Computing power series at high precision*

BY ROMAIN LEBRETON ECO Team

Pole Algo-Calcul seminar LIRMM

February 6th, 2015

^{*.} This document has been written using the GNU T_EX_{MACS} text editor (see www.texmacs.org).

Field of research

My field of research: Computer Algebra

- in between Computer Science and Mathematics
- sub-field of *Symbolic Computation*
- typical objects
 - \circ numbers
 - \circ polynomials
 - modular computation
 - matrices

 $2, \quad \frac{355}{113}$ $x + x^2 + 2x^3, \quad x^5y^8 - x^8y^7 - x^7y^6$ $5 \mod 7, \quad x + x^2 + 2x^3 \mod (x^2 - 1)$ $\begin{pmatrix} 1 & 0 & 1 & 1 \\ x & 1 & 1 + x & 0 \\ 1 & x^2 + x^3 & x & 0 \\ x^2 & 0 & x^3 + x^4 & 0 \end{pmatrix}$

Let \mathbb{K} be an *effective* field, *i.e.* a set with algorithms for +, -, *, / e.g. $\mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

Definition

A formal power series $f \in \mathbb{K}[[x]]$ is a sequence $(f_i)_{i \in \mathbb{N}}$ of \mathbb{K} , denoted by

$$f(x) = \sum_{i \ge 0} f_i x^i.$$

Remarks:

- Like a polynomial but with no finite degree constraint
- Addition, multiplication same as polynomials

If $f = \sum f_n x^n = (\sum g_n x^n) (\sum h_n x^n)$ then $f_n = \sum_{i=0}^n g_i h_{n-i}$

• Purely formal: No notion of "analytic" convergence

Let \mathbb{K} be an *effective* field, *i.e.* a set with algorithms for +, -, *, / e.g. $\mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

Definition

A formal power series $f \in \mathbb{K}[[x]]$ is a sequence $(f_i)_{i \in \mathbb{N}}$ of \mathbb{K} , denoted by

$$f(x) = \sum_{i \ge 0} f_i x^i.$$

Computationally speaking:

• only truncated power series

• denote by $f(x) = g(x) + O(x^N)$ the truncation at the term x^N we say "modulo x^N " or "at order N" or "at precision N"

• Compute a power series: compute its first N terms

Let \mathbb{K} be an *effective* field, *i.e.* a set with algorithms for +, -, *, / e.g. $\mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

Definition

A formal power series $f \in \mathbb{K}[[x]]$ is a sequence $(f_i)_{i \in \mathbb{N}}$ of \mathbb{K} , denoted by

$$f(x) = \sum_{i \ge 0} f_i x^i.$$

Motivation:

• Approximation of functions

Example: Taylor expansion of f at x = 0

$$f(x) = f(0) + f'(0) x + \frac{f''(0)}{2} x^2 + \dots + \frac{f^{(i)}(0)}{i!} x^i + \mathcal{O}_{x \to 0}(x^{i+1})$$

Let \mathbb{K} be an *effective* field, *i.e.* a set with algorithms for +, -, *, / e.g. $\mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

Definition

A formal power series $f \in \mathbb{K}[[x]]$ is a sequence $(f_i)_{i \in \mathbb{N}}$ of \mathbb{K} , denoted by

$$f(x) = \sum_{i \ge 0} f_i x^i.$$

Motivation:

• Generating functions in Combinatorics

Example: Catalan numbers $(C_n)_{n \in \mathbb{N}}$ (number of full binary trees)

$$G((C_n), x) = \sum_{n \ge 0} C_n x^n = \frac{1 - \sqrt{1 - 4x}}{2x}$$

= 1 + x + 2x² + 5x³ + 14x⁴ + 42x⁵ + 132x⁶ + O(x⁷)

Let \mathbb{K} be an *effective* field, *i.e.* a set with algorithms for +, -, *, / e.g. $\mathbb{Q}, \mathbb{Z}/p\mathbb{Z}$

Definition

A formal power series $f \in \mathbb{K}[[x]]$ is a sequence $(f_i)_{i \in \mathbb{N}}$ of \mathbb{K} , denoted by

$$f(x) = \sum_{i \ge 0} f_i x^i.$$

Motivation:

• In computer algebra

Power series are ubiquitous when computing with polynomials

Example:

Euclidean division of $a, b \in \mathbb{K}[x]$, a = b q + r with $\deg(r) < \deg(b)$

The quotient q is computed using $a/b \in \mathbb{K}[[x]]$

Our objective

Our objective

Compute basic operations like 1 / f, \sqrt{f} , $\log(f)$, $\exp(f) \in \mathbb{K}[[x]]$ quickly in theory (quasi-linear time) and in practice (see below).

