . Let us show that 𝒑(𝑥) = 0. As before, 𝑝𝑖 (𝛼 𝑗 ) = 0

for any 𝑗 ∉ 𝐼𝑖 . Notice that deg(𝑝𝑖 ) < max(deg(𝐴) + a, deg(𝒃) + 𝜗)
and that the number of roots is at least 𝐿 − |𝐼𝑖 | ≥ max(deg(𝐴) +
a, deg(𝒃) + 𝜗) and so 𝑝𝑖 = 0. Therefore, 𝐴(𝑥)𝝋 (𝑥) = 𝒃 (𝑥)𝜓 (𝑥), but
since 𝒚(𝑥) = 𝒗 (𝑥)

𝑑 (𝑥) is the only solution of the linear system, we get

𝜓𝒗 − 𝑑𝝋 = 0 also in this case.

The conclusion of the first part is the same as before, except that

the new degree constraints lead to 𝛿a,𝜗 instead of 𝛿𝑁+𝜏,𝐷+𝜏 .
For the second part, now only the last 𝜗 columns of the matrix

𝑀𝑌,a,𝜗 contains the variables (𝑦𝑖, 𝑗 )1≤𝑖≤𝑛,𝑗 ∈𝐸 . So the probability

that S𝑌,a,𝜗 ≠ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 is ≤ 𝜗/𝑞 using the Schwartz-

Zippel Lemma. □

4.2 Fixed error bound
We are now ready to introduce our Early Termination Algorithm 1

for PLSwE in the context of a fixed error bound 𝜏 . Note that in

Algorithm 1 the number of evaluations varies, which could affect

the number of errors. Therefore, we denote |𝐸 (𝐿) | := |{1 ≤ 𝑗 ≤
𝐿 | 𝒆 𝑗 ≠ 0}| instead of |𝐸 | to stress out the dependency on 𝐿. So

our assumption on the fixed error bound 𝜏 is that |𝐸 (𝐿) | ≤ 𝜏 for

each value of 𝐿 during the execution of Algorithm 1. As explained

before, we can choose such an error bound 𝜏 because the number of



Algorithm 1: Early Termination algorithm for PLSwE in

the context of a fixed error bound 𝜏 .

Input:
(1) a fixed error bound 𝜏

(2) degrees deg(𝐴), deg(𝒃) and degree bounds 𝑁, 𝐷

(3) an evaluations count 𝐿′(a, 𝜗, 𝜏) ∈ {𝐿′
𝐾𝑃𝑆𝑊

, 𝐿′
𝐺𝐿𝑍
}

(4) a stream of vectors 𝑌 = (𝒚 𝑗 ) 𝑗=1,2,... extensible on demand

Output: (𝒗, 𝑑) the solution of PLSwE

1 𝐿 ← 𝐿′(1, 1, 𝜏) ; Extend 𝑌 to 𝐿 vectors;

2 while true do
3 foreach a, 𝜗 such that 𝐿′(a, 𝜗, 𝜏) = 𝐿 do
4 if Check(𝑌, a, 𝜗) then
5 return FindSolution(𝑌, a, 𝜗);

6 𝐿 ← 𝐿 + 1; Extend 𝑌 to 𝐿 vectors;

evaluations 𝐿 does not exceed the evaluations counts 𝐿𝐾𝑃𝑆𝑊 , 𝐿𝐺𝐿𝑍
considered in Sections 2 and 3.

Remark also that we need to consider deg(𝐴), deg(𝒃), 𝑁 , 𝐷 as

inputs of Algorithm 1 since they are implicitly used in 𝐿′(a, 𝜗, 𝜏)
which is either the evaluation count 𝐿′

𝐾𝑃𝑆𝑊
(a, 𝜗, 𝜏) of Proposi-

tion 4.1 or 𝐿′
𝐺𝐿𝑍
(a, 𝜗, 𝜏) of Theorem 4.2.

Optimizing Algorithm 1. Notice that Check and FindSolution per-

form the same computation, i.e. compute a basis of S𝑌,a,𝜗 , and
should be merged in practice.

Remark 4.3. We can optimize the steps 2 and 3 of Algorithm 1

by only testing, for each 𝐿, two specific (a, 𝜗) instead of all those

giving 𝐿. The goal is to make early termination algorithms have a

smaller failure probability, and incidentally to make them faster.

