
Algorithms for Structured Linear Systems Solving and their
Implementation

Seung Gyu Hyun

Cheriton School of Computer Science

University of Waterloo

sghyun@edu.uwaterloo.ca

Romain Lebreton

LIRMM

Université de Montpellier

romain.lebreton@lirmm.fr

Éric Schost

Cheriton School of Computer Science

University of Waterloo

eschost@uwaterloo.ca

ABSTRACT
�ere exists a vast literature dedicated to algorithms for structured

matrices, but relatively few descriptions of actual implementations

and their practical performance in symbolic computation. In this

paper, we consider the problem of solving Cauchy-like systems, and

its application to mosaic Toeplitz systems, in two contexts: �rst in

the unit cost model (which is a good model for computations over

�nite �elds), then over Q. We introduce new variants of previous

algorithms and describe an implementation of these techniques and

its practical behavior. We pay a special a�ention to particular cases

such as the computation of algebraic approximants.

ACM Reference format:
Seung Gyu Hyun, Romain Lebreton, and Éric Schost. 2017. Algorithms for

Structured Linear Systems Solving and their Implementation. In Proceedings
of ISSAC ’17, Kaiserslautern, Germany, July 25-28, 2017, 8 pages.

DOI: h�p://dx.doi.org/10.1145/3087604.3087659

1 INTRODUCTION
Given input polynomials (t0, . . . , ts−1) over a �eld K, together

with integers (n0, . . . ,ns−1) and σ , the Hermite-Padé approxima-

tion problem asks to compute polynomials (p0, . . . ,ps−1), not all

zero, such that deg(pi) < ni holds for all i , and such that we have

p0t0 + · · · + ps−1ts−1 = O(xσ). �ere exist numerous applications

to this type of question, very important particular cases being alge-
braic approximants (with ti = f i , for some given f) or di�erential
approximants (with ti = di f /dx i , for some given f); see for in-

stance [6, Chapitre 7].

Expressed in the canonical monomial bases, the matrix of a

Hermite-Padé problem has size σ × (n0 + · · · + ns−1), and con-

sists of s lower triangular Toeplitz blocks. More generally, our

goal in this paper is to compute e�ciently elements in the ker-

nel of mosaic Toeplitz matrices [25]. Anm × n Toeplitz matrix T =
(ti−j)1≤i≤m,1≤j≤n can be succinctly represented by the polynomial

PT = t−n+1+t−n+2x+· · ·+tm−1x
m+n−2

; multiplication of T by a vec-

tor b = [b0 · · · bn−1]t amounts to computing PTPb mod xm+n−1

and keeping the coe�cients of degrees n − 1, . . . ,m + n − 2. More

generally, a mosaic Toeplitz T = (Ti, j)1≤i≤p,1≤j≤q of size m × n
with a p ×q block structure is made of pq blocks Ti, j being Toeplitz,

and so can be described by a sequence of pq polynomials P =

(PTi, j)1≤i≤p,1≤j≤q . �en, our main problem is as follows.

Publication rights licensed to ACM. ACM acknowledges that this contribution was

authored or co-authored by an employee, contractor or a�liate of a national govern-

ment. As such, the Government retains a nonexclusive, royalty-free right to publish

or reproduce this article, or to allow others to do so, for Government purposes only.

ISSAC ’17, Kaiserslautern, Germany
© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

978-1-4503-5064-8/17/07. . . $15.00

DOI: h�p://dx.doi.org/10.1145/3087604.3087659

Problem A. Given P and integers I , J as above, de�ning a mosaic
Toeplitz matrix T, �nd a non-zero vector in the kernel of T.

We consider two situations, �rst over an arbitrary �eld K, count-

ing all operations in K at unit cost, then over Q, taking bit-size into

account. In all this paper, we closely follow the existing formalism

of structured matrix computations developed in previous work by

Morf [35], Bitmead-Anderson [3], Kailath and co-authors [29, 30],

Pan [38, 39], Kaltofen [31], Cardinal [15], etc.

We complement the existing literature as follows. First, we de�ne

a class of Cauchy-like matrices (see de�nitions below) for which the

matrix-vector product is faster by a constant factor than in previous

designs. Next, we show how Pan’s technique of “multiplicative

transformation” of operators results in matrices that have generic

rank pro�le (with high probability), so that further regularization

is not needed in general. We then describe an improved iterative

algorithm (of quadratic complexity with respect to the matrix size),

that makes use of fast matrix multiplication; �nally, for matrices

de�ned over Q, we introduce a divide-and-conquer algorithm as

an alternative to Newton iteration, and we show how it can be

improved in the case of algebraic approximation.

Another contribution of this paper is a discussion of the design

and practical performance of a C++ implementation of these algo-

rithms. To our knowledge, only a few papers address these methods

from the practical viewpoint. An early reference is [43], which con-

cludes that the divide-and-conquer (MBA) algorithm for solving

Toeplitz matrices in quasi-linear time would require matrices of size

10
6

to break even with quadratic-time algorithms; a more recent

article [26] estimates the crossover point to be around 8000.

Our experiments �rst consider computations over �nite �elds.

We assess the practical impact of fast matrix multiplication for struc-

tured matrix algorithms (such as in the new algorithm mentioned

above, or those in [8, 9]), and we estimate for what matrix size quasi-

linear algorithms become e�ective (with much lower crossover

points than above). In the context of computations over Q, we

show that our divide-and-conquer algorithm outperforms Newton

iteration consistently, and we demonstrate signi�cant speed-ups

for the case of algebraic approximants.

We start in Section 2 with a review of basic results on structured

matrices, including a discussion of transformation of operators and

regularization. Section 3 describes algorithms applicable in a unit

cost model, with in particular a new algorithm that uses fast matrix

multiplication, and a discussion of the practical performance of

these algorithms. Finally, Section 4 presents li�ing algorithms for

structured matrices, and the corresponding implementation.

2 BASIC RESULTS
Overview. Developed in [29], the displacement operator approach

associates to a matrixA its displacement∇(A), that is, the image ofA
under a displacement operator ∇. �en, we say that A is structured

with respect to ∇ if ∇(A) has a small rank compared to its size;

the rank of ∇(A) is called the displacement rank of A with respect

to ∇. A prominent example is the family of so-called Toeplitz-
like matrices, which are structured for the Toeplitz displacement

operator ϕ : A 7→ (ZmA − AZn) = (A ↓) − (A←) where the n × n
lower shi� matrix Zn is the matrix with ones below the diagonal.

�e displacement rank of a Toeplitz matrix for this operator is at

most two; the displacement rank of a mosaic Toeplitz with a p × q
block structure is at most p + q.

�e key idea of most algorithms for structured matrices is sum-

marized by Pan’s mo�o [40]: compress, operate, decompress. In-

deed, for A of sizem ×n over a �eld K, if ∇(A) has rank α , it can be

represented using few elements through ∇-generators, that is, two

matrices (G,H) in Km×α ×Kn×α , with ∇(A) = GHt
; α is the length

of the generators. �e main idea behind algorithms for structured

matrices is to use generators as a compact data structure, involving

α(m + n) �eld elements instead ofmn.

