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Abstract

In this paper, we present a new lifting algorithm for triangular sets over general p-adic rings.
Our contribution is to give, for any p-adic triangular set, a shifted algorithm of which the
triangular set is a �xed point. Then we can apply the relaxed recursive p-adic framework and
deduce a relaxed lifting algorithm for this triangular set.

We compare our algorithm to the existing technique and report on implementations inside
the C++ library Geomsolvex of Mathemagix (van der Hoeven et al., 2002). Our new relaxed
algorithm is competitive and compare favorably on some examples.

Keywords: polynomial system solving, online algorithm, relaxed algorithm, triangular set,
univariate representation, p-adic integer, power series

1 Introduction

The introduction is made of �ve subsections. We present the setting of triangular sets
with p-adic coe�cients in Section 1.1, together with the statement of our lifting problem.
We present in Section 1.2 our model of computation for algorithms on p-adics. Section 1.3
introduces the framework in which online algorithms are used to lift triangular sets.
Finally, our results and contributions are stated in Section 1.4, followed by an outline of
the paper in Section 1.5.

1.1 Statement of the problem

Our goal in this paper is to extend a growing body of work on relaxed algorithms to
the context of lifting techniques for univariate representations and triangular sets .

It is well-known that, under some regularity conditions, techniques such as Newton
iteration can be used to compute a power series root of an equation such as f(T ;x(T ))=0,
with f in k[T ;X], or a p-adic integer root of an equation of the form f(x)=0 with f in
Z[X ].

Relaxed methods, introduced by van der Hoeven (van der Hoeven, 2002), o�er an
alternative to Newton iteration. The case of computing one power series root, or one p-
adic root, of a system of polynomial equations was worked out in (van der Hoeven, 2011;
Berthomieu and Lebreton, 2012); for this problem, the relaxed algorithm was seen to
behave better than Newton iteration in some cases, for instance for multivariate systems
with a large number of equations.

�. This work has been partly supported by the ANR grant HPAC (ANR-11-BS02-013).
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In this paper, we go beyond the case of lifting a single root of a multivariate system:
we deal with all roots at once, introducing relaxed algorithms that deal with objects such
as univariate and triangular representations.

Example 1. We consider the polynomial system f =(f1; f2) in Z[X1; X2] with

f1 := 33X2
3+ 14699X2

2+ 6761112X2+ 276148X1¡ 11842820
f2 := X2

2+ 66X1X2¡ 75X2¡ 94X1¡ 22:

Let t0 be the triangular set of (Z/7Z)[X1; X2], that is a lexicographical Gröbner basis
for X1<X2, given by

t0 := (X1
2+5X1; X2

2+3X1X2+2X2+4X1+6):

We lift the triangular set t0 de�ned modulo 7 to triangular sets t de�ned modulo 72; 73

and so on. At the �rst step, we have

t1=(X1
2+(5+5 � 7)X1+7;X2

2+(3+2 � 7)X1X2+(2+3 � 7)X2+4X1+(6+3 � 7))

in (Z/72Z)[X1; X2]. We iterate again and �nd

t2 = (X1
2+(5+5 � 7+6 � 72)X1+(7+72);

X2
2 + (3 + 2 � 7 + 72) X1 X2 + (2 + 3 � 7 + 5 � 72) X2 + (4 + 5 � 72) X1 +

(6+3 � 7+6 � 72))
in (Z/73Z)[X1; X2]. The precision is enough to recover the integer triangular set

t := (X1
2¡9X1+ 56; X2

2+ 66X1X2¡ 75X2¡ 94X1¡ 22)2Z[X1; X2]:

Our techniques of p-adic lifting applies to general p-adic rings. Let R be a commutative
domain with unit. We consider an element p 2 R ¡ f0g, and we write Rp for the
completion of the ring R for the p-adic valuation. We will assume that R/(p) is a �eld
(equivalently, that p generates a maximal ideal). This is not compulsory but will be
useful later on when we deal with linear algebra modulo (p). We also assume that
\i2N(pi) = f0g, so that R can be seen as a subset of Rp. Note that the set of natural
numbers N contains 0 in this paper.

Two classical examples of p-adic rings are the formal power series ring k[[T ]], which is
the completion of the ring of polynomials k[T ] for the ideal (T ), and the ring of p-adic
integers Zp, which is the completion of the ring of integers Z for the ideal (p), with p a
prime number.

Consider a system of polynomial equations f =(f1; :::; fs)2R[X1; :::; Xs]. Denote by I
the ideal generated by (f1; :::; fs) in Q[X1; :::; Xs], where Q is the total �eld of fractions
of R. In what follows, we make the following assumptions, denoted (H):

1. the algebraic set V =V (I)�Qs has dimension zero in an algebraic closure Q of Q;

2. the Jacobian determinant of (f1; :::; fs) vanishes nowhere on V .

Let d be cardinality of V ; due to our non-vanishing assumption on the Jacobian of f ,
the extension Q!A := Q[X1; :::; Xs]/I is a product of separable �eld extensions. As a
result, A has dimension d over Q.
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In order to describe V , we will consider two data structures, which we brie�y describe
now. These data structures encode k-algebras A of �nite dimension as vector spaces, k
being any �eld.

An element g of A=k[X1; :::; Xs]/I will be called primitive if the k-algebra k[g]�A
spanned by g in A is equal to A itself. If � is a primitive linear form in A, a univariate
representation of A consists of polynomials U = (q; r1; :::; rs) in k[Z], where Z is a new
variable, with deg (ri)<deg (q) for all i and such that we have a k-algebra isomorphism

A=k[X1; :::; Xs]/I ! k[Z]/(q)
X1; :::; Xs 7! r1; :::; rs

� 7! Z:

In particular, q has degree d in Z; we will say that U has degree d.
Such representations, or slight modi�cations thereof (using for instance a rational

form for the ri's) have been used for decades in computer algebra, under the names
of Shape Lemma, Rational Univariate Representation, Geometric Resolution, etc
(Gianni and Mora, 1989; Giusti and Heintz, 1991; Giusti et al., 1997a; Rouillier, 1999;
Giusti et al., 2001; Heintz et al., 2001). The oldest trace of this representation is to
be found in (Kronecker, 1882) and a few years later in (König, 1903). Di�erent algo-
rithms compute this representation, from a geometric resolution (Giusti et al., 1997b;
Giusti et al., 1997a; Giusti et al., 2001; Heintz et al., 2001) or using Gröbner bases
(Rouillier, 1999).

On the other side, one �nds triangular representations. A triangular set is a set of s
polynomials t= (t1; :::; ts)� k[X1; :::; Xs] such that for all i, ti is in k[X1; :::; Xi], monic
and reduced with respect to (t1; :::; ti¡1). This is thus a reduced Gröbner basis for the
lexicographic orderX1�����Xs. The notion of triangular set comes from (Ritt, 1966) in
the context of di�erential algebra. Many similar notions were introduced afterwards (Wu,
1984; Lazard, 1991; Kalkbrener, 1993; Aubry et al., 1999); although all these notions do
not coincide in general, they are the same for zero-dimensional ideals.

Assume that I admits a triangular family of generators t, and write di := degXi
(ti)

for all i. Then, we have the equality d = d1 ��� ds; we will say that t has multi-degree
d=(d1; :::; ds).

As it turns out, univariate representations can be seen as a special case of triangular
sets. Indeed, with the notations above, the family (q(T );X1¡ r1(T ); :::; Xs¡ rs(T )) is a
triangular set of generators of (T ¡�(X1; :::; Xs); f1; :::; fs) in the algebra R[T ;X1; :::; Xs].

Both kinds of data structures have found numerous applications, and it is not our
purpose here to compare their respective merits. Univariate representations always exist,
provided the base �eld is large enough (Gianni and Mora, 1989). On the other hand, the
ideal I may not admit a triangular family of generators: such issues are handled using
triangular decompositions of I (Dahan et al., 2005). We will not enter this discussion
here, and we will simply suppose when needed that I admits one or the other such
representation.
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Let us for instance suppose that I admits a univariate representation U . By hypothesis
(p) is a maximal ideal in Rp, with residual �eld R/(p). We make the following assump-
tions, denoted by (H0)U ;p:

1. none of the denominators appearing in U vanishes modulo p;

2. the polynomials f mod p still satisfy (H);

3. U0=U mod p is a univariate representation of R/(p)[X1; :::; Xs]/(f mod p).

Then, given U0 = U mod p and f , our objective is to compute objects of the form
U0:::n=U mod pn, for higher powers of n.

Similar questions can be asked for triangular representations: suppose that I admits a
triangular representation t, and that the natural analogue (H0)t;p of (H0)U ;p holds; we will
show how to compute t0:::n= tmod pn, for high powers of n, starting from t0= tmod p
and f .

We remark that for both the univariate and the triangular case, assumption (H0)U ;p,
resp. (H0)t;p, holds for all values of p except �nitely many, at least when Rp=k[[T ]] or
Zp: this is analyzed in detail in (Schost, 2003a; Schost, 2003b; Dahan et al., 2005); thus,
these are very mild assumptions.

Let us say a few words about the applications of these kinds of techniques. One
direct application is naturally to solve polynomial systems with rational (resp. rational
function) coe�cients: the techniques discussed here allow one to compute a description of
V over Q (resp. k(T )) by computing it modulo a prime p (resp. (T ¡ t0)) and lifting it to
a su�cient precision (and possibly applying rational reconstruction to recover coe�cients
from their p-adic expansion).

Such lifting techniques are also at the core of many further algorithms: for instance, it
is used in the geometric resolution algorithm (Giusti et al., 2001; Heintz et al., 2001) that
computes univariate representations. This algorithm relies on an iterative lifting / inter-
section process: the lifting part involves lifting univariate representations, as explained
in this paper, while the intersection part uses resultant computations. On the triangular
side, a similar lifting / intersection process is used in the change of order algorithm of
(Dahan et al., 2008).

1.2 Model of computation

We begin with a description of the representation of elements a2Rp, which are called
p-adics . Any p-adic a 2 Rp can be written (in a non unique way) a =

P
i2N ai p

i with
coe�cients ai2R. To get a unique representation of elements in Rp, we will �x a subset
M of R such that the projection �:M!R/(p) is a bijection. Then, any element a2Rp

can be uniquely written a=
P

i2N ai p
i with coe�cients ai2M .

Regarding the two classical examples of p-adic rings, we naturally take M = k for
R=k[T ]; for R=Z, we chooseM =

�
¡p¡ 1

2
; :::;

p¡ 1
2

	
if p is odd andM=f0;1g for p=2.

Once M has been �xed, we have a well-de�ned notion of length of a (non-zero) p-
adic: if a =

P
i2N ai p

i, then we de�ne �(a) := 1 + sup (i 2 N j ai =/ 0), so that �(a) is
in N>0 [ f1g; for a= 0, we take �(a) = 0. We say that we have computed a p-adic at
precision n if the result holds modulo pn.
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Throughout this paper, we choose to denote elements by small letters, e.g. a 2 Rp,
vectors by bold fonts, e.g. a 2 (Rp)

s, and matrices by bold capital letters, e.g. A 2
Ms(Rp).

Roughly speaking, we measure the cost of an algorithm by the number of arithmetic
operations with operands in M it performs. More precisely, we assume that we can do
the following at unit cost:

1. given a0; b0 in M , compute the coe�cients c0; c1 of c = a0 b0 at unit cost, and
similarly for the coe�cients of a0� b0

2. given a0 in M ¡f0g, compute b0 in M ¡f0g such that a0 b0=1 mod p.