We want to find which (a, 𝜗) maximizes 𝛿a,𝜗 among those such

that 𝐿′(a, 𝜗, 𝜏) = 𝐿 when 𝐿 is fixed. We will consider the equivalent

problem of maximizing 𝛿a,𝜗 for all (a, 𝜗) such that L(a, 𝜗) = _, for

a fixed _. The two candidates are (a1, 𝜗1) = (_ − (𝐷 − 1), _ − (𝑁 −
1)) and (a2, 𝜗2) = (_ − deg(𝐴), _ − deg(𝒃)). Define the ordering
(a1, 𝜗1) ≤ (a2, 𝜗2) ⇔ (a1 ≤ a2 and 𝜗1 ≤ 𝜗2), so that (a1, 𝜗1) ≤
(a2, 𝜗2) implies 𝛿a1,𝜗1

≤ 𝛿a2,𝜗2
.

We now show that for any (a, 𝜗) such that _ = L(a, 𝜗), we have
(a, 𝜗) ≤ (a1, 𝜗1) or (a, 𝜗) ≤ (a2, 𝜗2). Indeed, either _ = L(a, 𝜗) =
max(𝐷 − 1 + a, 𝑁 − 1 + 𝜗) and (a, 𝜗) ≤ (a1, 𝜗1), or _ = L(a, 𝜗) =
max(deg(𝐴) + a, deg(𝒃) + 𝜗) and (a, 𝜗) ≤ (a2, 𝜗2).

Remark that if (𝐷 − 1, 𝑁 − 1) ≤ (deg(𝐴), deg(𝒃)) then we

should only try (a1, 𝜗1) because (a1, 𝜗1) ≥ (a2, 𝜗2) and L(a1, 𝜗1) =
_ (but possibly L(a2, 𝜗2) ≠ _). Similarly, if (𝐷 − 1, 𝑁 − 1) ≥
(deg(𝐴), deg(𝒃)) then we should only try (a2, 𝜗2). However, if
(𝐷 − 1, 𝑁 − 1) and (deg(𝐴), deg(𝒃)) are not comparable, we should

try both candidates because they are not comparable, and they both

lead to L(a1, 𝜗1) = L(a2, 𝜗2) = _. □

Termination. We now analyze the termination of Algorithm 1, and

show that it stops exactly when the number of correct evaluations

𝐶 (𝐿) := 𝐿 − |𝐸 (𝐿) | reaches 𝐿′(deg(𝒗), deg(𝑑), 𝜏) + 1.

Proposition 4.4. Algorithm 1 terminates, and when it stops, 𝐿 ≤
𝐿𝑠 , where 𝐿𝑠 :=𝑚𝑖𝑛{𝐿 | 𝐶 (𝐿) ≥ 𝐿′(deg(𝒗), deg(𝑑), 𝜏) + 1}.

More precisely, Algorithm 1 terminates with 𝐿𝑠 evaluations, ex-
cept in the case of random errors 𝐿′ = 𝐿′

𝐺𝐿𝑍
where Algorithm 1

could stop with 𝐿 < 𝐿𝑠 evaluations with bounded probability (see
Proposition 4.6).

Proof. We start by showing that 𝐿𝑠 is well-defined. Since 𝐶 (𝐿)
verifies𝐶 (0) = 0, lim𝐿→+∞𝐶 (𝐿) = +∞,𝐶 (𝐿) ≤ 𝐶 (𝐿+1) ≤ 𝐶 (𝐿)+1,

it must be surjective ontoN. As a consequence,𝐶 (𝐿) will eventually
reach 𝐿′(deg(𝒗), deg(𝑑), 𝜏) + 1, so that 𝐿𝑠 is well-defined. We get

additionally that 𝐶 (𝐿𝑠 ) = 𝐿′(deg(𝒗), deg(𝑑), 𝜏) + 1.