Cauchy-like matrices. Beyond the Toeplitz structure (and the di-

rectly related Hankel one), two other important cases are the so-

called Vandermonde and Cauchy structures. While the case of

Toeplitz-like matrices was the �rst one to be studied in detail, we

will actually focus on Cauchy-like matrices, as we will see that this

particular structure is quite convenient to work with.

For a sequence u = (u1, . . . ,um) in Km , let Du ∈ Km×m be the

diagonal matrix with entries u1, . . . ,um . �en, given u as above

and v in Kn , we will consider the operator ∇u,v : A ∈ Km×n 7→
DuA − ADv; Cauchy-like matrices (with respect to the choice of u
and v) are those matrices A for which ∇u,v(A) has small rank.

Let u, v be given and suppose that ui , vj holds for all i, j . �en,

the operator ∇u,v is invertible: given ∇u,v-generators (G,H) of

length α for A, we can reconstruct A as

A =
α∑
i=1

DgiCu,v Dhi = (GH
t)�Cu,v, Cu,v =

[
1

ui−vj

]
1≤i≤m
1≤j≤n

(1)

where gi and hi are the ith columns of respectively G and H, matrix

Cu,v is known as a Cauchy matrix and � is the entry-wise product.

We will have to handle submatrices ofA through their generators.

�e fact that Du and Dv are diagonal matrices makes this easy (this

is one of the aspects in which the Cauchy structure behaves more

simply than the Toeplitz one). Suppose that (G,H) are generators

for A, with respect to the operator ∇u,v, and let uI = (ui)i ∈I and

vJ = (vj)j ∈J be subsequences of respectively u and v, correspond-

ing to entries of indices I and J . Let AI, J be the submatrix of A
obtained by keeping rows and columns of indices respectively in

I and J , and let (GI ,HJ) be the matrices obtained from (G,H) by

respectively keeping rows of G of indices in I , and rows of H of

indices in J . �en, (GI ,HJ) is a ∇uI ,vJ -generator for AI, J .

Another useful property relates to inverses of Cauchy-like matri-

ces. If a matrixA ∈ Kn×n is invertible, and is structured with respect

to an operator ∇u,v, its inverse is structured with respect to ∇v,u:

if DuA − ADv = GHt
, one easily deduces that DvA−1 − A−1Du =

−(A−1G)(A−tH)t , where A−t is a shorthand for (A−1)t .

Algorithms. In most of the paper, we give costs in an algebraic

model, counting base �eld operations at unit cost (in Section 4, we

work over Q and use a boolean model). We let M be such that

over any ring, polynomials of degree at most d can be multiplied in

M (d) base ring operations; we also assume that the super-linearity

assumptions of [22, Chapter 8] hold. Using the Cantor-Kaltofen

algorithm [14], we can take M (d) ∈ O(d log(d) log log(d)). We

let ω be a feasible exponent for linear algebra, in the sense that

matrices of size n can be multiplied in O(nω) base ring operations

over any ring; the best bound to date is ω < 2.38 [17, 32]. We will

have to compute rank and rank pro�le of dense matrices; the cost

reduces to that of matrix multiplication [27]. �e notation O˜()
indicates that we omit polylogarithmic terms.

Matrix-vector multiplication with Cu,v reduces to degree n poly-

nomial interpolation at the points v and evaluation at the points u.

Using fast polynomial evaluation and interpolation, this can be done

in time O(M (ν) log(ν)), with ν = max(m,n); thus, we can multi-

ply matrix A of (1) by a vector in time O(αM (ν) log(ν)) ⊂ O˜(αν).
In [40, �eorem 4.7.3], Pan shows that if the entries of both u
and v are in geometric progression, one can reduce the cost of the

matrix-vector multiplication by Cu,v toO(M (ν)), since polynomial

evaluation or interpolation at n points in geometric progression

can be done in time O(M (n)) [4, 11]; then, multiplication by A as

above takes time O(αM (ν)).

Remark 2.1. We propose here a re�nement of this idea, that

allows us to save a constant factor in runtime: we require that u
and v be geometric progressions with the same ratio τ . �en, the

Cauchy matrix Cu,v has entries 1/(ui −vj) = 1/(u1τ
i−1 −v1τ

j−1),
so it can be factored as

Cu,v = Dτ −1

[
1

u1−v1τ j−i
]

1≤i≤m
1≤j≤n

,

where Dτ −1 is diagonal with entries (1,τ−1,τ−2, . . . ,τ 1−m), and

where the right-hand matrix is Toeplitz. In the reconstruction for-

mula (1), the diagonal matrix Dτ −1 commutes with all matrices Dgi ,

so we can take it out of the sum. Hence, we replaced α evaluations

/ interpolations at geometric progressions by α product by Toeplitz

matrices, each of which can be done in a single polynomial multi-

plication. For m = n, using middle product techniques [10, 24], the

cost goes down from 3αM (ν) +O(αν) to αM (ν) +O(αν).

If one needs to multiply A by several vectors, further improve-

ments are possible: we mention without giving details an algorithm

from [8], that itself follows [9], and which makes it possible to mul-

tiply A by α vectors in time O(αω−1M (ν)) instead of O(α2M (ν)),
by reduction to a sequence of polynomial matrix multiplications.

Reduction frommosaic Toeplitz to Cauchy, and regularization. Our

primary interest lies in mosaic Toeplitz matrices. An important

insight of Pan [38] shows that one can reduce questions about

Toeplitz-like matrices to ones about Cauchy-like matrices (and con-

versely, if one wishes to), for a moderate cost overhead. To a vector

u in Km , let us associate the corresponding Vandermonde matrices

Vu =
[
u j−1

i

]
1≤i, j≤m ,Wu =

[
um−ij

]
1≤i, j≤m . For u as above, v in

Kn and T in Km×n , we let A = Vu TWv. If T is Toeplitz-like, then A
is Cauchy-like : A has ∇u,v-generators of length p + q + 2 (whereas

T has ϕ-generators of length p+q, see [40, Chapter 4.8]). �e bo�le-

neck in the computation of ∇u,v-generators from ϕ-generators are

products of structured matrices by vectors. If all entries of u and v
are in geometric progression, it takes time O(pM (n) + qM (m)).

In our algorithms for Cauchy-like matrices, we will assume that

the input matrix has generic rank pro�le, that is, that its leading

principal minors of size up to its rank are invertible. Regular-

ization for structured matrices was introduced for this purpose

by Kaltofen [31], for the Toeplitz structure. In our Cauchy con-

text, one could apply to A as de�ned above the regularization

procedure from [40, Section 5.6], which consists in replacing A
by A′ = DxCa,uACv,bDy, for some new vectors x, a ∈ Km and

y, b ∈ Kn . �eorem 5.6.2 in [40] shows that if a, u consist of 2m
distinct scalars, and b, v consist of 2n distinct scalars, then there

exists a non-zero polynomial ∆ in the entries of x and y, of degree

at most µ = min(m,n) in each block of variables, such that the

non-vanishing of ∆ implies that A′ has generic rank pro�le (that

theorem is stated for square matrices, but the result holds in the

rectangular case as well). �e downside of this construction is that

it requires to compute a pair of generators of length p + q + 4 for

A′, involving the multiplication of G′ and H′ by Ca,u and Cv,b.