We remark that when R=k[T ], we are simply counting arithmetic operations in k.
The main operations we will need on p-adics are sum, di�erence and multiplication

(of course, these algorithms only operate on truncated p-adics). For the moment, we will
simply de�ne the problems, and introduce notation for their complexity.

Addition of two p-adics takes linear time in the precision. For the multiplication of a
and b of length at most n, we will let I:N!N be such that all coe�cients of a b can be
computed in I(n) operations. We will assume that I(n) satis�es the property that I(n)/n is
non-decreasing. The cost function I(n) depends on the p-adic ring Rp but we can always
take I(n) quasi-linear , that is, linear up to logarithmic factors (Berthomieu et al., 2011,
Proposition 4).

As customary, let us denote by M(n) a function such that over any ring, polynomials
of degree at most n¡1 can be multiplied inM(n) base operations, and such that M(n)/n
is non-decreasing (super-linearity hypothesis, see (von zur Gathen and Gerhard, 2013,
Section 8.3)). It is classical (Schönhage and Strassen, 1971; Cantor and Kaltofen, 1991)
that M(n) = O(n log (n) log (log (n))) and thus I(n) = O(n log (n) log (log (n))) when
R=k[T ] and p=T .

The presence of carries when computing with integers complicates the situation for all
operations. Surprisingly, though, it is possible to obtain a slightly faster plain multiplica-
tion than in the polynomial case; two integers with n digits in base p can be multiplied
in bit-complexity O(n log (n) 2log�(n)) where log� denotes the iterated logarithm (Fürer,
2007; De et al., 2008). Note that this result involves a di�erent complexity model than
ours. It seems that the ideas of (De et al., 2008) could be adapted to give the same result
in our complexity model; we would then have I(n) =O(n log (n) 2log�(n)) when Rp=Zp.

The bulk of the computations will rely onmodular arithmetic: we will need to perform
arithmetic operations, mostly additions and multiplications, modulo either a univariate
polynomial (in the case of univariate representations) or a whole triangular set.

In the former case, it is known that if q 2 R[Z] has degree d (for some ring R),
additions and multiplications modulo q can be done using O(M(d)) operations in R.
When R is a �eld, inversion modulo q, when possible, can be done in timeO(M(d) log (d))
(von zur Gathen and Gerhard, 2013).

If t=(t1; :::; ts) is a triangular set in R[X1; :::; Xs] with degrees d1; :::; ds, where R is a
ring, we will let MT(d) denote an upper bound on the number of operations in R needed
to perform multiplication modulo t. If R is a �eld, we let IT(d) denote an upper bound for
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the cost of inversion modulo t (when possible). These operations are less straightforward
than in the univariate case. Known upper bounds areMT(d)=O(4s d log (d) log (log (d)))
where d= d1���ds and IT(d)=O(cs d log (d)3 ), for some (large) constant c (Dahan et al.,
2006; Dahan et al., 2008; Li et al., 2009).

We seize the opportunity to state our �rst result. By modifying slightly the algorithm
of (Li et al., 2009), we are able to improve its complexity (see Section 3.2).

Proposition 2. The multiplication modulo a triangular set t of multi-degree d can be
done in MT(d)=O(3s d log (d) log (log (d))) operations in R.

We will further need to solve linear systems over p-adic modular multivariate poly-
nomials. We denote by ! the exponent of linear algebra on any �eld k, so that we can
multiply and invert matrices in Mm(k) in O(m!) arithmetic operations. Using the
algorithms of (Coppersmith and Winograd, 1990; Stothers, 2010; Vassilevska Williams,
2011) for the multiplication, one can take !< 2.38. We will also need to invert matrices
over rings that are not �elds, e.g. in quotients of polynomial rings R[T ]/(q). We denote
byO(m
) the arithmetic complexity of the elementary operations onm�mmatrices over
any commutative ring: addition, multiplication, determinant and adjoint matrix. In fact,

 can be taken less than 2.70 (Berkowitz, 1984; Kaltofen, 1992; Kaltofen and Villard,
2004).

For the special case of matrix inversion in (R/(p))[X1; :::; Xn]/(t) for t a triangular set
of multi-degree d, we add the costs of determinant and adjoint matrix (O(m
MT(d))), of
the inversion of the determinant (IT(d)) and multiplication of the adjoint by this inverse
(O(m2MT(d))), to obtain a total cost of O(IT(d)+m
MT(d)).

1.3 Online algorithms and recursive p-adics

The property of being online (or equivalently, relaxed) for an algorithm with p-adic
input and output controls the access to the p-adic coe�cients of the input during the com-
putation. The notion of on-line algorithm was introduced by (Hennie, 1966). Informally,
consider an algorithm with at least one p-adic input a=

P
i>0 ai p

i and whose output is
another p-adic c=

P
i>0 ci p

i. We say that this algorithm is online with respect to a if,
during the computation of the ith p-adic coe�cient ci of the output, the algorithm reads
at most the coe�cients a0; :::; ai of the input a. We say that an algorithm is online if it
is online with respect to all its p-adic inputs.

The major advantage of online algorithms is that they enable the lifting of recursive
p-adics. A recursive p-adic y is a p-adic that satis�es y = �(y) for an operator � such
that the nth coe�cient of the p-adic �(y) does not depend on the coe�cients of order
greater or equal to n of y. As a consequence, y can be computed recursively from its
�rst coe�cient y0 and �.

One can �nd in (Watt, 1989; van der Hoeven, 2002) an algorithm that computes y
from its �xed point equation y=�(y) in the context of power series. A key aspect of this
algorithm is that its cost is the one of evaluating � by an online algorithm. Using the fast
online multiplication algorithm of (van der Hoeven, 1997), it leads to an e�cient frame-
work for computing with recursive p-adics. An issue about the correctness of relaxed
recursive p-adics was raised and solved in (Berthomieu and Lebreton, 2012), leading to
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the notion of shifted algorithm . We will review in Section 2 the online framework for
computing recursive p-adics and generalize it to vectors of p-adics.

As van der Hoeven was apparently not aware of previous work on online algorithms,
he called his algorithm �relaxed multiplication algorithm� and the subsequent algorithms
for recursive p-adics were called relaxed algorithms (van der Hoeven, 2002). Therefore
we can retrospectively de�ne a relaxed algorithm to be a fast online algorithm. These
de�nitions, and their adaptation to general p-adic rings (Berthomieu et al., 2011), will be
used from now on. Apart from Section 2, we will use the terminology �relaxed� algorithms
since our goal is to have asymptotically fast algorithms.

The literature contains applications of the relaxed recursive p-adic framework
to standard and important systems of equations: linear (van der Hoeven, 2002;
Berthomieu and Lebreton, 2012), algebraic (van der Hoeven, 2011; Berthomieu et al.,
2011; Berthomieu and Lebreton, 2012) and di�erential (van der Hoeven, 2002;
van der Hoeven, 2010; van der Hoeven, 2011; Bostan et al., 2012).

This paper is the natural extension of (Berthomieu and Lebreton, 2012) and the
relaxed recursive p-adic framework is the cornerstone of our result. Our contribution
consists in �nding a recursive equation of which the triangular set we seek to lift is
a �xed point. More precisely, the challenge was to �nd a shifted algorithm that com-
putes an operator � satisfying t=�(t), which will be done in Section 4.

Let us know turn to the complexity of relaxed algorithm. We denote by R:N!N a
function such that relaxed multiplication of p-adics can be done at precision n in time
R(n). Even though the algorithm of (Fischer and Stockmeyer, 1974; Schröder, 1997;
van der Hoeven, 1997; Berthomieu et al., 2011) performs multiplication over any p-adic
ring, its complexity bound R(n)=O(M(n) log (n)) is proven only in the power series and
p-adic integers cases. The issue with general p-adic rings is the management of carries.
Although we do not prove it here, we believe that this complexity result carries forward
to any p-adic ring.

Recent progress has been made on relaxed multiplication: the multiplication of two p-
adics at precision n can be done in time R(n) =M(n) log (n)o(1) (van der Hoeven, 2007;
van der Hoeven, 2012). Once again, this complexity statement has been proven only
for power series and p-adic integers rings. We also believe that this result should carry
forward to any p-adic ring.

1.4 Our contribution

We will make the following assumption on the representation of the input system: we
assume that f is given by a straight-line program with inputs T ;X1; :::; Xs and s outputs
corresponding to f1; :::; fs, using operations in f+; ¡; �g. We let L be the size of this
straight-line program.

With this notation being introduced, we can state our �rst result, which deals with
lifting of triangular representations.

Theorem 3. Let f = (f1; :::; fs) be a polynomial system in R[X1; :::; Xs] given by a
straight-line program ¡ of size L. Suppose that f satis�es assumption (H) and admits a
triangular representation t with coe�cients in Q and multi-degree d.
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Suppose that assumption (H0)t;p holds. Given t0= tmod p, one can compute tmod pn

in time

O((IT(d)+ s
MT(d)) + (sL+ s2)R(n)MT(d)):

In the running time, the �rst term corresponds to the inversion of the Jacobian matrix
of f modulo U0, with coe�cients in R/(p); this allows us to initialize the lifting. Then,
to reach precision n, most of the work consists in relaxed multiplications for p-adics in
Rp at precision n, coupled with polynomial multiplication modulo a triangular set of
multi-degree d. The overall cost is quasi-linear in n.

For comparison, an adaptation of Newton's iteration for triangular sets (Schost, 2002)
computes the same output in time

O((IT(d)+ s
MT(d)) + (sL+ s!)M(n)MT(d)):

As the term s!M(n)MT(d) suggests, this algorithm requires one to do matrix multiplica-
tions, with entries that are multivariate polynomials of multi-degreed, having themselves
power series coe�cients of precision n. Our solution requires no such full-precision matrix
multiplication.

Let us next turn to the case of univariate representations. Our main result for this
problem is the following.

Theorem 4. Let f = (f1; :::; fs) be a polynomial system in R[X1; :::; Xs] given by a
straight-line program ¡ of size L. Suppose that f satis�es assumption (H) and admits a
univariate representation U with coe�cients in Q and degree d.

Suppose that assumption (H0)U ;p holds. Given U0 = U mod p, one can compute
U mod pn in time

O((M(d) log (d)+ s
M(d)) + ((L+ s2)R(n)+ sLn)M(d)):

A univariate representation can be seen as a particular case of a triangular one,
through the introduction of an extra unknown Z, and the equation expressing Z as
a linear form in X1; :::; Xs. However, Theorem 4 is not obtained by specializing the trian-
gular case to the univariate one; further considerations are actually needed. We develop in
Section 4.2 a technique suited for small number of essential variables, that is of variables
fXj jdj> 1g that actually appears in normal forms modulo a triangular set. Univariate
representations are a typical application since they involve only one essential variable T .

The other known algorithm to perform this kind of task is a suitable version of Newton
iteration, introduced in (Giusti et al., 2001; Heintz et al., 2001). To compute the same
output, it runs in time

O((M(d) log (d)+ s
M(d)) + (sL+ s!)M(n)M(d)):

As in the triangular case, the relaxed approach avoids matrix multiplication with p-adic
multivariate entries.

As a general remark, relaxed lifting algorithms carry out (asymptotically in the pre-
cision) less relaxed multiplications than o�-line (not relaxed) algorithms do o�-line
multiplications. In counterpart, the plain p-adic multiplication of Newton's iteration
are slightly faster than the relaxed product used in our algorithm. Thus, there exists
a trade-o� between the dependencies in s and n for both algorithms.
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1.5 Outline of the paper

One major advantage of online algorithms is their suitability to compute recursive p-
adics. We present in Section 2 the framework of this application of online algorithms. In
Section 3, we focus on arithmetics modulo a triangular set. Anticipating future needs,
we develop an algorithm Rem_quo computing e�ciently both the quotient and remainder
modulo a triangular set. Section 4 provides shifted algorithms for a triangular set, which
is the requirement to lift this triangular set using the framework of Section 2. Finally,
we report on implementations in Section 5.