For the parameters a = deg(𝒗) + |𝐸 (𝐿𝑠 ) | + 1 and 𝜗 = deg(𝑑) +
|𝐸 (𝐿𝑠 ) | + 1, the number of evaluations 𝐿 = 𝐿′(a, 𝜗, 𝜏) equals to 𝐿𝑠
and the algorithm stops (because 𝛿a,𝜗 > 0 always implies S𝑌,a,𝜗 ≠

{(0, 0)}).
Assume now that Check always output a correct answer, i.e. that

it correctly tells if 𝛿a,𝜗 > 0 or not. We prove by contraposition

that if 𝐿 < 𝐿𝑠 then the algorithm does not stop, i.e. 𝛿a,𝜗 ≤ 0 for all

a, 𝜗 such that 𝐿 = 𝐿′(a, 𝜗, 𝜏). Indeed if there exists a, 𝜗 such that

𝛿a,𝜗 > 0, then deg(𝒗) + |𝐸 (𝐿) | < a and deg(𝑑) + |𝐸 (𝐿) | < 𝜗 for

𝐿 = 𝐿′(a, 𝜗, 𝜏). As 𝐿′(a, 𝜗, 𝜏) is non-decreasing in each variable a, 𝜗 ,

we obtain 𝐿 ≥ 𝐿′(deg(𝒗), deg(𝑑), 𝜏) + |𝐸 (𝐿) | + 1 and so 𝐿 ≥ 𝐿𝑠 .

We refer to the proof of Proposition 4.6 for the probability that

Check outputs an incorrect answer during the execution of Algo-

rithm 1. □

Remark 4.5. Our early termination strategy requires

𝐿𝑠 = 𝐿′
𝐾𝑃𝑆𝑊

(deg(𝒗), deg(𝑑), 𝜏) + |𝐸 (𝐿𝑠 ) | + 1 evaluations whereas

[9, Equations 5 and 9] needs 𝐿′
𝐾𝑃𝑆𝑊

(deg(𝒗), deg(𝑑), 𝜏) + 𝜏 + 1 eval-

uations. So we save some evaluations in Algorithm 1 due to a

dependency on the real number of errors |𝐸 (𝐿𝑠 ) | (instead of 𝜏).

To the best of our knowledge, this dependency is original in the

literature. □

Correctness. The correctness of Algorithm 1 is related to the cor-

rectness of Check and FindSolution. Recall that Check(𝑌, a, 𝜗)
outputs the Boolean 𝛿a,𝜗 > 0 by computing S𝑌,a,𝜗 != {(0, 0)}.

We know that (𝛿a,𝜗 > 0) iff (⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 ≠ 0). So

Check(𝑌, a, 𝜗) is correct when S𝑌,a,𝜗 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 . By

Proposition 4.4, if 𝐿′ = 𝐿′
𝐾𝑃𝑆𝑊

then Check(𝑌, a, 𝜗) is correct and
so FindSolution(𝑌, a, 𝜗) returns (𝒗, 𝑑).

On the other hand, if 𝐿′ = 𝐿′
𝐺𝐿𝑍

, the correctness of Algorithm 1

depends on the draw of random error. Indeed, by Theorem 4.2, we

have S𝑌,a,𝜗 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 with probability ≥ 1 − 𝜗/𝑞, in

which case Check is correct and FindSolution outputs (𝒗, 𝑑).
Recall that FindSolution was defined only in the case S𝑌,a,𝜗 =

⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩ (see Remark 2.3). Nevertheless, it could happen with

probability ≤ 𝜗/𝑞 that FindSolution is called, i.e. Check(𝑌, a, 𝜗)
is true, but S𝑌,a,𝜗 ≠ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩

0≤𝑖<𝛿a,𝜗 . In order to handle this

situation, we modify FindSolution to output a failure message if

the minimal degree solution (𝝋𝑚𝑖𝑛,𝜓𝑚𝑖𝑛) of S𝑌,a,𝜗 does not span

all solutions (see Remark 2.3).

Recall that we try at most 2 affectations of parameters (a1, 𝜗1)
and (a2, 𝜗2) for each number of evaluations 𝐿 (see Remark 4.3).

In the following proposition, we denote by (a𝑠
1
, 𝜗𝑠

1
), (a𝑠

2
, 𝜗𝑠

2
) the

candidate parameters corresponding to 𝐿𝑠 .



Proposition 4.6. Algorithm 1 is correct, except when 𝐿′ = 𝐿′
𝐺𝐿𝑍

with probability ≤ 2 max(𝜗𝑠
1
,𝜗𝑠

2
) (deg(Λ𝒗,Λ𝑑)+1)
𝑞 .