We now prove a new property, involving only A = Vu TWv as

above. For the rest of this paragraph, we assume that the entries of

u and v are indeterminates over K, and we show that A has generic

rank pro�le; this will imply the same property for a generic choice

of u, v with entries in K. �is construction is clearly favorable

over the one above, since it involves no extra computation on A.

Following the proof of [40, �eorem 5.6.2], we can use the Cauchy-

Binet formula to express the minors of A in terms of those of Vu,

T and Wv. Let i ≤ rank(T) and let I = {1, . . . , i}. �e determinant

δi of the ith leading principal minor of A is the sum over all J =
{j1, . . . , ji } ⊂ {1, . . . ,m} and K = {k1, . . . ,ki } ⊂ {1, . . . ,n} of

αI, J β J ,K γK, I , where αI, J is the determinant of (Vu)I, J , β J ,K is the

determinant of TJ ,K , and γK, I is the determinant of (Wv)K, I .
Let < be the monomial ordering on the variables u1, . . . ,ui ,

v1, . . . ,vi that �rst sorts monomials using the lexicographic or-

der on u1, . . . ,ui with u1 < · · · < ui , and then breaks the ties using

the lexicographic order on v1, . . . ,vi with v1 > · · · > vi . If J =
{j1, . . . , ji } with j1 < · · · < ji then the leading monomial (denoted

lm(·)) of αI, J is uJ := u
j1−1

1
· · ·u ji−1

i . Similarly if K = {k1, . . . ,ki }
with k1 < · · · < ki , then vK := vn−k1

1
· · ·vn−kii = lm(γK, I). Since

T is of rank greater or equal to i , at least one of its ith minor β J ,K
does not vanish. Let Jmax,Kmax be the pair of subsets that maxi-

mizes uJ vK among those for which β J ,K , 0. �en we must have

lm(det(AI, I)) = uJmaxvKmax
, which shows that det(AI, I) is non-zero.

�e partial degree of det(AI, I) in any variable is at most max(n,m).

3 OVER AN ABSTRACT FIELD
We work here over a �eld K, and explain how to solve Problem A

using Pan’s reduction to the Cauchy-like Problem B below. Our

goal is to solve a linear system, but the algorithms do slightly more:

they compute the inverse of a given matrix (or of a maximal minor

thereof); this is similar to what happens for dense matrices, where

it is not known how to solve linear systems with an exponent be�er

than ω. �en, the main question of this section is the following

Problem B. Consider u = (u1, . . . ,um) and v = (v1, . . . ,vn),
such that (u, v) hasm + n distinct entries. Given ∇u,v-generators of
length α for A in Km×n , with α ≤ min(m,n), do the following.

If A does not have generic rank pro�le, signal an error; else, return
∇v′,u′-generators for the inverse of the leading principal minor Ar of A
of order r , with v′ = (v1, . . . ,vr), u′ = (u1, . . . ,ur) and r = rank(A).

To solve an instance of Problem A, with input matrix T, we apply

the transformation of the previous section, to obtain a Cauchy-like

matrix A = VuTWv. We compute generators of A−1

r , where Ar is

the maximal leading minor of A, and we return a vector b with

b =Wv

[
−A−1

r Bc
c

]
, where Ar,∗ =

[
Ar B

]
and c ∈ Kn−r random.

�ere exist two major classes of algorithms for handling Prob-

lem B, iterative ones, of cost Θ(mn) (for �xed α), and divide-and-

conquer algorithms, of quasi-linear cost in m + n. We stress that

having a fast quadratic-time algorithm is actually crucial in practice:

as is the case for the Half-GCD, fast linear algebra algorithms, etc,

the divide-and-conquer algorithm will fall back on the iterative one

for input sizes under a certain threshold, and the performance of

the la�er will be an important factor in the overall runtime.

Iterative algorithms that solve a size n Toeplitz system in time

O(n2) have been known since [19, 34, 46]; extensions to structured

matrices were later given, as e.g. in [23]. A�er a few preliminary

results, we give in 3.2 an algorithm inspired by [36, Algorithme 4],

for the speci�c form of our Problem B. In this reference, Mouilleron

sketches an algorithm that solves Problem B in time O(αn2), in the

case wherem = n and A is invertible (but without the rank pro�le

assumption); he credits the origin of this algorithm to Kailath [30,

§1.10], who dealt with symmetric matrices. Our algorithm follows

the same pa�ern, but reduces the cost to O(αω−2mn).
In 3.3, we review divide-and-conquer techniques. Kaltofen [31]

gave a divide-and-conquer algorithm that solves the analogue of

Problem B for Toeplitz-like matrices, li�ing assumptions of (strong)

non-singularity needed in the original Morf and Bitmead-Anderson

algorithm [3, 35]; a generalization to the Cauchy case is in [15,

41]. A further improvement due to Jeannerod and Mouilleron [28],

following [15], allows one to bypass costly compression stages that

are needed in Kaltofen’s algorithm and its extensions, by predicting

the shape of the generators we have to compute. For the case of

square Cauchy-like matrices of size n, this results in an algorithm of

costO(α2M (n) log(n)2), but we will point out that be�er estimates

are available by choosing u, v suitably.

3.1 Cauchy generators of the inverse
Let (G,H) ∈ Km×α × Kn×α be ∇u,v-generators of a matrix A, with

u = (u1, . . . ,um) and v = (v1, . . . ,vn). Let further r be the rank

of A. Our goal is to decide if A has generic rank pro�le, and if so,

to return generators (Y,Z) ∈ Kr×α × Kr×α of the inverse of the

leading principal minor of A. Below, we write µ = min(m,n).

For 0 ≤ i ≤ µ, write A =

[
A(i)

0,0 A(i)
0,1

A(i)
1,0 A(i)

1,1

]
with A(i)

0,0 ∈ K
i×i

, and

S(i) =

[
S(i)

0,0 S(i)
0,1

S(i)
1,0 S(i)

1,1

]
=


A(i)

1,1 − A
(i)
1,0A

(i)
0,0
−1A(i)

0,1 A(i)
1,0A

(i)
0,0
−1

−A(i)
0,0
−1A(i)

0,1 A(i)
0,0
−1

 ,
if A(i)

0,0 is invertible (this is similar to [15], where the order of block

rows and columns was however di�erent). �e sequence of matrices

(S(i))i=0...µ starts from A = S(0) and ends at A−1 = S(µ), at least

when A is square and invertible.

Given integers a,b, ua:b denotes the sequence (ua , . . . ,ub), and

similarly for va:b ; we then de�ne u(i) = (ui+1:m , v1:i) and v(i) =
(vi+1:n , u1:i). A key result for the sequel is Lemma 3.1, which is [15,

Proposition 1]; it gives ∇u(i),v(i) -generators of S(i) (remark that

this operator is invertible, in view of our assumption on u and v).