2 Online framework for recursive p-adics

This section presents online (or relaxed) algorithms and their use for computing recur-
sive p-adics. We start by recalling the de�nition of online algorithms in Section 2.1. For
this matter, we introduce a notion of shift of an algorithm that takes words as input and
output. The rest of the section is devoted to the online solver of �xed point equations
y =�(y). Recursive p-adics y are de�ned as solutions of special �xed point equations
y =�(y) in Section 2.2. When � is equipped with an evaluation algorithm of shift 1,
we can use the relation y=�(y) to compute y from its �rst coe�cient y0. The online
algorithm that is behind this process is presented in Section 2.3. We present in Section 2.4
the framework used to build evaluation algorithms of shift 1 for �. Finally we recall in
Section 2.5 the online linear algebra system solver, which is an application of the previous
online solver.

The whole Section 2 is a natural extension of (Berthomieu and Lebreton, 2012, Sec-
tion 2). We contribute by extending the framework to many recursive p-adics, by giving
a more educational description of the online solver and by completing its proof.

2.1 Online algorithms

The idea behind online and shifted algorithms is to control the access to the p-adic
coe�cients of the input during the computation. The following de�nition of the shift of
an algorithm is a generalization of the original de�nition of online algorithms given by
(Hennie, 1966; Fischer and Stockmeyer, 1974).

De�nition 5. Let us consider a Turing machine T with n inputs in �� and one output
in ��, where � and � are sets. We denote by a=

¡
a(1); :::; a(`)

�
an input sequence of

T and, for all 16 i6 `, we write a(i)= a0
(i)
a1
(i)
:::an

(i) with aj
(i)2�. We denote by c0c1:::cn

the corresponding output, where ck2�.
For an input index i, we say that T has shift s with respect to its ith input if T

produces ck before reading aj
(i) for all 06 k < j+ s and all input a.

Also, we say that T has shift s if this is the case with respect to all its inputs.

Considering p-adics as the sequence of their coe�cients, we obtain a notion of shift
for algorithms with p-adic input and output.

Algorithms do not have a unique shift: ifT has shift s with respect to its ith input, then
any integer lesser than s is such a shift. In the last de�nition, we use Turing machines as a
formal computation model that includes reads and writes on the input and output tapes.

The notion of online (or equivalently relaxed) algorithms is a specialization of the
notion of shift.
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De�nition 6. A Turing machine T is online if and only if it has shift 0. Its ith input
is an online argument if and only if T has shift 0 for this input.

Algorithms that are not online are called o�-line, or equivalently zealous following the
terminology of (van der Hoeven, 2002).

Let us give a few examples of online algorithms. For the sake of clarity, we will
write our online algorithms iteratively, by regrouping the computations that lead to the
production of a new coe�cient of the output. This is particularly convenient to see the
shift of an algorithm. It will also help us understand the order of the computations and
therefore the correctness of the online recursive p-adics framework.

However, this presentation does not re�ect how the algorithms are implemented in
Mathemagix. We refer to (van der Hoeven, 2002) and (Berthomieu et al., 2011, Section
5.1) for a description of the actual C++ implementation of recursive p-adics in Math-
emagix.

Example 7. The �rst example of an online algorithm is the addition of p-adics. For
computing the addition of p-adics a and b, we use a subroutine that takes as input another
c2Rp and an integer i. The extra p-adic c stores the current state of the computation,
while the integer i indicates the step of the computation we are at. Computations at
step i are responsible for producing ci¡1; they complete those of previous steps to get a
result at precision i, i.e.modulo pi. Step 1 is additionally responsible for the initialization.

Algorithm NaiveAddStep

Input: a; b; c2Rp and i2Z
Output: c2Rp

1. if i=1 then c=0 \\ Initialization

2. if i> 1 then c= c+(ai¡1+ bi¡1) p
i¡1

3. return c

The addition algorithm itself follows:

Algorithm NaiveAdd

Input: a; b2Rp and n2N
Output: c2Rp such that c=(a+ b) mod pn

1. for i from 1 to n

a. c= NaiveAddStep(a; b; c; i)

2. return c

This addition algorithm is online: it outputs the coe�cient ci of the addition c= a+ b
without using any aj or bj of index j > i. After each step i, c represents the sum of
a mod pi and b mod pi; thus, the result is correct modulo pi.

Example 8. Let us introduce two new operators: for all s in N�, de�ne

ps�_: Rp ! Rp _/ps: psRp ! Rp

a 7! ps a; a 7! a/ps:
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The implementation of these operators just moves (or shifts) the coe�cients of the input.
It does not call any multiplication algorithm.

Algorithm OnlineShiftStep

Input: a; c2Rp, s2Z and i2Z
Output: c2Rp

1. if i=1 then c=0 \\ Initialization

2. if i>max (1; 1+ s) then c= c+ a(i¡1)¡s p
i¡1

3. return c

Let s 2 Z and denote by OnlineShift(a; c; s; n) the algorithm that puts
OnlineShiftStep(a; c; s; i) in a loop with i varying from 1 to n 2 N. Then Algo-
rithm OnlineShift(a; c; s; n) has shift s with respect to its input a, and is online
with respect to a if and only if s> 0.

2.2 Recursive p-adics

The study of online algorithms is motivated by their e�cient implementation of recur-
sive p-adics, which we introduce in this section. To the best of our knowledge, the paper
(Watt, 1989) was the �rst to mention the lazy computation of power series which are
solutions of a �xed point equation y=�(y). The paper (van der Hoeven, 2002), in addi-
tion to rediscovering the fast online multiplication algorithm of (Fischer and Stockmeyer,
1974), connected for the �rst time this fast online multiplication algorithm to the online
computation of recursive power series. The article (Berthomieu et al., 2011) generalizes
this setting to general p-adic rings. An issue about the correctness of the online recursive
p-adics framework was raised and solved in (Berthomieu and Lebreton, 2012), leading to
the notion of shifted algorithm .

We start by giving a de�nition of a vector of recursive p-adics.

De�nition 9. Let ` 2N, � a function from (Rp)
` to (Rp)

`, y 2 (Rp)
` be a �xed point

of �, i.e. y=�(y). We write y=
P

i2N yi p
i the p-adic decomposition of y.

Then, we say that the coordinates (y1; :::; y`) of y are recursive p-adics if for all
n 6 m 2 N�, the p-adic coe�cient (�(y))n does not depend on the coe�cient ym, i.e.
(�(y))n=(�(y+ pna))n for any a2 (Rp)

`.

The vector of p-adics y is called recursive since it can be computed recursively from
its �rst coe�cient y0 and �. Our de�nition of recursive p-adics extends the de�nition of
(Berthomieu and Lebreton, 2012) to many recursive p-adics.

Example 10. Take R=Q[T ] and p= T so that Rp=Q[[T ]]. Consider the power series
polynomial �(Y ) =Y 2+T 2 (Q[[T ]])[Y ].

The rational y0=0 is a modular �xed point of �, i.e. y0=�(y0)modT : Hensel's Lemma
states that there exists a unique power series �xed point of � satisfying y0=0, that is

y=
1¡ 1¡ 4T

p

2
=T +T 2+2T 3+5T 4+O(T 5):
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Let us prove that the power series y is recursive. For any b2Q[[T ]], there exists, by Taylor
expansion at y, a power series �(y; b) such that �(y + b)¡ �(y) = �0(y) b+�(y; b) b2.
Taking b=Tn a and noticing that (�0(y))0=(�0(y0))0=0, we get

�(y+Tn a)¡�(y)=�0(y)Tn a+T 2n�(y; Tn a)2Tn+1Q[[T ]]:

More generally, if � 2Rp[X1; :::; X`]
`, �(y0) = y0mod p and �0(y0) = 0mod p, then the

unique lifted �xed point y from y0 is a recursive p-adic.

2.3 Online framework for computing recursive p-adics

In this section, we introduce the notion of shifted algorithm and present how it is
used to compute a vector of recursive p-adics y from the relation y=�(y) when � is a
shifted algorithm.

De�nition 11. Let y 2 (Rp)
` be a vector of p-adics and 	 be a Turing machine with `

inputs and ` outputs.
Then, 	 is said to be a shifted algorithm that computes y if

1. y=	(y),

2. 	 has shift 1.

The existence of a shifted algorithm	 for a vector of p-adics y implies the recursivity
of y. Indeed, the condition that	 has shift 1 implies that (	(y))n=(	(y+ pn a))n for
any a2 (Rp)

` and n2N.
We now get down to the computation of y using the relation y =	(y). The sketch

of the computation is the following: suppose that we are at the point where we know
the p-adic coe�cients y0; :::; yn¡1 of y and 	(y) has been computed up to its (n¡1)th
coe�cient. Since in the online framework, the computation is done step by step, one can
naturally ask for one more step of the evaluation of	 at y. Because	 has shift 1, the nth
step of the computation of	(y), which completes the computation of (	(y))mod pn+1,
reads at most y0; :::; yn¡1 and thus computes correctly. Now that we know (	(y))n, we
can deduce yn=(	(y))n.

We sum this up in the next algorithm. We slice the computations of	 with respect to
the coe�cients of the output. For i> 1, the ith step of the computations of 	 regroups
all computations made strictly after the writing of the (i¡ 2)th coe�cient of the output
until the writing of the (i¡ 1)th coe�cient of the output. Therefore, the ith step of 	
is responsible for completing the computations of previous step in order to get the result
modulo pi.

Algorithm OnlineRecursivePadic

Input: a shifted algorithm 	 and n2N
Output: y 2 (Rp)` at precision n

1. a= [0; :::; 0]

2. for i from 1 to n

a. Perform the ith step of the evaluation of 	 at a

b. Copy the p-adic coe�cient (	(a))i¡1 to ai¡1

3. return a

12



It may seem that our algorithm allows to lift y from 	 without requiring y0. In
fact, y0 is encoded in 	 since for any a2Rp, y0=(	(y))0=(	(y+a))0 which implies
y0=(	(0))0 for instance.

Next proposition is the cornerstone of complexity estimates of recursive p-adics. It is
a slight generalization of (Berthomieu and Lebreton, 2012, Proposition 10).

Proposition 12. Let 	 be a shifted algorithm for recursive p-adics y. Then, Algorithm
OnlineRecursivePadic is correct and computes the vector of recursive p-adics y at
precision n in the time necessary to evaluate 	 at y at precision n.

PROOF. We start with the proof of correctness of Algorithm OnlineRecursivePadic:
let us show by induction for i from 1 to n+1 that a and y coincide modulo pi¡1 before
step i. We consider that the beginning of the loop for i=n+1 coincides with the end of
the loop for i=n. For i=1, it is trivial since the equality is modulo 1. Let us now assume
the inductive hypothesis proved until step i ¡ 1. Therefore a and y coincide modulo
pi¡1 at the beginning of step i. Since the ith step of 	 is known to read at most a0; :::;
ai¡2, which coincide with y0; :::; yi¡2, we deduce that the evaluation of Step 2.a produces
the same output 	(y) mod pi than if it were executed on the solution y. Therefore
(	(a))i¡1=(	(y))i¡1= yi¡1 and our inductive hypothesis follows.

As a consequence, the cost of the computation of y is exactly the cost of the evaluation
of	(y) inRp. Indeed reads and writes of Step 2.b are not accounted for in our complexity
model. �

2.4 Creating shifted algorithms

This section is devoted to the process of creating shifted algorithms. We start by
recalling the basics of straight line programs (s.l.p.s). Using these s.l.p.s, we build evalu-
ation algorithms over p-adics based on online arithmetics, which are good candidates to
be shifted algorithms. Finally, we introduce the notion of shift index of an s.l.p., which
is the key to checking that our candidates are shifted algorithms.