Proof. If all calls to Check and FindSolution output a correct

answer during the execution of Algorithm 1, then Algorithm 1 re-

turns the solution (𝒗, 𝑑). We have previously remarked that Check
and FindSolution could output an incorrect answer only if

S𝑌,a,𝜗 ≠ ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 for a choice of parameters (a, 𝜗) at

line 3. The probability of this later event is related to the number of

loops of the foreach at line 3, which we now study. The number of

evaluations starts from 𝐿′(1, 1, 𝜏) and ends at

𝐿𝑠 = 𝐿′(deg(𝒗), deg(𝑑), 𝜏) + |𝐸 (𝐿𝑠 ) | + 1: there are at most

max(deg(𝒗), deg(𝑑)) + |𝐸 (𝐿𝑠 ) | + 1 = deg(Λ𝒗,Λ𝑑) + 1 different eval-

uation counts. Moreover, for each number of evaluations 𝐿, we

try at most 2 affectations of parameters (a1, 𝜗1) and (a2, 𝜗2). Now
any attempt (a, 𝜗) could fail with probability ≤ 𝜗/𝑞. This latter
probability is always ≤ max(𝜗𝑠

1
, 𝜗𝑠

2
)/𝑞 for all attempts of 𝜗 during

the execution of Algorithm 1. Combining all these results, we can

conclude that the probability that Algorithm 1 would return an

incorrect answer is at most

2 max(𝜗𝑠
1
,𝜗𝑠

2
) (deg(Λ𝒗,Λ𝑑)+1)
𝑞 . □

In the special case deg(𝐴𝒗) = deg(𝐴)+deg(𝒗), we can prove that
max(𝜗𝑠

1
, 𝜗𝑠

2
) ≤ 𝐷 + 𝐸 (𝐿𝑠 ) as a bonus. Indeed, we have

max(𝜗𝑠
1
, 𝜗𝑠

2
) = L(deg(𝒗), deg(𝑑)) +𝐸 (𝐿𝑠 ) + 1−min(𝑁 − 1, deg(𝒃)).

First, if 𝑁 − 1 ≤ deg(𝒃), then we have that L(deg(𝒗), deg(𝑑)) ≤
max(𝐷−1+deg(𝒗), 𝑁−1+deg(𝑑)) ≤ 𝑁+𝐷−2, and somax(𝜗𝑠

1
, 𝜗𝑠

2
) ≤

𝐷 + 𝐸 (𝐿𝑠 ). Otherwise, 𝑁 − 1 ≥ deg(𝒃), and L(deg(𝒗), deg(𝑑)) ≤
max(deg(𝐴) + deg(𝒗), deg(𝒃) + deg(𝑑)) = deg(𝒃) + deg(𝑑) since
𝐴𝒗 = 𝒃𝑑 and deg(𝐴) + deg(𝒗) = deg(𝐴𝒗) = deg(𝒃𝑑) = deg(𝒃) +
deg(𝑑). Therefore, also in this case we get the bound max(𝜗𝑠

1
, 𝜗𝑠

2
) ≤

deg(𝑑) + 1 + 𝐸 (𝐿𝑠 ) ≤ 𝐷 + 𝐸 (𝐿𝑠 ).

4.3 Linear error bound
Up until now, our early termination schemes consider fixed error

bounds 𝜏 when 𝐿 varies. This error bound 𝜏 has to be valid for the

largest possible number of evaluations 𝐿 that Algorithm 1 could

reach. It would be interesting to have an error bound 𝜏 that grows

along with the number of evaluations. In this case, the bound would

be tighter than a fixed error bound when 𝐿 is an intermediate

number of evaluations. For this aim, in this section, we consider a

linear error bound which depends on a given error rate 𝜌𝐸 .

Assumption 4.7. For any number of evaluations 𝐿, the number

of errors |𝐸 (𝐿) | is bounded by |𝐸 (𝐿) | ≤ 𝜌𝐸𝐿 where 0 ≤ 𝜌𝐸 < 1/2.

This assumption comes from [9–11], where they also consider

the variant |𝐸 (𝐿) | ≤ ⌈𝜌𝐸𝐿⌉. For the sake of simplicity, we restrict

ourselves to Assumption 4.7. However, we are confident that our

results can be adapted to the alternative linear error bound, and we

leave it to future work.

Uniqueness results. We start by adapting Proposition 4.1 to the

special case of linear error bound. This proposition is our adaptation

of [9] where we add sensitivity to the real number of errors.