For i as above, decompose G,H as G =
[
G(i)

0

G(i)
1

]
, H =

[
H(i)

0

H(i)
1

]
with

G(i)
0
,H(i)

0
∈ Ki×α and de�ne (Y(0),Z(0)) = (G,H) and

Y(i)=

[
−A(i)

1,0A
(i)
0,0
−1G(i)

0
+ G(i)

1

−A(i)
0,0
−1G(i)

0

]
,Z(i)=

[
−A(i)

0,1
tA(i)

0,0
−tH(i)

0
+ H(i)

1

A(i)
0,0
−tH(i)

0

]
.

Lemma 3.1. (Y(i),Z(i)) are ∇u(i),v(i) -generators for S(i).

If A has generic rank pro�le, this shows that for r = rank(A),
(Y(r)

0
,Z(r)

0
) are ∇v′,u′-generators for A(r)

0,0
−1

, for u′, v′ as in Prob-

lem B, so they solve our problem; it remains to explain how to

compute these matrices. Let i, j be such that 0 ≤ i + j ≤ µ, and A(i)
0,0

invertible. Decompose S(i), Y(i) and Z(i) into blocks

S(i) =

[
S(i, j)

0,0 S(i, j)
0,1

S(i, j)
1,0 S(i, j)

1,1

]
, Y(i) =

[
Y(i, j)

0

Y(i, j)
1

]
, Z(i) =

[
Z(i, j)

0

Z(i, j)
1

]
with S(i, j)

0,0 ∈ K
j×j

and Y(i, j)
0
,Z(i, j)

0
∈ Kj×α , write u(i) = [u(i, j)

0
u(i, j)

1
]

with u(i, j)
0
∈ Kj and the same for v(i). A direct calculation shows

S(i+j) =


S(i, j)

1,1 − S
(i, j)
1,0 S(i, j)

0,0
−1S(i, j)

0,1 S(i, j)
1,0 S(i, j)

0,0
−1

−S(i, j)
0,0
−1S(i, j)

0,1 S(i, j)
0,0
−1

 . (2)

�is implies the following formulae on the generators, which gen-

eralizes the previous formulae for (Y(i),Z(i)) :

Y(i+j,m−j)
1

= −S(i, j)
0,0
−1 Y(i, j)

0
, Z(i+j,n−j)

1
= S(i, j)

0,0

−t
Z(i, j)

0
,

Y(i+j,m−j)
0

= −S(i, j)
1,0 Y(i+j,m−j)

1
+ Y(i, j)

1
, (3)

Z(i+j,n−j)
0

= −S(i, j)
0,1

t Z(i+j,n−j)
1

+ Z(i, j)
1
.

3.2 A faster iterative algorithm
Following this discussion, we describe in Algorithm 1 a quadratic

iterative algorithm for Problem B, using a step size β ∈ {1, . . . ,α }
given as a parameter. Computing the rank pro�le (line 5) costs

O(βω). Using block matrix multiplication in Eq. (1), we recover

S(i, j)
0,1 from its ∇

u(i, j)
0

,v(i, j)
1

-generators (Y(i, j)
0
,Z(i, j)

1
), and similarly

for S(i, j)
1,0 , in time O(βω−2α(m + n)), since j ≤ β ≤ α (line 8). To

compute Y(i+j) at line 9, we �rst compute S(i, j)
0,0
−1

in time O(βω),
S(i, j)

0,0
−1Y(i, j)

1
in time O(βω−1α); then all other operations take time

O(βω−2αm). Similarly, computing Z(i+j) takes time O(βω−2αn).
We recover S(r̄) at line 11 from its ∇u(r̄),v(r̄) -generators (Y(r̄),Z(r̄))
using (1) in time O(αω−2mn), by block matrix multiplication.

One iteration of the while loop costs O(βω−2α(m + n)); we

iterate O(µ/β) times, for a total of O(βω−3αµ(m + n)), which is

O(βω−3αmn). �is dominates the cost of line 11, so the whole run-

time is O(βω−3αmn). �e algorithm of [36] uses β = 1, for which

the cost is O(αmn); choosing β = α , we bene�t from fast matrix

multiplication, as the cost drops to O(αω−2mn). �is theoretical

Algorithm 1: Iterative algorithm Iter for Problem B

Input :Generators (G,H) of A and step size β

Output :r = rank(A), generators of A(r)
0,0
−1

1 i = 0,Y(0) = G,Z(0) = H, r̄ = µ
2 while i , r̄ do
3 j = min(β , r̄ − i)
4 Recover S(i, j)

0,0 from its generators (Y(i, j)
0
,Z(i, j)

0
)

5 Compute the rank ρ, rank pro�le, inverse of S(i, j)
0,0

6 if S(i, j)
0,0 has non generic rank pro�le then signal error

7 if ρ < j then j = ρ, r̄ = i + ρ

8 Recover S(i, j)
0,1 , S(i, j)

1,0 from their generators

9 Compute the generators (Y(i+j),Z(i+j)) of S(i+j)
10 i = i + j

11 Recover S(r̄) from its generators (Y(r̄),Z(r̄))
12 Read in S(r̄) the Schur complement of A(r̄)

0,0 in A
13 if the Schur complement is non zero then signal error

14 else return (r̄ ,Y(r̄,m−r̄)
1

,Z(r̄,n−r̄)
1

)

improvement has also practical implications : ω < 3 is achieved

in practice [13, 18], and linear algebra implementations are highly

optimized and gain a signi�cant constant factor even for ω = 3.

3.3 �e divide-and-conquer algorithm
We �nally review the divide-and-conquer approach to solving Prob-

lem B, as a basis for the discussion of the next subsection. Al-

gorithm 2 follows [28], recast in our framework, with the minor

di�erence that we do not assume A invertible, and that we explicitly

check if A satis�es the generic rank pro�le assumption.

Step 4, 9 are similar: using Eq. (2) and (3), we recover generators

(Y(i+j),Z(i+j)) of S(i+j) from (Y(i+j,m−j)
1

,Z(i+j,n−j)
1

) of S(i, j)
0,0
−1

and

previous full generators (Y(i),Z(i)) of S(i). Rather than reconstruct-

ing the submatrices of S(i, j) as in the previous subsection, we use

them through their generators: the formulae of (3) do O(1) multi-

plications of Cauchy-like matrices (for which we have generators

of length α) by α vectors. In general, these multiplications cost

O(α2M (ν) log(ν)) operations, with ν = max(m,n). As pointed out

in [40, �eorem 5.3.1] (see also [16]), if u and v are geometric pro-

gressions, the cost for the matrix-vectors multiplication drops to

O(α2M (ν)). If u and v have the same ratio (if this is the case at the

top-level, this will remain the case for all recursive calls), by Re-

mark 2.1, we can save a further constant factor. For large values of α ,

we can also apply the algorithm of [8], which uses fast polynomial

matrix multiplication to reduce the cost to O(αω−1M (ν)).
On line 6, the Schur complement is zero i� Y′ Z′ = 0. �is is

tested by �nding a minimal set of independent rows in Z′ (this takes

time O(αω−1ν)) and multiplying their transposes by Y′. �ere are

at most α such rows, so this takes time O(αω−1ν) as well. Taking

all recursive steps into account, the total cost of DAC is a factor

log(ν) times that of the Cauchy-like matrix products.