Straight-line programs Straight-line programs are a model of computation that consists
in ordered lists of instructions without branching. We give a short presentation of this
notion and refer to (Bürgisser et al., 1997) for more details. We will use this model of
computation to describe and analyze the forthcoming recursive operators and shifted
algorithms.

Let R be a ring and A an R-algebra. A straight-line program is an ordered sequence of
operations between elements of A. An operation of arity r is a map from a subset D of
Ar to A. We usually work with the binary arithmetic operators +;¡;�: D=A2!A. We
also de�ne for r 2R the 0-ary operations rc whose output is the constant r and denote
the set of all these operations by Rc. For s2N�, we consider the unary operators ps�_:
A!A and _/ps: psA!A de�ned in Example 8. Let us �x a set of operations 
, e.g.

= f+;¡; �; ps�_;_/psg[Rc.

An s.l.p. starts with a number ` of input parameters indexed from ¡(`¡ 1) to 0. It
has L instructions ¡1; :::; ¡L with ¡i=(!i;ui;1; :::; ui;ri) where ¡`<ui;1; :::; ui;ri<i and
ri is the arity of the operation !i2
. The s.l.p. ¡ is executable on a=(a0; :::; a`¡1) with
result sequence c= (c¡`+1; :::; cL) 2A`+L, if ci= a`¡1+i whenever ¡(`¡ 1)6 i6 0 and
ci=!i(cu;1; :::; cu;ri) with (cu;1; :::; cu;ri)2D!i whenever 16 i6L. Finally, the s.l.p. has
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a number r of outputs indexed by 16 j1; :::; jr6L. We then say that ¡ computes cj1; :::;
cjr on the input a.

Shift index of an s.l.p. Let ¡ = (¡1; :::; ¡L) be an s.l.p. over the R-algebra Rp with `
input parameters and operations in 
. We de�ne the weighted directed acyclic graph G¡
of ¡ as the graph with `+L nodes indexed by¡(`¡1); :::; L and directed edges (u; j) for
each input index u of the jth operation ¡j. The edge (u; j) has weight 0 if !j2f+;¡;�g.
For any s 2N, the edge (u; j) has weight s if !j = ps�_ and weight ¡s if !j =_/ps.
Finally, we de�ne the weight of any path ((v0; v1); :::; (vr¡1; vr)) as the sum of the weights
of its edges (vi; vi+1).

The next de�nition of shift index is an extension of (Berthomieu and Lebreton, 2012,
De�nition 2) to s.l.p.s with many inputs and from a more global point of view.

De�nition 13. For any pair (h; j) such that ¡` < h 6 j 6 L, we de�ne the shift
index sh(¡; h j) 2 Z [ f+1g of (h; j) as the minimal weight of any path from h to
j in the weighted directed graph associated to ¡. If there exists no such path, we set
sh(¡; h j) = 0 if h= j and sh(¡; h j)=+1 otherwise.

Moreover, we de�ne

sh(¡; h :) := min fsh(¡; h j) j j an output index g
sh(¡) := min fsh(¡; h :) jh an input index g:

Example 14. This example is the continuation of Example 10. We still consider the power
series polynomial �(Y )=Y 2+T 2 (Q[[T ]])[Y ]. We can naturally associate to � the s.l.p.
with one input, one output, and instructions

¡1=(�; 0; 0); ¡2=(T c); ¡3=(+; 1; 2):

Let ¡0 be the s.l.p. associated to 	(Y ) = T 2� ((Y /T )2) + T , that is the s.l.p. with one
input, one output, and instructions

¡1
0 =(_/T ; 0); ¡2

0 =(�; 1; 1); ¡3
0 =(T 2�_; 2); ¡4

0 =(T c); ¡5
0 =(+; 3; 4):

Then ¡0 describes another way to compute the polynomial Y 2+T .
We draw the directed acyclic graphs G¡ and G¡0 associated to � and 	 in Figure 1. The

weight of the unique path from the input (drawn by a double circle) to the output (drawn
with an external arrow) is 0 for � and 1 for 	. So we have sh(�)=0 and sh(	)=1.

0 1

2

3
0

0

0
0 1 2 3

4

5
-1 2 0

0

0

Graph of Φ Graph of Ψ 

Fig. 1. Weighted directed acyclic graphs of � and 	 in Example 14.

A convenient way to compute shift indices is the following. Let ¡` < h 6 j 6 L and
consider sh(¡; h j). The last edge of any path from h to j must originate from an input
u of the jth operation as its last step. So

sh(¡; h j)=min fsh(h u)+weight(u; j) j u input index of the jth operationg:
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Note that this is consistent with (Berthomieu and Lebreton, 2012, De�nition 2).

Shifted evaluation algorithms Let ¡ be given as an s.l.p. with operations in 
= f+;¡;
�; ps�_;_/psg[Rc. The upcoming Algorithm ShiftedEvaluationStep evaluates ¡ at
a in a way that controls the shift of the algorithm. Arithmetic operations are performed
using online algorithms. Let OnlineAddStep (resp. OnlineSubStep, OnlineMulStep) be
the step routine of any online addition (resp. subtraction, multiplication) algorithm (see
Examples 7 and 8). Only online multiplication actually o�ers multiple implementation
choices (see for instance (Lebreton and Schost, 2013, Section 2.3)).

Notice that for any operation j and any input index u of the jth operation, our choice
of implementation is such that the algorithm has shift weight(u; j) with respect to its
input u.

Algorithm OperationStep

Input: an s.l.p. ¡, [c¡`+1; :::; cL]2 (Rp)
`+L and i2Z

Output: [c1; :::; cL]2 (Rp)
L

1. for j from 1 to L

i0 := i¡ sh(¡; j :)

if (¡j=(0+0;u; v)) then cj= OnlineAddStep(cu; cv; cj ; i0)

if (¡j=(0¡0;u; v)) then cj= OnlineSubStep(cu; cv; cj ; i0)

if (¡j=(0�0;u; v)) then cj= OnlineMulStep(cu; cv; cj ; i0)

if (¡j=(rc; )) then cj= cj+ ri0 p
i0

if (¡j=(ps�_;u)) then cj= OnlineShiftStep(cu; cj ; s; i
0)

if (¡j=(_/ps;u)) then cj= OnlineShiftStep(cu; cj ;¡s; i0)

2. return [c1; :::; cL]

Algorithm ShiftedEvaluationStep

Input: an s.l.p. ¡, a=(a0; :::; a`¡1)2 (Rp)
`, [c1; :::; cL]2 (Rp)

L and i2Z

Output: [c1; :::; cL]2 (Rp)
L

1. if i=1 then \\ Initialization

[c¡`+1; :::; c0] = [a0; :::; a`¡1]; [c1; :::; cL] = [0; :::; 0]

for k from 1+min¡`<j6L (sh(¡; j :)) to 0

[c1; :::; cL] = OperationStep(¡; [c¡`+1; :::; cL]; k)

2. if i> 1 then
[c1; :::; cL] = OperationStep(¡; [c¡`+1; :::; cL]; i)

3. return [c1; :::; cL]

Once again, Algorithm ShiftedEvaluationStep is a subroutine that corresponds to
one step of following Algorithm ShiftedEvaluation, that computes the result sequence
[c1; :::; cL]2 (Rp)

L of the s.l.p. ¡ on the input a2 (Rp)
`. Note that we may need to perform
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a few more steps of OperationStep at initialization in order to guarantee that every step
subroutine (e.g. OnlineAddStep) starts from i0=1 even if sh(¡; j :)<0. We recall that
our step routines do nothing when i06 0 by design.

Algorithm ShiftedEvaluation

Input: an s.l.p. ¡, a=(a0; :::; a`¡1)2 (Rp)
` and n2N

Output: [c1; :::; cL]2 (Rp)
L

1. for i from 1 to n

[c1; :::; cL] = ShiftedEvaluationStep(¡;a; [c1; :::; cL]; i)

2. return [c1; :::; cL]

We can now prove that shift index and shift are compatible; the shift index of an s.l.p.
¡ is a shift of Algorithm ShiftedEvaluation(¡;a; n) with respect to its input a.

Proposition 15. Let b¡`+1; :::; bL be the result sequence of the s.l.p. ¡ on input a and
j1; :::; jr be the indices of its output. Then Algorithm ShiftedEvaluation has shift sh(¡)
with respect to its input a. Moreover, Algorithm ShiftedEvaluation outputs the result
sequence at precision n, i.e. cjk= bjkmod pn for all 16 k6 r.

PROOF. For the purposes of the proof, we introduce Algorithm ShiftedEvaluationBis.
It is a variant of Algorithm ShiftedEvaluation that di�ers only in terms of presentation
of the initialization step 1, which is now split in many steps i from 1+min¡`<j6L (sh(¡;
j :)) to 1.

Algorithm ShiftedEvaluationBis

Input: an s.l.p. ¡, a=(a0; :::; a`¡1)2 (Rp)
` and n2N

Output: [c1; :::; cL]2 (Rp)L

1. [c¡`+1; :::; c0] = [a0; :::; a`¡1]; [c1; :::; cL] = [0; :::; 0]

2. for i from 1+min¡`<j6L (sh(¡; j :)) to n

[c1; :::; cL] = OperationStep(¡; [c¡`+1; :::; cL]; k)

3. return [c1; :::; cL]

Let (cj)¡`<j6L be the variables of ShiftedEvaluationBis and denote by s the integer
¡min¡`<j6L (sh(¡; j :))> 0. For any pair (i; j)2 J1¡ s;nK� K¡`;LK, we let c(i; j) be
the truncated p-adic cjmod pi

0
where i0 := i¡ sh(¡; j :). If i06 0, we set c(i; j)=0 by

convention. Algorithm ShiftedEvaluationBis computes progressively the p-adics c(i; j)
for (i; j)2 J1¡ s;nK� J1;LK following the lexicographic order <lex with (0; 1)<lex (1; 0).
Let us prove by induction on (i; j)2 J1¡ s;nK� K¡`;LK that c(i; j)= b(i; j) and, if j > 0,
that the (i; j)th step of the computation reads at most c(k;u) for (k; u)<lex (i; j).

We initiate the recursion: c(1¡s;¡`+1) is an input of ¡, so we have the equalities
c¡`+1=a¡`+1= b¡`+1, which also hold modulo any power of p. Let us now assume that
the inductive hypothesis is veri�ed for all (k;m)<lex (i; j). If j60 then c(i; j) corresponds
to an input and c(i; j)= b(i; j) as before. Otherwise j > 0 and c(i; j) is obtained from the
i0th step of the jth operation. Let u < j be the index of an input of the jth operation.

16



Then, the current computation reads at most c(u;k) for k 06 i0¡weight(u; j). Since

sh(¡; u :)6weight(u; j)+ sh(¡; j :);

we obtain k6 i and therefore (k; u)6lex (i; u)<lex (i; j) which proves the second part of
our induction.

By the inductive hypothesis, all the coe�cients c(k;u) that are read by the jth oper-
ation up to step i coincide with b(k;u). Therefore the jth operation produces the same
output than if it were executed on the inputs b¡`+1; :::; bL. Since the loop on i starts from
1¡ s, we have performed all the steps from 1 to i0 of the jth operation, whose output cj
consequently equals to bj modulo pi

0
, i.e. c(i; j)= b(i; j). This concludes our induction.