Proposition 4.8. Consider 𝐿 =

⌊
L(a,𝜗)+1

1−𝜌𝐸

⌋
evaluation points and

the error bound 𝜏 = ⌊𝜌𝐸𝐿⌋. Under the setting of Definition 2.1 and
Assumption 4.7, we have S𝑌,a,𝜗 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩

0≤𝑖<𝛿a,𝜗 .

Intuitively, Proposition 4.8 is obtained from Proposition 4.1 by

setting 𝜏 = 𝜌𝐸𝐿 in 𝐿 = 𝐿′
𝐾𝑃𝑆𝑊

(a, 𝜗, 𝜏) = L(a, 𝜗) +𝜏 , thus obtaining
𝐿 = L(a, 𝜗)/(1 − 𝜌𝐸 ). However, 𝐿 is an integer, so we have to

consider the count of Proposition 4.8. We postpone the proof after

Proposition 4.9 in order to prove both results at the same time.

As before, we can lower the number of evaluation points by con-

sidering randomly distributed errors. Theorem 4.2 can be adapted

to the context of a linear error bound.

Proposition 4.9. Assume that we are in the setting of Defini-
tion 2.1, with the additional Assumption 4.7 and consider an error
support 𝐸 and a random matrix 𝑌 as in Theorem 4.2.

Using 𝐿 =

⌊
L(a,𝜗)+1
1−𝜌𝐸/𝑛

⌋
evaluations and error bound 𝜏 = ⌊𝜌𝐸𝐿⌋, we

have S𝑌,a,𝜗 = ⟨𝑥𝑖Λ𝒗, 𝑥𝑖Λ𝑑⟩
0≤𝑖<𝛿a,𝜗 with probability at least 1 − 𝜗

𝑞 .

Proof of Propositions 4.8 and 4.9. We prove simultaneously

both propositions by considering

⌊
L(a,𝜗)+1
1−𝜌𝐸/𝑚

⌋
, which specializes to

the number of evaluations of Proposition 4.8 when𝑚 = 1, and to

the one of Proposition 4.9 when𝑚 = 𝑛.

Let𝑚 ∈ N∗ and denote 𝐿∗ (a, 𝜗) = L(a,𝜗)+1
1−𝜌𝐸/𝑚 , so that 𝐿∗ (a, 𝜗) =⌊

𝐿∗ (a, 𝜗)
⌋
is the number of evaluations, and𝜏∗ (a, 𝜗) = ⌊𝜌𝐸𝐿∗ (a, 𝜗)⌋

is the error bound.

Our goal is to show that we are under the hypotheses of

Proposition 4.1 (𝑚 = 1) or Theorem 4.2 (𝑚 = 𝑛), i.e. that
L(a, 𝜗) + ⌈𝜏∗ (a, 𝜗)/𝑚⌉ ≤ 𝐿∗ (a, 𝜗) and |𝐸 (𝐿∗ (a, 𝜗)) | ≤ 𝜏∗ (a, 𝜗).

First |𝐸 (𝐿∗ (a, 𝜗)) | ≤ 𝜌𝐸𝐿
∗ (a, 𝜗) using Assumption 4.7. Since

|𝐸 (𝐿∗ (a, 𝜗)) | ∈ N, we get |𝐸 (𝐿∗ (a, 𝜗)) | ≤ ⌊𝜌𝐸𝐿∗ (a, 𝜗)⌋ = 𝜏∗ (a, 𝜗).
Then

L(a, 𝜗) + ⌈𝜏∗ (a, 𝜗)/𝑚⌉ ≤ L(a, 𝜗) + 𝜏∗ (a, 𝜗)/𝑚 + 1

≤ L(a, 𝜗) + 𝜌𝐸/𝑚𝐿∗ (a, 𝜗) + 1

≤ L(a, 𝜗) + 𝜌𝐸/𝑚𝐿∗ (a, 𝜗) + 1 = 𝐿∗ (a, 𝜗).

Finally L(a, 𝜗) + ⌈𝜏∗ (a, 𝜗)/𝑚⌉ ≤
⌊
𝐿∗ (a, 𝜗)

⌋
= 𝐿∗ (a, 𝜗). □

Early termination algorithm. We can use the evaluation counts of

Propositions 4.8 and 4.9 to detect if (a, 𝜗) are good estimations,

and eventually return the solution (𝒗, 𝑑) of the PLS. We formalize

this idea in Algorithm 2. It remains to prove its correctness and

termination.