3.4 Experimental results
We implemented the algorithms described so far, together with

all subroutines they rely on, in a C++ library available at h�ps:

//sea�le.lirmm.fr/f/01b53dc420/. Our implementation is based on

Shoup’s NTL [44, 45] version 10.3.0, and is dedicated to word-size

https://seafile.lirmm.fr/f/01b53dc420/
https://seafile.lirmm.fr/f/01b53dc420/

Algorithm 2: Divide-And-Conquer algorithm DAC

Input :Generators (G,H) of A, threshold ν0

Output :r = rank(A), generators of A(r)
0,0
−1

1 µ = min(m,n), i = dµ/2e, (Y(0),Z(0)) = (G,H)
2 if max(m,n) ≤ ν0 then return Iter(G,H,α)
3 (r0,Y

(r0,m−r0)
1

,Z(r0,n−r0)
1

) = DAC(Y(0,i)
0
,Z(0,i)

0
,ν0)

4 Recover Schur compl. gen. (Y(r0,m−r0)
0

,Z(r0,n−r0)
0

) = (Y′,Z′)
from (Y(r0,m−r0)

1
,Z(r0,n−r0)

1
) and (Y(0),Z(0))

5 if r0 < i then
6 if Schur complement is non zero then signal error

7 else return (r0,Y
(r0)
0
,Z(r0)

0
)

8 (r1,Y
(r2,m−r1)
1

,Z(r2,n−r1)
1

) = DAC(Y′,Z′,ν0), r2 = r0 + r1

9 return r2 and (Y(r2,m−r2)
1

,Z(r2,n−r2)
1

) computed from

(Y(r2,m−r1)
1

,Z(r2,n−r1)
1

) and (Y(r0),Z(r0))

primes (NTL’s lzz p class); the divide-and-conquer algorithm of

Subsection 3.3 actually requires FFT primes. In all that follows,

timings are measured on an Intel i7-4790 CPU with 32 GB RAM;

only one thread is used throughout.

Our goals are to assess if matrix multiplication can bring practical

improvements that re�ect the theoretical ones, �nd crossover points

between iterative and divide-and-conquer algorithms, and what is

the range of applicability of these structured methods compared to

dense linear algebra. �us, we focused on comparisons between

our own implementations of the various techniques seen so far.

NTL already o�ers e�cient FFT-based polynomial arithmetic;

matrix multiplication over small �elds Z/pZ, for p < 2
23

, is now

extremely e�cient, comparable to reference implementations such

as FFLAS-FFPACK [20]. On top of this, we implemented a fast

polynomial matrix multiplication, using the cyclotomic TFT of [1].

We �rst discuss Problem B. Our �rst tests compare our new

O(αω−2n2) algorithm to that of [36], with runtime O(αn2). Except

for very small values of n, say n < 50, for which the behavior

�uctuates rapidly, we found that the new algorithm becomes more

e�cient for rather small values of α : our crossover points are α = 8

or 9 for primes less than 2
23

, and α = 13 or 14 for larger word-size

primes. �e following graph shows the time ratio between the

algorithm of [36] and our algorithm, for α = 30; the larger value of

p used here is the FFT prime p = 82705526964617217 = 7
2
2

54 + 1.

We see that for small primes, for which matrix multiplication is

very e�cient, our algorithm brings a substantial improvement.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 100 200 300 400 500 600 700 800 900 1000

ti
m

e
 r

a
ti

o
 d

ir
e
ct

 /
 b

lo
ck

n

p=65537
p=882705526964617217

We consider next the divide-and-conquer algorithm. �e key fac-

tor for the e�ciency of this algorithm is the cost of multiplying an

n × n Cauchy-like matrix of displacement rank α by α vectors. We

compare the approach of costO(α2M (n)) of Remark 2.1 to the algo-

rithm of [8], with cost O(αω−1M (n)), with a view of determining

for what values of α (if any) the la�er becomes useful.

For the former algorithm, because we are able to cache several

FFTs, we found it slightly more advantageous to use NTL’s FFT

rather than TFTs. �e runtime of the �rst algorithm then displays

the typical FFT staircase behavior, so that as n grows, the crossover

value for α �uctuates, roughly between 30 and 55. �e following

graph shows the time ratio between the algorithm of [8] and the

direct one, for α = 60; at best, the new algorithm wins by a factor

of 2. �e results do not depend much on the nature of the prime

(since polynomial arithmetic is a signi�cant part of the runtime,

and behaves essentially in the same manner, independently of p).

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

ra
ti

o
 n

a
iv

e
 /

 B
JM

S
1

6

n

p=65537
p=882705526964617217

Using these results, we determined empirical crossover values

ν0(α) to end the recursion in the divide-and-conquer algorithm

and switch to the iterative algorithm. We expect ν0(α) to grow

with α , since it behaves like the solution of αn2 = α2M (n) log(n)
(assuming here we do not use fast linear algebra, for simplicity). �e

following table reports some values for ν0 (obtained by searching for

ν0 in increments of 100). �e threshold is higher for small primes,

since such primes bene�t more from our new iterative algorithm.

α 1 5 10 15 20 25 30

p = 65537 400 400 500 1000 2000 3300 4200

p ' 2
59

200 400 400 700 1300 1600 2000

�ese values being set, we show runtimes for solving Problem B

modulo p = 65537 and p = 882705526964617217, for increasing

values of n, with α = 5 and α = 50; we also show the runtime of a

dense matrix inversion in the same size. For a small displacement

rank such as α = 5, the runtime is essentially the same for these

two primes; with α = 50, we observe a di�erence, by a factor of up

to 3. In any case, there is a clear gain over dense methods.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 1000 2000 3000 4000

ti
m

e
in

 s
ec

.

n

alpha=5
alpha=50

dense

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1000 2000 3000 4000

ti
m

e
in

 s
ec

.

n

alpha=5
alpha=50

dense

We also determined, for a given value of n, the crossover value

α0 above which dense linear algebra becomes faster than structured

methods. �e value α0(n) grows quite regularly with n, good ap-

proximations being α0(n) ' 0.2n (for p < 2
23

) and α0(n) ' 0.25n
(for larger values of p). �is means that there is a wide range of

inputs for which structured methods can be of use.

Our solution of Problem A is by a direct reduction to the Cauchy-

like case. Pu�ing the problem into Cauchy form accounts for a small

fraction of the total runtime: between 5% and 10% for small α (say

α < 10), and less than 5% for larger values of α , in all instances we

considered. In the thousands of experiments we made, for matrix

sizes such as n ≥ 5000 and small primes p ' 2
16

, we observed

some instances where the Cauchy matrix did not have generic rank

pro�le. �is never happened for p having more than 50 bits.

4 MODULAR TECHNIQUES
We now address Problem A for K = Q. Several modular algorithms
are available to solve dense linear systems over Q. A �rst option

relies on the Chinese Remainder �eorem, solving the system mod-

ulo several primes p1,p2, . . . before reconstructing the solution,

making sure to ensure consistency of the modular solutions when

ker(T) has dimension more than 1. Other approaches such as New-

ton iteration or divide-and-conquer algorithms use one prime p,

and li� the solution modulo powers of p (Newton iteration for

structured matrices goes back to [39]; see details in [40, Chapter 7];

the divide-and-conquer approach is discussed in [33]). Our goal

here is to �rst brie�y present these techniques and analyze their

complexity; we will then discuss their practical performance. We

will highlight in particular the case of algebraic approximants, for

which we are able to obtain signi�cant improvements.