Using our induction, the ith step of ShiftedEvaluationBis reads at most
aj mod pi¡sh(¡;j :) for any input index ¡` < j 6 0. The �rst part of the proposition
follows from sh(¡)6 sh(¡; j :) for any input index ¡`< j6 0. The second part of the
proposition is a direct consequence of our induction on couples (n; jk) for all 16k6r. �
Corollary 16. Let y 2 (Rp)

` be a vector of p-adics and 	 be an s.l.p. of positive shift
index sh(	)> 1 such that y =	(y). Then Algorithm ShiftedEvaluation(	;_; n) is
a shifted algorithm that computes y.

Example 17. This example is the continuation of Examples 10 and 14. In particular,
we keep the notations � and 	 for the two s.l.p.s respectively associated to Y 2+T and
T 2 � ((Y /T )2) + T . The two s.l.p.s are related: if a = 0 mod T , then �(a) = 	(a). In
particular, � and 	 give �xed point equations for the recursive p-adic y, i.e. 	(y) =
�(y)= y.

Since sh(	)=1, the s.l.p. 	 satis�es the conditions of Corollary 16 and can be used to
compute y accordingly to Proposition 12. On the contrary, sh(�)=0 and its associated
evaluation algorithm ShiftedEvaluation(�; _; n) does not introduce the shift in the
coe�cients of y necessary to be able to compute y.

Remark 18. One drawback of the online method for computing recursive p-adics is the
space complexity. We have seen that we store the current state of each computation of ¡
in Algorithm ShiftedEvaluation. This leads to a space complexity O(nL) to compute
the recursive p-adic at precision n where L is the size of ¡.

In Newton's iteration approach, the required evaluation of ¡ could use signi�cantly
less memory by freeing the result of a computation as soon as it is used for the last time.
For this reason, Newton's iteration may consume less memory.

2.5 Online linear algebra system solver

One of the building blocks that will be required to lift triangular sets is an online p-adic
linear system solver. In this section, we recall the main result concerning the online linear
system solver of (Berthomieu and Lebreton, 2012, Section 4). This solver is built upon
the online recursive p-adic framework. We refer to the original paper for more details.

We consider a linear system of the form A=B �C, where A and B are known, and
C is the unknown. The matrix A belongs to Mm;1(Rp) and B 2Mm(Rp) is invertible;
we solve the linear system A=B �C for C 2Mm;1(Rp).

Proposition 19. (Berthomieu and Lebreton, 2012, Proposition 21) With the
previous notations and given C0 and ¡ := (B0)

¡1 mod p, there exists an algorithm
LinearSolver online with respect to inputs A and B that outputs the linear system
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solution C at precision n in time O(m2R(n)).

We extend the set of operations 
 of our s.l.p.s with this new operation LinearSolver
and, if ¡j = (LinearSolver; u; v), we set the weight of the edges (u; j) and (v; j) as 0.
Since this Algorithm LinearSolver is online, this choice of shift index is consistent with
Proposition 15 and Corollary 16.

3 Quotient and remainder modulo a triangular set

This section deals with Euclidean division modulo a triangular set. In this section,
we denote by t = (t1; :::; ts) a triangular set in R[X1; :::; Xs], with R being any ring.
Computing remainders is a basic operation necessary to be able to compute with the
quotient algebra A := R[X1; :::; Xs]/(t). We are also interested in the quotients of the
division since we will need them later.

We start by de�ning quotients and remainder of the Euclidean division by t in a
unique manner in Section 3.1. Then we focus on computing these objects. We circumvent
the fact that the size of the quotients is exponential in the size d1 ��� ds of the quotient
algebra A by computing only reductions of the quotients modulo a triangular set. This
leads us to Algorithms Rem and Rem_quo of Section 3.2. In this section, we will consider
only arithmetic complexity over R.

3.1 Canonical quotients and remainder

For any g 2 R[X1; :::; Xs], the existence of r; q1; :::; qs 2 R[X1; :::; Xs] satisfying
g = r + q1 t1 + ��� + qs ts and degXi (r) < di is guaranteed because triangular sets
are Gröbner bases. However, the quotients q1; :::; qs are not necessarily unique. For
16 i< j6s, let zi; j be the vector of R[X1; :::; Xs]

s with only tj in the ith position and ¡ti
in the jth position. We can add to any choice of quotients (q1; :::; qs) an element of the
syzygy R[X1; :::; Xs]-module spanned by the (zi; j)16i<j6s in R[X1; :::; Xs]

s. Nevertheless,
a canonical choice of quotient can be made.

Lemma 20. For all g 2 R[X1; :::; Xs], there exists a unique vector of polynomials
(r; q1; :::; qs) in R[X1; :::; Xs]

s+1 such that

g= r+ q1 t1+ ���+ qs ts

and for all 16 i6 s, degXi (r)<di and for all 16 i < j6 s, degXj (qi)<dj.

PROOF. Take any Euclidean decomposition g= r+ q1 t1+ ���+ qs ts with degXi
(r)<di.

Then use the syzygies (z1;i)1<i6s to reduce the degree of q1 in X2; :::; Xs. Again use the
syzygies (z2;i)2<i6s to reduce the degree of q2 in X3; :::; Xs. This last action does not
change q1. Continuing the process until we reduce the degree of qs¡1 in Xs by zs¡1;s,
we have exhibited a Euclidean decomposition satisfying the hypothesis of the lemma.

Now let us prove the uniqueness of (r; q1; :::; qs). Because r is unique, we have to prove
that if q1 t1+ ���+ qs ts=0 with degXj (qi)<dj for all 16 i < j6 s, then q1= ���= qs=0.
By contradiction, we suppose there is such a decomposition with a non-zero qi. Let j be
the maximal index of a non-zero qj. Then degXj

(qj tj)> dj and at the same time

degXj (qj tj) = degXj (q1 t1+ ���+ qj¡1 tj¡1)

6 max
i<j

(degXj (qi ti))
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6 max
i<j

(degXj (qi))

< dj:

Contradiction. �

We call canonical quotients and remainder, those which satisfy the conditions of
Lemma 20. We denote by g rem t the canonical remainder of g modulo t. We will
not compute the whole quotients qi because they su�er from the phenomenon of inter-
mediate expression swell ; in the computations of the remainder of a polynomial modulo
a triangular set, the size of intermediate expressions, e.g. the size of the quotients,
increases too much. A quick estimate gives that the number of monomials of the quo-
tients is exponential in the size d1 ��� ds of the quotient algebra A (Langemyr, 1991).

Instead, we will show how to compute modular reductions of the quotients.

3.2 Fast multivariate Euclidean division by a triangular set

Recall that di denotes the degree in Xi of ti. For any triangular set t in R[X1; :::;
Xs], we say that the variables fXj j dj > 1g are the essential variables and denote by
e := #fi j di > 1g their number. Only those variables play a true role in the quotient
algebra A :=R[X1; :::; Xs]/(t). If r is a reduced normal form modulo t (seen as a Gröbner
basis for the lexicographic order X1 � ��� � Xs), then r is written on the e essential
variables. For the sake of simplicity in our forthcoming algorithms, we will assume that
the set of indices fi jdi>1g of essential variables is f1; :::; eg, so that any reduced normal
form r belongs to R[X1; :::; Xe].

We start with Algorithm Rem, which is a variant of the algorithm of (Li et al., 2009).
It is designed to reduce the product of two reduced elements, therefore we suppose
that the input polynomial g 2 R[X1; :::; Xe] satis�es degXi (g) 6 2 (di ¡ 1). We
denote by revXi(g) the reverse polynomial of g 2 R[X1; :::; Xs] with respect to Xi, i.e.

revXi(g) :=Xi
degXi(g) g(1/Xi).

Algorithm Rem

Input: g 2R[X1; :::; Xe] and t such that degXi (g)6 2 (di¡ 1)
Output: r= g rem t2R[X1; :::; Xe]

1. Let t0 := (t1; :::; te¡1) and R0 :=R[X1; :::; Xe¡1]/(t
0).

Compute the quotient qe of g by te in R0[Xe]:

a. qe :=
P

i=de

2de¡1 Rem(g[Xe
i]; t0)Xe

i

b. Precompute I := 1/revXe
(te) remXe

de¡1 in R0[Xe]

c. qe := revXe
(qe) I remXe

de inR0[Xe]

d. qe := revXe(qe)

2. r := (g¡ qe te) remXe
de in R[X1; :::; Xe¡1][Xe]

3. r :=
P

i=0
de¡1 Rem(r[Xe

i]; t0)Xe
i

4. return r
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The precomputation of step 1.b means that, as the object I depends only on t, we
compute it once and for all at the �rst call of Algorithm Rem.

Let M(d1; :::; ds) = M(d) denote the cost of multiplication of dense multivariate
polynomials g 2 R[X1; :::; Xs] satisfying degXi (g) < di for all 1 6 i 6 s. By Kronecker
substitution, we get thatM(d)=O(M(2s d1 ��� ds)) (von zur Gathen and Gerhard, 2013).

We de�ne Rem(d1; :::; ds) to be the arithmetic cost of reducing polynomials g 2
R[X1; :::; Xs] satisfying degXi (g) 6 2 (di ¡ 1) modulo t. The number e of essential
variables plays an important role because Rem(d) is exponential in e.

Proposition 21. The algorithm Rem is correct and has cost

Rem(d1; :::; de)=O(3e d log (d) log (log (d))):

PROOF. The algorithm is a multivariate generalization of the fast univariate division
with remainder (von zur Gathen and Gerhard, 2013, Section 9.1). We refer to (Li et al.,
2009) for the proof of correction of our algorithm.

Let us focus on the complexity. Step 1.c involves a multiplication in R[X1; :::; Xe] and
a reduction by t0 of the coe�cients in Xe

i for i < de. So multivariate multiplications are
used in steps 1.c and 2 and de reductions by t0 are done in steps 1.a, 1.c and 2. Thus the
complexity analysis becomes

Rem(d1; :::; de) = 3 deRem(d1; :::; de¡1) + 2M(d1; :::; de)
= 3 deRem(d1; :::; de¡1) + 2M(2e d1 ��� de)
= 3 deRem(d1; :::; de¡1) +O(2e d log (2e d) log (log (2e d)))

Unrolling the recurrence, we get

Rem(d1; :::; de) = O(2e d log (2e d) log (log (2e d))+
+3 � 2e¡1 d log (2e¡1 d/de) log (log (2e¡1 d/de)) + ���
+3e¡1 d log (d1) log (log (d1)))

= O(3e d log (d) log (log (d))):

The precomputation of step 1.b is an inversion of power series done by Newton iteration.
The initialization is trivial; indeed 1/revXe(te) = 1 mod Xe since te is monic. The cost
of the Newton iteration is big-O of the cost of the last step, which is M(d1; :::; de) +
deRem(d1; :::; de¡1). So the precomputation can be done in time O(Rem(d1; :::; de)). �

Our algorithm is a slight improvement of the algorithm of (Li et al., 2009); the expo-
nential factor in the complexity is 3e instead of 4e.

We obtain the complexity estimate of modular multiplication given in Proposition 2
of the introduction as corollary of Proposition 21:

MT(d)=M(d)+Rem(d) =O(3e d log (d) log (log (d))):

Remark that non-essential variables do not impact the complexity of our algorithm, i.e.
Rem(d)=Rem(d1; :::; de), and the same for the modular multiplication.

Now we adapt Algorithm Rem to keep the quotients modulo another triangular set

t(2) =
�
t1
(2); :::; ts

(2)
�
. In order to simplify the algorithm and because it suits our future

needs, we assume that for all i, degXi

�
ti
(1)
�
= degXi

�
ti
(2)
�
and still denote by di this
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degree. Once again, our algorithm is designed to take the product of two reduced elements
as input, so we suppose that degXi (g)6 2(di¡ 1).