In the context of [9], the correctness of Algorithm 2 is a conse-

quence of Proposition 4.8. Its termination is studied in the following

proposition.

Proposition 4.10. We have the following results:
(1) Algorithm 2 stops with at most 𝐿𝑠 evaluations where

𝐿𝑠 =𝑚𝑖𝑛

{
𝐿

���� 𝐿 ≥ ⌊
L(deg(𝒗), deg(𝑑)) + |𝐸 (𝐿) | + 2

1 − 𝜌𝐸

⌋}
. (5)

(2) We can bound 𝐿𝑠 ≤
⌊ L(deg(𝒗),deg(𝑑))+2

1−2𝜌𝐸

⌋
.

(3) If for some reason fewer errors are made, i.e. |𝐸 (𝐿) | ≤ 𝜌 ′
𝐸
𝐿

with 𝜌 ′
𝐸
< 𝜌𝐸 , then 𝐿𝑠 ≤

⌊ L(deg(𝒗),deg(𝑑))+2
1−𝜌′

𝐸
−𝜌𝐸

⌋
.

The inequality given in Item 2 relates the performance of our

early termination algorithm to the literature. Indeed, the right-hand

bound can be derived from [9, Algorithm 2.2] with 𝜌𝑅 = 0 (no rank

drops) and 𝑞𝑅 = 𝑞𝐸 = +∞ (for simplicity).



Algorithm 2: Early Termination algorithm for PLSwE in

the context of a linear error bound.

Input:
(1) an error rate 𝜌𝐸
(2) degrees deg(𝐴), deg(𝒃) and degree bounds 𝑁, 𝐷

(3) a stream of vectors 𝑌 = (𝒚 𝑗 ) 𝑗=1,2,... extensible on demand

Output: (𝒗, 𝑑) the solution of PLSwE.

1 𝐿𝑛𝑢𝑚 ← L(1, 1) + 1;

2 while true do
3 𝐿 ←

⌊
𝐿𝑛𝑢𝑚

1−𝜌𝐸

⌋
(any error) or

⌊
𝐿𝑛𝑢𝑚

1−𝜌𝐸/𝑛

⌋
(random error);

4 Extend 𝑌 to 𝐿 vectors;

5 foreach a, 𝜗 such that L(a, 𝜗) + 1 = 𝐿𝑛𝑢𝑚 do
6 if Check(𝑌, a, 𝜗) then
7 return FindSolution(𝑌, a, 𝜗);

8 𝐿𝑛𝑢𝑚 ← 𝐿𝑛𝑢𝑚 + 1; Extend 𝑌 to 𝐿 vectors;

Note that 𝜌𝐸 and 𝜌 ′
𝐸
don’t play the same role: 𝜌𝐸 must be known

in advance (it is an input of the algorithm) and be related to a linear

error bound that is always true. If Assumption 4.7 is not true, then

the correctness of Algorithm 2 may be lost. On the other hand,

𝜌 ′
𝐸
is used to demonstrate that our early termination technique is

sensitive to the real number of errors (in addition to real degrees

of 𝒗, 𝑑), i.e. that it can stop earlier if fewer errors than expected are

made.

In the context of random errors, we can lower the number of

evaluations 𝐿𝑠 when Algorithm 2 stops.

Proposition 4.11. In the context of random errors, we have:
(1) Algorithm 2 stops with at most 𝐿𝑠 evaluations, where

𝐿𝑠 =𝑚𝑖𝑛

{
𝐿

���� 𝐿 ≥ ⌊
L(deg(𝒗), deg(𝑑)) + |𝐸 (𝐿) | + 2

1 − 𝜌𝐸/𝑛

⌋}
. (6)

(2) We can bound 𝐿𝑠 ≤
⌊ L(deg(𝒗),deg(𝑑))+2

1−(1+1/𝑛)𝜌𝐸

⌋
.

(3) If |𝐸 (𝐿) | ≤ 𝜌 ′
𝐸
𝐿, then 𝐿𝑠 ≤

⌊ L(deg(𝒗),deg(𝑑))+2
1−𝜌′

𝐸
−𝜌𝐸/𝑛

⌋
.

(4) Finally, the output of Algorithm 2 is correct with probability

≥ 1 − 2 max(𝜗𝑠
1
,𝜗𝑠

2
) (deg(Λ𝒗,Λ𝑑)+1)
𝑞 (see Proposition 4.6).