We denote by I : N → R a function such that integers of bit

size at most d can be multiplied in I (d) bit operations; we can take

I (d) = O(d log(d) log log(d)) or I (d) = d log(d)2O (log
∗(d))

[21,

42]. As in [22], we assume that d 7→ I (d)/d is non-decreasing.

4.1 Solving square systems by li�ing
We are given a prime power pt , where t is a power of 2, an n × n
matrix A and a vector b, both with entries modulo pt , such that

A is invertible modulo pt , with inverse B; we discuss algorithms

that solve the equation Ax = b. To simplify the cost analysis, we

assume here that p = O(1). We take CA such that, for any t , we

can compute Ax mod pt in O(CAI (t)) bit operations, for a vector

x with entries de�ned modulo pt . Below, we will assume that A is

Cauchy-like as in Remark 2.1, and given by generators of length α ,

so we can take CA ∈ O(αM (n)). We will see however that in the

case of algebraic approximants, be�er estimates are available.

We consider two approaches: a divide-and-conquer algorithm

and Newton iteration, which both feature a running time linear

in the target precision t . We start with the divide-and-conquer

approach. A version of it is in [2] for dense matrices; the PhD

thesis [33] describes this algorithm for Toeplitz-like matrices.

Assume that we have know generators of length α for B. �us, at

the leaves of the recursion, each product Bb mod p can be computed

using O(αM (n)) bit operations; with our assumption on I , the

total runtime is O(CAI (t) log(t) + αM (n)t) bit operations. With

our upper bounds on CA, this simpli�es as O(αM (n)I (t) log(t)).
We turn next to Newton iteration. �e matrix form of Newton

iteration computes the inverses Bk = A−1
mod p2

k
by Bk+1

=

Algorithm 3: Divide-And-Conquer algorithm DACQ
Input :A, b, B mod p, p, t as above

Output :a solution of Ax = b mod pt

1 if t = 1 then return Bb mod p
2 Compute x0 =DACQ(A, b, B, p, t/2)

3 Compute r0 = (Ax0 − b) mod pt and r1 = r0/pt/2
4 Compute x1 =DACQ(A, r1, B, p, t/2)

5 return x0 − pt/2x1 mod pt

2Bk − BkABk mod p2
k+1

; once they are known, we deduce the

solution to our system by means of a matrix-vector product.

Let (G,H) be generators for A. Pan’s insight was to use the

relation above to compute the generators (X,Y) = (−BG,BtH) for

B. Given (Xk ,Yk) = (X,Y) mod p2
k

, we can reconstruct Bk , but to

deduce (Xk+1
,Yk+1

), we have to multiply G and H by Bk+1
or Btk+1

.

�is is done using the expression for Bk+1
above, which gives

Xk+1
= −(2Bk − BkABk) G mod p2

k+1

Yk+1
= (2Bk − BkABk)t H mod p2

k+1

.

�is time, we are multiplying A and Bk (and their transposes)

by matrices of size n × α , all computations being done modulo

p2
k+1

. Each multiplication by one vector takes O(αM (n)I (2k))
operations. Since we multiply these matrices by α vectors, taking

all steps into account, we arrive at a total of O(α2M (n)I (t)) bit

operations. Using the algorithm of [8], this can be further reduced

to O(αω−1M (n)I (t)); this improvement was not implemented.

Altogether, because it computes (generators of) a whole inverse,

Newton iteration is slower by a factor α (or slightly less, if we

use [8]); on the other hand, it saves a factor of log(t). �is is similar

to what one observed when comparing these techniques for e.g.

the solution of di�erential equations [5, 7].

4.2 Solving Problem A
In order to solve instances of Problem A, that is, �nd nullspace

elements for a mosaic Toeplitz matrix T, we rely on the transforma-

tion to the Cauchy structure / regularization technique of Section 2.

Over Q, this approach has a certain shortcoming: the output is a

vector b = Wv

[
−A(r)

0,0
−1A(r)

0,1c
c

]
, with A = VuTWv, A(r)

0,0 a maximal

minor of it and c a random vector in Kn−r , and due to the pre-

conditioning, the entries of b are expected to be of large height

(larger than what we may expect for a solution of T). When ker(T)
has dimension 1, we are not a�ected by this issue: in this case,

all solutions are of the form λb0, for some vector b0 ∈ Zn whose

bit-size can be bounded only in terms of T. Hence, it su�ces to

compute the solution b of the regularized system modulo a large

enough integer N and normalize it by se�ing one of its entries

to 1. In general, we reduce the nullspace dimension by adding a

new block of equations; when ker(T) has moderate dimension, this

barely a�ects the overall runtime (for particular applications to

algebraic approximants, another solution is described below).

For simplicity, we give here a solution that may run forever in

unlucky cases. Choose a prime p and compute ∇u,v-generators for

A = VuTWv (mod p), for u, v as in Remark 2.1. Call the algorithm of

the previous section, to determine the rank of A; if A does not have

generic rank pro�le, choose another u, v. A�er an expected O(1)
a�empts, we obtain the rank of A over Fp , and thus the dimension

s of its nullspace. If s is greater than one, we add a block of Toeplitz

matrices having s − 1 rows to T, with small random entries, and

update A accordingly. Heuristically the new matrix T has nullspace

dimension 1 (otherwise, add another block of equations).

Let d = rank(T), Ad be the d × d top-le� submatrix of A, and

bd be the vector of the �rst d entries of the last column of A. We

assume that A has generic rank pro�le, so that Ad is invertible. We

compute x = A−1

d bd (mod p) and y =Wv[x1, · · · ,xd ,−1]t (mod p),

we normalize y by dividing it by its �rst non-zero entry, and we

set t = 1. While we either cannot apply rational reconstruction to

the entries of y, or a�er applying rational reconstruction to y we

have Ty , 0, we do the following: set t = 2t , update modulo pt the

quantities Ad , bd , x (use one of the algorithms of Section 4.1) and

y, and divide y by its �rst non-zero entry.

A complete analysis of this algorithm would quantify the primes

of bad reduction, give bounds that allow us to stop li�ing the solu-

tions if we reduced modulo such a bad prime and study the previous

reduction to nullity one of T; we leave this to future work. In any

case, if the li�ing stops, we have obtained a solution to our sys-

tem. Due to the doubling nature of this procedure, the runtime

is proportional to that of the algorithm for solving square sys-

tems used at line 3, plus the cost of rational reconstruction. �e

former is O(CAI (t) log(t) + αM (n)t) bit operations using divide-

and-conquer methods, andO(α2M (n)I (t)) orO(αω−1M (n)I (t))
using Newton iteration; the la�er is O(nI (t) log(t)).

Finally, we mention the cost of Chinese Remaindering tech-

niques: instead of computing the solution modulo the t-th power

of a single prime p, we might want to solve the system modulo t
primes of the same magnitude. If we assume that A remains in-

vertible with generic rank pro�le modulo all these primes, and all

these primes are O(1), the runtime for solving the systems is now

O(α2M (n) log(n)t) or O(αω−1M (n) log(n)t), by the results of Sec-

tion 3 (to this, we have to add the cost O(nI (t) log(t)) of Chinese

Remaindering and rational reconstruction).