Algorithm Rem_quo

Input: g 2R[X1; :::; Xe] such that degXi
(g)6 2 (di¡ 1) and triangular sets t(1), t(2).

Output: r; q1; :::; qe2R[X1; :::; Xe] reduced modulo t(1) (or t(2)) such that

g= r+
X
i=1

e

qi ti
(1) modulo

¡
t(1)
�¡
t(2)
�
:

1. Let t(2)
0
:=
�
t1
(2)
; :::; te¡1

(2)
�
and R0 :=R[X1; :::; Xe¡1]/

�
t(2)

0
�
.

Compute the quotient qe of g by te
(1) in R0[Xe]:

a. qe :=
P

i=de

2de¡1 Rem
�
g[Xe

i]; t(2)
0
�
Xe
i

b. Precompute I := 1/revXe

�
te
(1)
�
remXe

de¡1 in R0[Xe]

c. qe := (revXe(qe) I) remXe
de in R0[Xe]

d. qe := revXe(qe)

2. r :=
�
g¡ qe te

(1)
�

in R[X1; :::; Xe]

3. r1 := r remXe
de, r2= r¡ r1

4. 0; q1; :::; qe¡1 :=
P

i=de

2de¡1 Rem_quo
�
r2[Xe

i]; t(2)
0
;
�
t1
(1); :::; te¡1

(1)
��

Xe
i

5. for i from 1 to e¡ 1
qi
0 := Rem

¡
qi; t

(1)
�

6. r := r1+ q1
0 t1
(2)+ ���+ qe¡1

0 te¡1
(2) in R[X1; :::; Xe]

7. r; q1; :::; qe¡1 :=
P

i=0
de¡1 Rem_quo

�
r[Xe

i]; t(1)
0
; t(2)

0
�
Xe
i

8. return r; q1; :::; qe¡1; qe

Lemma 22. If r is reduced modulo t(1) and g=r+
P

i=1
e qi ti

(1) modulo the product ideal¡
t(1)
�¡
t(2)
�
, then r is the reduced normal form of g modulo t(1) and

g= r+
X
i=1

e

qi ti
(1) modulo t(2):

PROOF. Since the product ideal
¡
t(1)
� ¡
t(2)
�
is included in both the ideals

¡
t(1)
�
and¡

t(2)
�
, the relation g = r +

P
i=1
e qi ti

(1) stands modulo both these ideals. In particular
g= r modulo t(1) and, since r is reduced modulo t(1), it is the reduced normal form of g
modulo t(1). �

We denote by RemQuo(d1; :::; de) the complexity of Rem_quo for triangular sets t(1)

and t(2) of same degrees d1; :::; de.
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Proposition 23. Algorithm Rem_quo is correct and its cost is

RemQuo(d1; :::; de)=O(eRem(d1; :::; de)) =O(eMT(d1; :::; de)):

PROOF. We proceed recursively on the number e on variables involved in g. In one
variable, our algorithm coincides with the fast univariate division with remainder (see
(von zur Gathen and Gerhard, 2013, Section 9.1)). So it is correct and RemQuo(d1) =
Rem(d1).

Let's suppose that we have proved our claims in less that e variables. Since qe is
the quotient of g by te

(1) in
�
R[X1; :::; Xe¡1]/

�
t(2)

0
��
[Xe], we have r2=0 in

�
R[X1; :::;

Xe¡1]/
�
t(2)

0
��
[Xe]. By assumption, the recursive call of step 4 gives the decomposition

r2=
X
i=1

e¡1

qi ti
(2) modulo

�
t(1)

0
��
t(2)

0
�

and also modulo
¡
t(1)
�¡
t(2)
�
. The reduction of the quotient of step 5 gives

r2=
X
i=1

e¡1

qi
0 ti
(2) modulo

¡
t(1)
�¡
t(2)
�

where the polynomials qi
0 are reduced modulo t(1). Therefore the polynomial r20 :=P

i=1
e¡1 qi

0 ti
(2) has degree degXe (r2

0) < de and degXi (r2
0) < 2 di for i < e. Because

r1 satis�es the same degree conditions, they are still satis�ed by r = r1 + r2
0 . By the

induction hypothesis, at step 7, we have for all 0 6 i < de and 1 6 j 6 e ¡ 1, that
qj[Xe

i] is reduced modulo t(1)
0
. Since qj has degree less than de in Xe, it is reduced

modulo t(1). The last quotient qe is also reduced because it was computed in
�
R[X1; :::;

Xe¡1]/
�
t(2)

0
��
[Xe] and degXe (qe)= degXe (g)¡degXe

�
te
(1)
�
<de. Finally

g= r1+ r2+ qe te
(1) = (r1+ r2

0)+ qe te
(1) modulo

¡
t(1)
�¡
t(2)
�

=

 
r+

X
i=1

e¡1

qi ti
(1)

!
+ qe te

(1) modulo
¡
t(1)
�¡
t(2)
�
:

Concerning the complexity analysis, we have

RemQuo(d1; :::; de) = 2 deRemQuo(d1; :::; de¡1)+ 2 deRem(d1; :::; de¡1)+
(e¡ 1)Rem(d1; :::; de)+ (e+1)M(d1; :::; de)

which gives

RemQuo(d1; :::; de)=O(eRem(d1; :::; de)): �

As for the remainder algorithm, we have RemQuo(d) = RemQuo(d1; :::; de), so that
RemQuo(d)=O(eRem(d)).

Finally, we mention that there exists a di�erent approach for computing remainders
modulo a triangular set (Bostan et al., 2011): it relies roughly on an evaluation / inter-
polation on the points of the variety de�ned by the triangular set. Because this approach
can not be adapted to obtain the quotients, we did not consider it here.
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3.3 Shift index of remainder and quotient

We now specify the base ring to be the ring of p-adics Rp.

Lemma 24. If arithmetic operations are performed in Rp by online algorithms, then
both Algorithms Rem and Rem_quo are online.

PROOF. We prove it for Rem_quo, the other case being similar. We proceed by induction
on the number s of variables involved in the input of t(1). If no variables are involved,
then the result is trivial. From now on, let us assume that the result is valid for input of
less than s variables.

First, we prove that the computations that leads to I := 1/revXs
(ts) rem Xs

ds¡1 in
R0[Xs] are online. De�ne I0 := 1 and I` := I`¡1¡ I`¡1 (revX`(t`) I`¡1¡1) in R0[Xs]/(Xs

`).
Thereby I = Idlog2(ds¡1)e modulo Xs

ds¡1. We conclude by noticing that I` is obtained
from I`¡1 by an online multiplication and reductions modulo t0 which are also online.

Our algorithm uses only recursive calls in less variables, online additions and multi-
plications. Since the composition of online algorithms is online, the lemma is proved. �

We extend one last time our set of operations 
 with the new operations Rem and
Rem_quo. Let ¡ be an s.l.p. whose jth operation is either Rem and Rem_quo and let u be
one of the input indices, then we de�ne weight(u; j) :=0. Since these algorithms are online
by Lemma 24, this choice of shift index is consistent with Proposition 15 and Corollary 16.

4 Relaxed lifting of triangular sets

In this section we detail two relaxed algorithms that lift triangular sets. The �rst
algorithm of Section 4.1 should be used for triangular set of generic multi-degree. We
re�ne this algorithm in Section 4.2 for triangular sets with few essential variables, which
is the case of univariate representations.

Suppose that f satis�es assumption (H) and admits a triangular representation t with
coe�cients in Q and multi-degree d. Suppose that assumption (H0)t;p holds and that
we know t0 = t mod p. Hypothesis (H0)t;p implies that the Jacobian matrix Jac(f0) is
invertible over (R/(p))[X1; :::; Xs]/(t0). Our objective is to compute t from f and t0.

De�ne the R-algebra B := R[X1; :::; Xs]/(t0), B0 := (R/(p))[X1; :::; Xs]/(t0) its
reduction modulo p and Bp :=Rp[X1; :::; Xs]/(t0) its p-adic completion.

Throughout this section, we let f be given as an s.l.p. ¡ with inputs X1; :::; Xs and
s outputs corresponding to f1; :::; fs. The s.l.p. ¡ has operations in f+; ¡; �g and can
use constants in B. Denote by c¡s; :::; cL the result sequence of the s.l.p. ¡ on the input
X1; :::; Xs. Let ri and bi be the canonical remainder and quotients of ci for ¡s6 i6L.
So we have ci= ri+ bt i � t2R[X1; :::; Xs]. Let i1; :::; is be the indices of the s outputs of
¡, so that we have fj= cij for 16 j6 s. We denote by B 2Ms(R[X1; :::; Xs]) the matrix
whose jth row is bij. Therefore one has f =B � t2Ms;1(R[X1; :::; Xs]).

Let us consider vectors as s�1matrices. We �x the notationA �v for the matrix vector
product and similarly vt 1 �v2 for the inner product of two vectors, vt being the transposed
vector of v. We also let c� v be the coe�cientwise product of a scalar c by a vector v.
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4.1 Using the quotient matrix

We de�ne two maps � and � from Rp to Rp by �(a) = a0 and �(a) :=
a¡ a0
p

for
any a =

P
i2N ai p

i 2 Rp. For any a 2 Rp, we have a = �(a) + p �(a). We extend the
de�nition of � and � to polynomials by acting coe�cientwise and to matrices by acting
componentwise. Thus �(t), also denoted by t0, veri�es �(t)= (�(t1); :::; �(ts)).

Recursive formula for t. The triangular set t is a recursive p-adic vector of polynomials.

Lemma 25. The matrix �(B) is invertible modulo t0. Let ¡ be a representative in
Ms(Rp[X1; :::; Xs]) of �(B)¡1mod t0.

Then the triangular set t satis�es the recursive equation in Ms;1(Rp[X1; :::; Xs])

t¡ t0= [¡ � (f ¡ p2 (�(B) � �(t)))] rem t0: ( 1)

PROOF. By di�erentiating the equality f0 = �(B) � t0 2Ms;1(R/(p)[X1; :::; Xs]) and
then reducing modulo t0, we get Jac(f0) = �(B) � Jac(t0) in Ms(B0). Since Jac(f0) is
invertible inMs(B0) by hypothesis, B0 and Jac(t0) are also invertible

�(B) = Jac(f0) � Jac(t0)¡12Ms(B0) (2)

Then �(B) is invertible in Ms(Bp) since it is invertible modulo p.
For any g 2R[X1; :::; Xs], let r and a be the canonical remainder and quotients of g

by t so that
g¡ r= at � t= �t (a) � t+ p ( �t (a) � t) = �t (a) � t+ p ( �t (a) � t0)+ p2 ( �t (a) � �(t)):

Thus we have �t (a) � t= g ¡ (r + p2 ( �t (a) � �(t))) 2Bp. Now if g 2 (t), then r = 0. We
apply this to the equations f and get

�(B) � t= f ¡ p2 (�(B) � �(t))2Ms;1(Bp): (3)

It remains to invert �(B) to get

t¡ t0= t rem t0= [¡ � (f ¡ p2 (�(B) � �(t)))] rem t02Ms;1(Rp[X1; :::; Xs]): �

Recursive Equation (1) will be our shifted algorithm that will compute t thanks to
Proposition 12. Indeed, taking the coe�cient in pm of Equation (1), we get that the p-
adic coe�cient tm := (t1;m; :::; ts;m) depends only on the p-adic coe�cientsBi and ti with
i<m. We will now see how to compute B from f and t by a relaxed algorithm, so that
Bi depends only on tj with j6 i.