Proof of Propositions 4.10 and 4.11. We keep the notations

of the proof of Proposition 4.8, e.g.𝑚 ∈ N∗ must be replaced by

𝑚 = 1 for Proposition 4.10, and by𝑚 = 𝑛 for Proposition 4.11.

(1) We need to prove that Algorithm 2 stops. Consider 𝑓 (𝐿) :=

𝐿 − L(deg(𝒗),deg(𝑑))+𝜌𝐸𝐿+2
1−𝜌𝐸/𝑚 , which is strictly increasing because

1 > 𝜌𝐸/(1 − 𝜌𝐸/𝑚) (since 0 ≤ 𝜌𝐸 < 1/2).
Let 𝑔(𝐿) = 𝐿 − L(deg(𝒗),deg(𝑑))+ |𝐸 (𝐿) |+2

1−𝜌𝐸/𝑚 . We have 𝑔(𝐿) ≥ 𝑓 (𝐿)
so lim𝐿→+∞ 𝑔(𝐿) = +∞. Rewrite 𝐿𝑠 = 𝑚𝑖𝑛{𝐿 | ⌈𝑔(𝐿)⌉ ≥ 0} (using
− ⌊𝑥⌋ = ⌈−𝑥⌉) to deduce that 𝐿𝑠 exists. Moreover −1 < 𝑔(𝐿𝑠 ) ≤
𝑔(𝐿𝑠 − 1) + 1 ≤ 0, so ⌈𝑔(𝐿𝑠 )⌉ = 0 and

𝐿𝑠 =

⌊
L(deg(𝒗), deg(𝑑)) + |𝐸 (𝐿𝑠 ) | + 2

1 − 𝜌𝐸/𝑚

⌋
.

Put it differently, we have that 𝐿𝑠 = 𝐿∗ (a𝑠 , 𝜗𝑠 ) for a𝑠 = deg(𝒗) +
|𝐸 (𝐿𝑠 ) |+1, 𝜗𝑠 = deg(𝑑)+|𝐸 (𝐿𝑠 ) |+1 (see the proof of Proposition 4.9).

So 𝛿a𝑠 ,𝜗𝑠 > 0 and Algorithm 2 would stop with 𝐿 ≤ 𝐿𝑠 evaluations.

(2) Now let 𝐿′ = L(deg(𝒗),deg(𝑑))+2
1−(1+1/𝑚)𝜌𝐸 and 𝐿′ =

⌊
𝐿′
⌋
. 𝐿′ is defined

so that 0 = 𝑓 (𝐿′). Since 𝑓 (𝐿𝑠 ) ≤ 𝑔(𝐿𝑠 ) = 0 = 𝑓 (𝐿′) and 𝑓 is strictly

increasing, we have 𝐿𝑠 ≤ 𝐿′, thus 𝐿𝑠 ≤
⌊
𝐿′
⌋
= 𝐿′.

(3) If one execution of PLSwE satisfies |𝐸 (𝐿) | ≤ 𝜌 ′
𝐸
𝐿 for 𝜌 ′

𝐸
<

𝜌𝐸 , we can prove that 𝐿𝑠 ≤
⌊ L(deg(𝒗),deg(𝑑))+2

1−𝜌′
𝐸
−𝜌𝐸/𝑚

⌋
by adapting the

previous proof with 𝑓 (𝐿) := 𝐿 − L(deg(𝒗),deg(𝑑))+𝜌′
𝐸
𝐿+2

1−𝜌𝐸/𝑚 . Indeed
¯𝑓

is still strictly increasing and verifies 𝑔(𝐿) ≥ ¯𝑓 (𝐿).
The statement of correctness for random errors can be proved

similarly to Proposition 4.6. The only difference is that we need to

consider 𝐿𝑛𝑢𝑚 (see Algorithm 2) instead of 𝐿 to count the number

of loops. The numerator 𝐿𝑛𝑢𝑚 of number of evaluations 𝐿 starts

from L(1, 1) + 1 and ends at L(deg(𝒗), deg(𝑑)) + |𝐸 (𝐿𝑠 ) | + 2: there

are at most max(deg(𝒗), deg(𝑑)) + |𝐸 (𝐿𝑠 ) | + 1 = deg(Λ𝒗,Λ𝑑) + 1

different values for 𝐿𝑛𝑢𝑚 . □
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