We conclude this subsection with an important particular case,

the computation of algebraic approximants. We are given a power

series f in Q[[x]], together with degree bounds d, e; our goal is to

compute a polynomial P ∈ Q[x ,y], with deg(P ,x) ≤ d , deg(P ,y) ≤
e , such that P(x , f) = 0. For any σ ≥ 0, �nding P with the above

degree bounds and such that P(x , f) = 0 mod xσ is a Hermite-Padé

approximation problem of a very special kind (all input series are

powers of f). To our knowledge, no algorithm in the framework of

Section 3 can exploit this extra structure; in the case of computations

over Q, we will now see that improvements are possible.

First, we show how to simplify the reduction to nullity one. �éo-

rème 7.15 in [6] shows that if such a P exists and is irreducible,

then any Q ∈ Q[x ,y] with the same degree bounds as above and

such that Q(x , f) = 0 mod x2de+1
is a multiple of P . From this, one

deduces easily that if we compute two such polynomials Q1,Q2,

their GCD will generically be P itself. For all primesp except a �nite

number, the rank of our matrix T does not change modulo p, and

the GCD of two random basis elements commutes with reduction

modulo p (note that P mod p may not be irreducible anymore).

Hence, we can (probabilistically) �nd P mod p by computing two

solutions Q1,Q2 to the above Hermite-Padé problem modulo p and

taking their GCD. �is reveals the support of P ; we can then re�ne

the degree bounds in our Hermite-Padé problem, which in turn

reduces the nullity of matrix T to 1.

Next, we show how to speed-up algorithm DACQ in this case.

�e block-Toeplitz matrix T of our Hermite-Padé problem has dis-

placement rank α = O(e), with e + 1 Sylvester blocks having

O(d) columns and O(de) rows; as a result, the naive estimate on

the cost of the matrix-vector product by matrix A = VuTWv is

CA = O(eM (de)). However, we can reduce this cost using baby-

steps / giant steps techniques: the bivariate modular composition

algorithm of [37] shows that we can do matrix-vector product by

T using O(e1/2M (de) + e(ω+1)/2M (d)) operations; since multipli-

cations by Vu and Wv take O(M (de)), we obtain the improved

estimate CA = O(e1/2M (de) + e(ω+1)/2M (d)) in this case. Al-

gorithm DACQ is the only algorithm we know of that takes into

account the extra structure of algebraic approximants; we expect

that similar improvements are possible for di�erential approximants,
using the evaluation algorithm of [12].

4.3 Experimental Results
Our experiments are dedicated to solving instances of Hermite-Padé

approximation, which is a useful particular case of Problem A. We

discuss two families of problems, �rst the approximation of general

power series, then algebraic approximants. Timings are measured

on the same machine as Subsection 3.4.

In both cases, we show two graphs: on the le�, we have �ve

blocks, each with n columns; on the right, we have n blocks, each

with n columns. With the notation of the introduction, this means

we are looking for approximants (p0, . . . ,p4), resp. (p0, . . . ,pn−1),
with degree bounds (n,n,n,n,n), resp. (n, . . . ,n). �e displacement

rank α of these matrices if 6, resp. n + 1.

We �rst examine the results for general power series. Our ex-

periments showed that the runtime grows predictably with respect

to the input bit-size; as a result, we �x the input coe�cients to be

10 bit integers, so the number of li�ing steps depends just on n.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 0 1100 2200 3300 4400 5500

ti
m

e
 i
n
 s

e
c.

size

5 blocks with n columns

dac
newton

crt

 0

 10000

 20000

 30000

 40000

 50000

 0 3000 6000 9000

size

n blocks with n columns

dac
crt

Matrices are generated so as to have 1 less row than they have

columns; since the inputs are random, they have nullspace of di-

mension 1 (we also generated instances with nullity up to 10; using

our heuristic to reduce nullity, runtimes were almost indistinguish-

able). �e primes we use have 59 to 60 bits. For DACQ and Newton

iteration, the sharp increases indicate an additional li�ing step.

Newton iteration is slower than DACQ, especially when the num-

ber of block grows (since its runtime is quadratic in the displacement

rank α). Newton iteration should theoretically be competitive with

DACQ when the number of blocks is �xed, and the size (and thus

the output bit size) grow, since its theoretical runtime is be�er by

a log(t) factor, where t is essentially the output bit size. However,

this is not noticeable on our experiments: in practice, the integer

multiplication function I (d) grows like d1+ε
, for some ε > 0; in

that case, the analysis of DACQ can be re�ned to O(αM (n)I (t)).
CRT, on the other hand, seems to be competitive with DACQ

when α is small but is signi�cantly worse as α grows: the runtime

CRT is not linear in α , while DACQ is.

Next, we examine the computation of algebraic approximants;

on the basis of the previous experiments, we consider algorithm

DACQ only. We start by generating a bivariate polynomial P(x ,y)
and compute one of its power series solutions f . Since we expect

the coe�cients of P to be smaller than the coe�cients of f , we can

be�er control the behavior of the algorithms by choosing the bit

size of P (here, it was �xed to be 1000 bit integers). We compare

algorithm DACQ as in the general case, with CA = O(αM (n)),
to the improved version using the bivariate modular composition

(BMC) algorithm of [37] described above, featuring a lower value

for CA. �e la�er algorithm uses polynomial matrix multiplication,

which we implemented using reduction modulo FFT primes and

TFT polynomial multiplication.

As a result, we can see a signi�cant di�erence between the two

algorithms as the size of the matrix grows: the theoretical speed-up

predicted in Subsection 4.2 is observed in practice.

 0

 20

 40

 60

 80

 100

 120

 140

 0 2000 4000 6000 8000 10000

ti
m

e
 i
n
 s

e
c.

size

5 blocks with n columns

bmc
naive

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2000 4000 6000 8000 10000

size

n blocks with n columns

bmc
naive

Overall, the divide-and-conquer li�ing algorithm turned out to

be the most e�cient method in all our experiments, especially as

it can take extra structure into account, as in the case of algebraic

approximants.

REFERENCES
[1] A. Arnold and É. Schost. A Truncated Fourier Transform middle product. ACM

Commun. Comput. Algebra, 48(3/4):98–99, 2015.

[2] J. Berthomieu and R. Lebreton. Relaxed p-adic Hensel li�ing for algebraic

systems. In ISSAC’12, pages 59–66. ACM, 2012.

[3] R. R. Bitmead and B. D. O. Anderson. Asymptotically fast solution of Toeplitz

and related systems of linear equations. Linear Algebra Appl., 34:103–116, 1980.

[4] L. I. Bluestein. A linear �ltering approach to the computation of the discrete

Fourier transform. IEEE Trans. Electroacoustics, AU-18:451–455, 1970.

[5] A. Bostan, M. F. I. Chowdhury, R. Lebreton, B. Salvy, and É. Schost. Power series

solutions of singular (q)-di�erential equations. In ISSAC’12, pages 107–114. ACM,

2012.