Computation of B modulo t0. In this paragraph, we explain how to compute the
remainder ri and quotients bi by t of any element ci of the result sequence. Since Equa-
tion (1) is modulo t0, this quantities are only required modulo t0. We proceed recursively
on the index i for ¡s6 i6L.

First, we start with the inputsX1; :::; Xs on our s.l.p. ¡. For ¡s<i60, we have ci=X{�

where {� := i+ s and we distinguish two cases:

� if d{�> 1, then X{� is already reduced modulo t, we put ri :=X{� and bi := (0; :::; 0).

� if d{�=1, then bi := (0; :::; 0;1;0; :::; 0) with only a one in position {� and ri=X{�¡ t{�.
Let us now turn to operations of the s.l.p. indexed by 0< i6L. If the ith result ci is a
constant in B, then it is reduced modulo t because t and t0 have the same multi-degree.
Consequently, we take ri := ci and bi := (0; :::; 0).
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Otherwise ci= cj op ck with op2f+;¡;�g and j ; k <i. If op is an addition then we set

ri := rj+ rk

bi := bj+ bk:

Subtractions are dealt similarly. Let us consider the case of the multiplication. De�ne
r; q := Rem_quo(rj rk; t; t0) be the reductions modulo t0 of the canonical remainder and
quotients of rj rk by t. By Lemma 22, r= rj rk rem t and rj rk= r+ qt � t2Bp. So one has

cj ck = rj rk+
t[(rj+ bt j � t)� bk+ rk� bj] � t

= r+ t[q+(rj+ bt j � t)� bk+ rk� bj] � t

in Bp and we set

ri := r

bi := q+(rj+ bt j � t)� bk+ rk� bj: (4)

Shifted algorithm. We put all these formulas together to form an algorithm that com-
putes all the remainders ri and quotients bi modulo t0. We describe this algorithm as a
straight-line program, in order to prove that it is a part of a shifted algorithm.

Let L be the length of the s.l.p. ¡ of f . We de�ne recursively in i such that ¡s<i6L
some s.l.p.'s "i with s inputs. These s.l.p.'s "i compute, on the entries t given as the list
of their polynomial coe�cients, the remainders rj and quotients bj of cj for j < i. We
call �i and �i=(�1i ; :::; �si) the outputs of "i corresponding to ri and bi.

De�nition 26. Let us initiate the induction for ¡s< i6 0 and {� := i+ s:

¡ if d{�=1, then we de�ne "i := (r{�; 0; 1) where r{� :=X{�¡ t{�. The output �i points to
r{� and �mi points to 0 if m=/ {� or 1 otherwise;

¡ if d{�> 1, then we de�ne "i := (X{�; 0). The output �i points to X{� and �mi points to
0 for any 16m6 s.

Now recursively for 0<i6L, depending on the operation type of ¡i:

¡ if ¡i = (gc) with g reduced modulo t0, then we de�ne "i := (g; 0). The output �i

points to P and �m
i points to 0 for any 16m6 s;

¡ if ¡i= (+; u; v), then we build "i on top of "u and "v in such a manner that one
has �i := �u+ �v and �i :=�u+�v;

¡ if ¡i= (¡; u; v), then we build "i on top of "u and "v in such a manner that one
has �i := �u¡ �v and �i :=�u¡�v;

¡ if ¡i = (�; u; v), we de�ne "i accordingly to formula ( 4). First, we compute r;
q := Rem_quo(�u(t) �v(t); t; t0). Then �i := r and �i is de�ned by

q+(�u(t)+ �t u(t) � t)��v(t)+ �v(t)��u(t); t0:

Finally, we set "= "L.

The s.l.p. " computes the matrix B on the entries t. We build an s.l.p. � on top of
" such that

�: t 7! t0+ LinearSolver(f ¡ p2� (�(B) � �(t)); �(B)):
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Since we need the right-hand side of Formula (1) modulo t0, all computations in the
s.l.p.s " and � take place in Bp. There are two notable exceptions: the product rj rk in
r; q := Rem_quo(rj rk; t; t0) should be in Rp[X1; :::; Xs]. Otherwise, r is not the canonical
remainder of ci modulo t and Equation (3) does not hold. The second exception is the
addition by t0 in � which should be done in Rp[X1; :::; Xs] since Formula (1) holds there.

Lemma 27. Algorithm ShiftedEvaluation(�; _; n) is a shifted algorithm for the
recursive p-adics t.

PROOF. To prove our lemma, we will rely on Corollary 16. Note that the triangular set t
is a �xed point of the s.l.p. � because of Equation (1). It remains to prove that sh(�)>1.

Let us consider the partial s.l.p. t 7! B of � whose output is B. Since the s.l.p. "
uses only additions, subtractions, multiplications, Rem and Rem_quo, and since all these
operations preserve a zero shift index (see De�nition 13), we know that sh(t 7!B) = 0.
Besides

sh(t 7! p2� (�(B) � �(t))) = 2+ sh(t 7! �(B) � �(t))
= 2+min (sh(t 7! �(B)); sh(t 7! �(t)))

= 1+min (sh(t 7!B); sh(t 7! t))

= 1:

Furthermore, notice that f rem t0 and �(B) depend only on t0. Finally the resolution of
the linear system preserves the shift index (Proposition 19), hence we have sh(�)=1. �

Using the online recursive p-adic framework, we have our relaxed p-adic triangular set
Hensel lifting algorithm. We can now prove our �rst main result and state the complexity
of our algorithm.

PROOF. (of Theorem 3) Lemma 27 and Proposition 12 show that we can compute t
at precision n in the time necessary to apply Algorithm ShiftedEvaluation(�;_; n).

Cost of ". The dominant cost when evaluating " corresponds to multiplications � in f .
These steps make one call to Algorithm Rem_quo, one inner product of vectors modulo t0,
and a few additions and multiplications modulo t0. Thereby the total cost of evaluating "
is O(LR(n) (RemQuo(d)+ sMT(d)))=O(sLR(n)MT(d)) (see Proposition 23).

Cost of f rem t0. Evaluating the s.l.p. f over Bp costs O(LR(n)MT(d)).

Cost of p2�(�(B) ��(t)). The matrix vector product costsO(s2 R(n)MT(d)). Since s6L,
this cost is dominated by the cost due to ".

Resolution of the linear system in �(B). Proposition 19 solves the linear system in
time O(s2R(n)). We need to provide the algorithm with �(B)¡12Ms(B0), which costs
O(IT(d)+ s
MT(d)). �

4.2 By-passing the whole quotient matrix

The algorithm of Section 4.1 computes the whole quotientB, leading to a component
O(s L R(n) MT(d)) in the complexity. However, when e� s, we can bene�t from not
computing B. We present in this section a new method to compute �(B) � �(t) avoiding
B, thus leading to an asymptotic complexity of O(e L R(n) Rem(d)). In return, we
increase the asymptotic subdominant part in the precision n of the complexity.
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Indeed, this new method makes it harder to deal with the carries involved in the
computation of B. We introduce the notion of shifted decomposition to solve this issue.

Shifted decomposition. Recall that � and � were de�ned by �(a)= a0 and �(a) :=
a¡ a0
p

and that, for any a 2Rp, we have a= a0+ p �(a). To our great regret, � and � are not
ring homomorphisms. To remedy this fact, we call a shifted decomposition of a 2 Rp a
pair (�a; �a)2Rp

2 such that a=�a+ p �a. Shifted decompositions are not unique. For any
a2Rp, the pair (�(a); �(a)) is called the canonical shifted decomposition of a. Because
� and � are not ring homomorphisms, we will use another shifted decomposition that
behaves better with respect to arithmetic operations.

Lemma 28. Let (�a; �a); (�b; �b)2Rp
2 be shifted decompositions of a; b2Rp. Then

1. (�a+�b; �a+ �b) is a shifted decomposition of a+ b;

2. (�a¡�b; �a¡ �b) is a shifted decomposition of a¡ b;
3. (�a�b; �a�b+ a �b) and (�a�b; �a b+�a �b) are shifted decompositions of a b.

The notion of shifted decomposition extends naturally to polynomials and matrices.

Recursive formula for t. The recursive Formula (1) for t adapts well to shifted decom-
position.

Lemma 29. Let (�B; �B) be a shifted decomposition of the B. Then the matrix �B is
invertible modulo t0.

Let ¡ be a representative in Ms(Rp[X1; :::; Xs]) of �(B)¡1 mod t0. Then t satis�es
the recursive equation

t¡ t0= [¡ � (f ¡ p2 (�B � �(t)))] rem t0: ( 5)

PROOF. The proof of Formula (5) is similar to the proof of Lemma 25. Concerning �B,
its zeroth p-adic coe�cient is the one of B, which in invertible inMs(B0) (see the proof
of Lemma 25). Therefore �B is invertible inMs(Bp). �

Computation of r, �B and �B � �(t). For every multiplication of the s.l.p. ¡ of f , the
computation of the quotients bi were calling in Subsection 4.1 s times Rem and one time
Rem_quo. Here, we present a method that does only O(1) calls to Rem and one call to
Rem_quo in the same situation.

We denote by (�bi; �bi) a shifted decomposition of the quotients bi. The main idea of
our new method is to deal with �t bi � �(t)2Rp instead of �bi2 (Rp)

s. Let us explain how
to compute ri, �bi and �t bi � �(t) recursively on the index i for ¡s< i6L.

First, for an index i corresponding to an input, i.e. ¡s < i 6 0, we set {� := i + s.
Therefore ci=X{� and we distinguish two cases:

¡ if d{�> 1, then X{� is reduced modulo t and we take

ri :=X{�; �bi := (0; :::; 0); �t bi � �(t) = 0: (6)

¡ if d{�= 1, then we set ri := X{� ¡ t{�, �bi := (0; :::; 0; 1; 0; :::; 0) with only a one at
position {� and �t bi � �(t) = 0.
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Now let 0< i6 L that corresponds to operations in ¡. If the ith result ci is a constant
reduced modulo t0, then, as before, we take

ri := ci; �bi := (0; :::; 0); �t bi � �(t)= 0: (7)

Consider the �nal case when ci= cj op ck with op2f+;¡;�g and j ; k <i. The case where
op is the addition is straightforward; using Lemma 28, one takes

ri := rj+ rk

�bi := �bj+�bk (8)
�t bi � �(t) := �t bj � �(t)+ �t bk � �(t):

The case of subtraction is similar. Let us deal with the more complicated case of multi-
plication. We start by computing the remainder and quotients r; q :=Rem_quo(rj rk;t;t0)
of rj rk by tmodulo t0. By Lemma 22, they satisfy rj rk=r remt and rj rk=r+ qt �t2Bp.

Thus we still take

ri := r (9)

and we have the same relation
bi= q+(rj+ bt j � t)� bk+ rk� bj:

Now we use Lemma 28 to compute the shifted decomposition of bi from shifted decom-
positions of its operands. We choose to take the canonical shifted decomposition for rj ;
rk; q and t. Since the scalar multiplication operator � and the inner product � are made
of additions and multiplications, the following is a shifted decomposition of bi

�bi = q0+((rj)0+ �t bj � t0)��bk+(rk)0��bj
�bi = �(q)+ (�(rj)+ �t bj � t0+ bt j � �(t))�bk+((rj)0+ �t bj � t0)� �bk+ �(rk)� bj+

(rk)0� �bj:
Because we work modulo t0, this decomposition simpli�es

�bi := q0+(rj)0��bk+(rk)0��bj (10)
�bi := �(q)+ �(rk)� bj+(rk)0� �bj+(�(rj)+ bt j � �(t))� bk+(rj)0� �bk:

Now that we have computed ri and �bi, it remains to compute �bi � �(t). Using �bj; �bk;
�bj � �(t); �bk � �(t) and other known polynomials, we compute

�t bi � �(t) := �t (q) � �(t) + �(rk) ( b
t
j � �(t))+ (rk)0 ( �

t
bj � �(t))+

(�(rj)+ bt j � �(t)) ( bt k � �(t)) + (rj)0 ( �t bk � �(t)) (11)

where bt j � �(t) := �t bj � �(t)+ p ( �t bj � �(t)) and the same for bt k � �(t). This latest formula
admits no equivalents for canonical shifted decompositions when the p-adics have carries.