[6] A. Bostan, F. Chyzak, M. Giusti, R. Lebreton, G. Lecerf, B. Salvy, and É. Schost.

Algorithmes e�caces en calcul formel. hal.archives-ouvertes.fr/AECF/, 2017.

[7] A. Bostan, F. Chyzak, F. Ollivier, B. Salvy, S. Sedoglavic, and É. Schost. Fast

computation of power series solutions of systems of di�erential equations. In

Symposium on Discrete Algorithms, SODA’07, pages 1012–1021. ACM-SIAM, 2007.

[8] A. Bostan, C.-P. Jeannerod, C. Mouilleron, and É. Schost. On matrices with

displacement structure: generalized operators and faster algorithms. preprint.

[9] A. Bostan, C.-P. Jeannerod, and É. Schost. Solving structured linear systems with

large displacement rank. �eor. Comput. Sci., 407(1):155–181, 2008.

[10] A. Bostan, G. Lecerf, and É. Schost. Tellegen’s principle into practice. In ISSAC’03,

pages 37–44. ACM, 2003.

[11] A. Bostan and É. Schost. Polynomial evaluation and interpolation on special sets

of points. J. Complexity, 21(4):420–446, 2005.

[12] A. Bostan and É Schost. Fast algorithms for di�erential equations in positive

characteristic. In ISSAC’09, pages 47–54. ACM, 2009.

[13] B. Boyer and J.-G. Dumas. Matrix multiplication over word-size modular rings

using approximate formulas. ACM Trans. Math. So�w., 42(3):20:1–20:12, 2016.

[14] D. G. Cantor and E. Kaltofen. On fast multiplication of polynomials over arbitrary

algebras. Acta Informatica, 28(7):693–701, 1991.

[15] J.-P. Cardinal. On a property of Cauchy-like matrices. C. R. Acad. Sci. Paris Série
I, 388:1089–1093, 1999.

[16] Z. Chen and V. Y. Pan. An e�cient solution for Cauchy-like systems of equations.

Computers Math. Applic., 48:529–537, 2004.

[17] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progres-

sions. Journal of Symbolic Computation, 9(3):251–280, March 1990.

[18] J.-G. Dumas, P. Giorgi, and C. Pernet. Dense linear algebra over word-size prime

�elds: �e �as and �pack packages. ACM Trans. Math. So�w., 35(3):19:1–19:42,

2008.

[19] J. Durbin. �e ��ing of time series models. Rev. Inst. Int. Stat., 28:233–243, 1960.

[20] FFLAS-FFPACK-Team. FFLAS-FFPACK: Finite Field Linear Algebra Subroutines /
Package, v2.2.2 edition, 2016. h�p://github.com/linbox-team/�as-�pack.

[21] M. Fürer. Faster Integer Multiplication. In STOC’07, pages 57–66, 2007.

[22] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge Univer-

sity Press, Cambridge, third edition, 2013.

[23] I. Gohberg, T. Kailath, and V. Olshevsky. Fast Gaussian elimination with partial

pivoting for matrices with displacement structure. Math. Comp., 64(212):1557–

1576, 1995.

[24] G. Hanrot, M. �ercia, and P. Zimmermann. �e Middle Product Algorithm, I.

Appl. Algebra Engrg. Comm. Comp., 14(6):415–438, 2004.

[25] G. Heinig and T. Amdeberhan. On the inverses of Hankel and Toeplitz mosaic

matrices. In Seminar Analysis (Berlin, 1987/1988), pages 53–65. 1988.

[26] T. Huckle. Implementation of a superfast algorithm for symmetric positive

de�nite linear equations of displacement rank 2. volume 2296 of Proceedings of
the SPIE, pages 494–503. 1994.

[27] O. H Ibarra, S. Moran, and R. Hui. A generalization of the fast LUP matrix

decomposition algorithm and applications. J. Algorithms, 3(1):45–56, 1982.

[28] C.-P. Jeannerod and C. Mouilleron. Computing speci�ed generators of structured

matrix inverses. In ISSAC’10, pages 281–288. ACM, 2010.

[29] T. Kailath, S. Y. Kung, and M. Morf. Displacement ranks of matrices and linear

equations. J. Math. Anal. Appl., 68(2):395–407, 1979.

[30] T. Kailath and A. H. Sayed. Fast Reliable Algorithms for Matrices with Structure.

SIAM, 1999.

[31] E. Kaltofen. Asymptotically fast solution of Toeplitz-like singular linear systems.

In ISSAC’94, pages 297–304. ACM, 1994.

[32] F. Le Gall. Powers of tensors and fast matrix multiplication. In ISSAC’14, pages

296–303. ACM, 2014.

[33] R. Lebreton. Contributions to relaxed algorithms and polynomial system solving.

PhD thesis, École Polytechnique, Palaiseau, France, 2012.

[34] N. Levinson. �e Wiener RMS error criterion in �lter design and prediction. J.
Math. Phys., 25:261–278, 1947.

[35] M. Morf. Doubling algorithms for toeplitz and related equations. In IEEE
Conference on Acoustics, Speech, and Signal Processing, pages 954–959, 1980.

[36] C. Mouilleron. Algorithmes rapides pour la résolution de problèmes algébriques

structurés. Master’s thesis, ENS Lyon, 2008.

[37] M. Nüsken and M. Ziegler. Fast multipoint evaluation of bivariate polynomials.

In ESA 2004, number 3222 in LNCS, pages 544–555. Springer, 2004.

[38] V. Y. Pan. On computations with dense structured matrices. Math. Comp.,
55(191):179–190, 1990.

[39] V. Y. Pan. Parametrization of Newton’s iteration for computations with structured

matrices and applications. Computers Math. Applic., 24(3):61–75, 1992.

[40] V. Y. Pan. Structured Matrices and Polynomials. Birkhäuser Boston Inc., 2001.

[41] V. Y. Pan and A. Zheng. Superfast algorithms for Cauchy-like matrix computa-

tions and extensions. Linear Algebra Appl., 310:83–108, 2000.

[42] A. Schönhage and V. Strassen. Schnelle Multiplikation großer Zahlen. Computing,

7:281–292, 1971.

[43] H. Sexton, M. Shensa, and J. Speiser. Remark on a displacement-rank inversion

method for Toeplitz systems. Linear Algebra Appl., 45:127–130, 1982.

[44] V. Shoup. NTL: A library for doing number theory. http://www.shoup.net.

[45] V. Shoup. A new polynomial factorization algorithm and its implementation. J.
Symb. Comp., 20(4):363–397, 1995.

[46] W. F. Trench. An algorithm for the inversion of �nite Toeplitz matrices. J. Soc.
Indust. Appl. Math., 12:515–522, 1964.

hal.archives-ouvertes.fr/AECF/
http://github.com/linbox-team/fflas-ffpack

	Abstract
	1 Introduction
	2 Basic results
	3 Over an abstract field
	3.1 Cauchy generators of the inverse
	3.2 A faster iterative algorithm
	3.3 The divide-and-conquer algorithm
	3.4 Experimental results

	4 Modular techniques
	4.1 Solving square systems by lifting
	4.2 Solving Problem A
	4.3 Experimental Results

	References