Shifted algorithm. We sum up all these computations in an algorithm. We de�ne recur-
sively for ¡s<i6L some s.l.p.'s �i with s inputs. These s.l.p.'s �i compute, on the entries
t given as the list of their polynomial coe�cients, the remainder rj and the quantities �bj
and �t bj ��(t) for j <i. We name �i,�i=(�1i ; :::; �si) and �i the outputs of �i corresponding
to ri, �bi and �t bi � �(t).
De�nition 30. Let us initiate the induction for ¡s< i6 0 and {� := i+ s:

¡ if d{�=1, then we de�ne �i := (r{�; 0; 1) where r{� :=X{�¡ t{�. The output �i points to
r{�, �mi points to 0 if m=/ {� or 1 otherwise and �i points to 0;
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¡ if d{�>1, then we de�ne �i := (X{�; 0). The output �i points to X{�, �i and �mi points
to 0 for any 16m6 s.

Now recursively for 0<i6L, depending on the operation type of ¡i:

¡ if ¡i = (gc) with g reduced modulo t0, then we de�ne �i := (g; 0). The output �i

points to P and �m
i points to 0 for any 16m6 s;

¡ if ¡i= (+; u; v), then we build �i on top of �u and �v in such a manner that one
has �i := �u+ �v, �i :=�u+�v and �i := �u+ �v;

¡ if ¡i= (¡; u; v), then we build �i on top of �u and �v in such a manner that one
has �i := �u¡ �v, �i :=�u¡�v and �i := �u¡ �v;

¡ if ¡i=(�;u; v), we de�ne �i accordingly to Formulas ( 9,10,11). First, we compute
r; q := Rem_quo(�u(t) �v(t); t; t0). Then �i := r, �i is de�ned by

�(q)+ (�u(t)+ �t u(t) � t)��v(t)+ �v(t)��u(t)

and �i is de�ned by

�t (q) � �(t)+ �(�v) (�u)+ (�v)0 (�
u)+ (�(�u) +�u) (�v)+ (�u)0 (�

v)

where �u := �t u � �(t)+ p� �u and the same for �v.

Finally, we set �= �L.

Since � computes �B and �B � �(t), we can build an s.l.p. � on top of � such that

�: t 7! t0+ LinearSolver(f ¡ p2� (�B � �(t)); �B):

Once again, computations take place in Bp except for the input of Rem_quo and the �nal
addition by t0. We will now compute the shift index of�.

Lemma 31. The s.l.p. � has shift index 0 with respect to its outputs �L and �L and
shift index ¡1 with respect to its output �L.

PROOF. We prove recursively on i for ¡s< i6L that �i has shift index 0 with respect
to its outputs �i and �i and shift index ¡1 with respect to its output �i.

We initialize the induction for any ¡s< i6 0. One has

sh(t 7!�i(t))= sh(t 7! �i(t)) =+1; sh(t 7! �i(t)) =

�
+1 if d{�> 1
0 if d{�=1

:

Now recursively for 0<i6L, depending on the type of the ith operation of ¡:

¡ if ¡i=(gc) with g reduced modulo t0, one has

sh(t 7! �i(t))= sh(t 7!�i(t))= sh(t 7! �i(t)) =+1:

¡ if ¡i = (!; u; v) with ! 2 f+; ¡; �g then we proceed as follows. The s.l.p. �i uses
only additions, subtractions, multiplications, shifts p � _ by p, and calls to Rem
and Rem_quo. These operations are online algorithms and

sh(t 7! �i(t))= 0; sh(t 7!�i(t))= 0:
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Now �i is an arithmetic expression in �(q), �(t), (�u)0, �(�u), �u, �u, p��u and the
same for v. The operator �:a 7! (a¡a0)/p decreases the shift index by 1. Therefore
all elements of the result sequence have a shift index greater or equal to ¡1 and so
it is for �i. �

Lemma 32. Algorithm ShiftedEvaluation(�;_; n) is a shifted algorithm of which t
is a �xed point.

PROOF. The s.l.p. � satis�es �(t)= t thanks to Lemma 29 and because the formulas
that de�ne � in De�nition 30 match formulas (6) to (11).

A direct consequence of Lemma 31 is that

sh(t 7! p2� (�B � �(t)))= (2+ sh(t 7! �B � �(t))) = 1:

Since f rem t0 and �B depend only on t0, and since the resolution of the linear system
does not impact the shift, we have proved sh(�)=1. We conclude using Corollary 16. �

We can now state our second main theorem on the relaxed lifting of triangular sets.

Theorem 33. Let f = (f1; :::; fs) be a polynomial system in R[X1; :::; Xs] given by a
straight-line program ¡ of size L. Suppose that f satis�es assumption (H) and admits a
triangular representation t with coe�cients in Q and multi-degree d.

Suppose that assumption (H0)t;p holds. Given t0= tmod p, one can compute tmod pn

in time

O((IT(d)+ s
MT(d)) + ((eL+ s2)R(n)+ sLn)MT(d)):

PROOF. (of Theorem 33) By Lemma 32 and Proposition 12, we can compute t in time
necessary to compute ShiftedEvaluation(�;_; n), whose cost we now detail.

Cost of computing �B. Recall that we compute recursively �bi using Formula (10)

�bi= q0+(rj)0��bk+(rk)0��bj:

The multiplication of two p-adics with one input of length 1 has a linear cost in the
precision n. Consequently, we compute �B for a total cost of O(sLnMT(d)).

Computation of f rem t0. It costs O(LR(n)MT(d)).

Computation of �B � �(t). We focus on multiplications in the s.l.p. of f because they
induce the more operations in�. The remainder r and quotients q of rj rk require a call
to Algorithm Rem_quo. Then �B � �(t) use an inner product �(q) � �(t) and O(1) multi-
plications in Bp. The inner product costs less than Rem_quo, since this latter algorithm
performs such an inner product. Summing up, the total cost is O(LR(n) (RemQuo(d)+
MT(d))), that is O(eLR(n)MT(d)):

Resolution of the linear system in �(B). Proposition 19 solves the linear system in
time O(s2R(n)). We need to provide the algorithm with �(B)¡12Ms(B0), which costs
O(IT(d)+ s
MT(d)). �

Finally, Theorem 4 is a direct corollary of previous Theorem 33.
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5 Implementation in Mathemagix

The computer algebra software Mathemagix (van der Hoeven et al., 2002) provides
a C++ library named Algebramix implementing relaxed power series or p-adic numbers
and the relaxed framework for recursive p-adics (van der Hoeven, 2002; van der Hoeven,
2007; Berthomieu et al., 2011; Berthomieu and Lebreton, 2012). Our implementation is
built upon this base. It is available inside the �le lifting_fiber_relaxed in the C++
library Geomsolvex of Mathemagix. The relaxed algorithm has been plugged into an
implementation of the geometric resolution algorithm inside the libraryGeomsolvex of
Mathemagix by G. Lecerf.

5.1 Benchmarks

We have implemented the lifting of univariate representations over the power series
ring Fp[[T ]] for both the o�-line and the relaxed approach. The implementations over
the p-adic integers Zp are still in progress. Although they work, they still require some
e�orts to be competitive.

For benchmark purposes, we decide to consider the computation of geometric resolu-
tions, which is a good example of �real world� use of liftings of univariate representations.
One of the most expensive computation in the geometric resolution algorithm is its last
lifting: given a polynomial system f = (f1; :::; fs) in Fp[X1; :::; Xs], we need to lift a
univariate representation of (f1; :::; fs¡1) over Fp[[X1]][X2; :::; Xs] (after a generic change
of coordinates).

We report on the timings of our implementation of this lifting inside the geometric res-
olution algorithm. Timings are given in milliseconds. They are measured using one core of
an Intel Xeon X5650 at 2.67 GHz running Linux 64 bits, Gmp 5.0.2 (Granlund et al.,
1991) and setting p = 1048583 a 21-bit prime number. We indicate the number of
variables s, the required precision n of the p-adics and the degree d of the univariate
representation. Our relaxed lifting algorithm is compared to the classical o�-line variant
based on Newton's iteration as detailed in (Giusti et al., 2001; Heintz et al., 2001).

We have tried our algorithm on two family of polynomial systems that have a small
complexity of evaluation. The Katsura polynomials systems comes from a problem
of magnetism in physics (Katsura, 1990). The system Katsura-s has s + 1 unknowns
X0; :::; Xs and s+1 equations:

for 06m<s;
X
`=¡s

s

Xj`jXjm¡`j=Xm

and X0+ 2
P

`=1
s X`= 1. The best algorithm for each problem is written using a bold

font.

Katsura-(s¡ 1)
s (n; d) 4 (8; 16) 5 (16; 32) 6 (32; 64) 7 (64; 128) 8 (128; 256) 9 (256; 512)

o�-line 50 220 520 2600 14000 77000
relaxed 21 87 220 1400 10000 85000

Table 1. Timings of o�-line/relaxed lifting of univariate representations for Katsura-s.
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The other family of polynomial system MulLinForm-s has s unknowns and s equa-
tions of the form

(�1X1+ ���+�sXs) (�1X1+ ���+ �sXs)=�

where the �i; �i and � are random coe�cients in Fp.

MulLinForm-s
s (n; d) 4 (8; 16) 5 (16; 32) 6 (32; 64) 7 (64; 128) 8 (128; 256) 9 (256; 512)

o�-line 125 360 1600 9000 52000 290000
relaxed 52 230 910 7000 60000 560000

Table 2. Timings of o�-line/relaxed lifting of univariate representations for the poly-
nomial systems MulLinForm-s.

The timings of the relaxed algorithm depends strongly on the performance of the
relaxed multiplication. For our computations, we need a relaxed multiplication of imple-
mentation of power series of polynomial in (Fp[X])[[T ]]. The relaxed multiplication
algorithm reduces to multiplications in (Fp[X ])[T ]. We classically used a Kronecker sub-
stitution to reduce these products to multiplications of univariate polynomials in Fp[Z].

We compared relaxed and not relaxed product in (Fp[[T ]])[Y ]; relaxed algorithms
are always slower by a ratio up to 15 in practice. Besides, this ratio grows logarithmi-
cally in the precision of the power series as expected. As a future work, we will apply
the new relaxed multiplications of (van der Hoeven, 2007; van der Hoeven, 2012) or of
(Lebreton and Schost, 2013) to keep the ratio R(n)/I(n) smaller.

5.2 Conclusion

As a conclusion, we remark that a relaxed approach has generated new algorithms
for the lifting of triangular sets. Our hope was to save the cost of linear algebra in
the dominant part of the complexity when the precision n tends to in�nity. Besides,
previous experiences, with e.g. the relaxed lifting of regular roots, showed that we could
expect to do less multiplications in the relaxed model than in the zealous one. Therefore,
whenever the precision n gives a measured ratio of complexity between relaxed and
zealous multiplication, we can expect better timings from the relaxed approach.

In view of our hopes, we are not completely satis�ed with the lifting of general tri-
angular sets, for it does more multiplications when s L > s!. On the contrary, the
lifting of univariate representations always improve the asymptotic number of p-adic
multiplications and saves the cost of linear algebra. Thus, there exists a trade-o� between
the dependencies in s and n for both relaxed and classical algorithms.
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