Theoretical complexity "reminder":

Power series multiplication at order n costs

(arithmetic complexity)

$$\mathsf{M}(n) = \mathcal{O}(n \log n \log \log n) = \tilde{\mathcal{O}}(n)$$

Practical complexity:

In one second with today's computer, in $(\mathbb{Z}/1048583 \mathbb{Z})[[x]]$ we can

- multiply two power series at order $\simeq 2 \cdot 10^6$
- compute 1/f, $\log(f)$, $\exp(f)$, \sqrt{f} at order $\simeq 5 \cdot 10^5$
- compute the Catalan generating function at order $\simeq 5 \cdot 10^5$ (and at order $\simeq 4000$ over integers)

Outline of the talk

Two paradigms for power series computation:

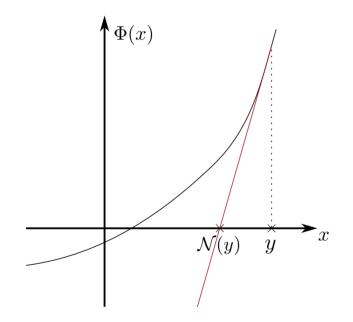
1. Newton iteration

2. Relaxed algorithms

Historically comes from Isaac NEWTON, "La méthode des fluxions" in 1669

Goal of Newton iteration

Find approximate solutions of an equation $\Phi(x) = 0$ where $\Phi: \mathbb{R} \to \mathbb{R}$.



Idea:

Approximate Φ around $y \in \mathbb{R}$ by a linear function

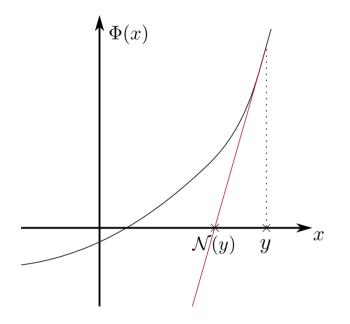
Choose $\mathcal{N}(y)$ to cancel the linear approx. of Φ

i.e.
$$\mathcal{N}(y) = y - \frac{\Phi(y)}{\Phi'(y)}$$

Intuition

If y is a "good" approximation of a solution of $\Phi(x) = 0$ then

 $\mathcal{N}(y)$ is an even better approximation.



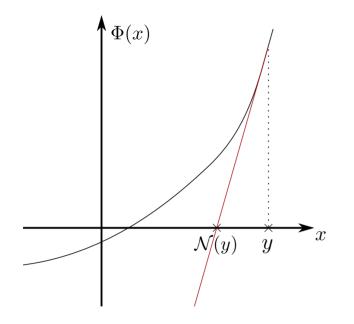
Idea:

Approximate Φ around x = y by a linear function Choose $\mathcal{N}(y)$ to cancel the linear approx. of Φ

i.e.
$$\mathcal{N}(y) = y - \frac{\Phi(y)}{\Phi'(y)}$$

Newton iteration: Starting from $y_0 := y$, iterate $y_{k+1} := \mathcal{N}(y_k)$

Example:
$$\Phi(x) = x^2 - 2$$
, $\mathcal{N}: y \mapsto y - \frac{y^2 - 2}{2y}$



Idea:

Approximate Φ around x = y by a linear function Choose $\mathcal{N}(y)$ to cancel the linear approx. of Φ

i.e.
$$\mathcal{N}(y) = y - \frac{\Phi(y)}{\Phi'(y)}$$

Newton iteration: Starting from $y_0 := y$, iterate $y_{k+1} := \mathcal{N}(y_k)$

Theorem

If y_k converges then its number of correct decimal is approximately doubled.

Equivalently, if $y_k \xrightarrow[k \to \infty]{} r$ with r a regular solution of Φ (i.e. $\Phi'(r) \neq 0$) then

$$\frac{(y_{k+1}-r)}{(y_k-r)^2} \xrightarrow[k \to \infty]{} \Phi''(y) / (2\Phi'(y)) \qquad Q$$

Quadratic convergence

Side note: Knowing which starting values y_0 make $(y_k)_{k \in N}$ converge is a hard problem

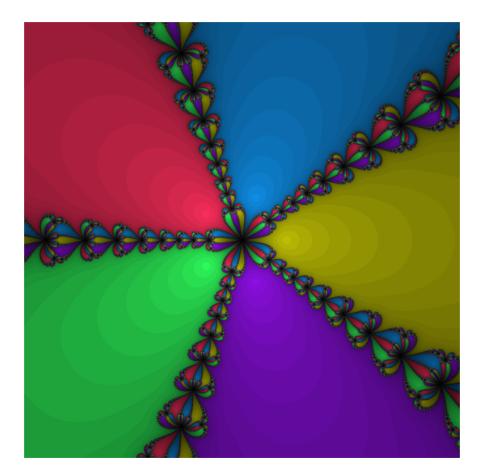


Figure. Basins of attraction for $x^5 - 1 = 0$ over \mathbb{C} (source Wikipedia)

Symbolic Newton operator

This time, let $\Phi: \mathbb{K}[[x]] \to \mathbb{K}[[x]]$ be a polynomial function, *i.e.* $\Phi \in \mathbb{K}[[x]][y]$

Similarly to the numerical case, we define for $y \in \mathbb{F}[[x]]$ the newton operator

$$\mathcal{N}(y) = y - \frac{\Phi(y)}{\Phi'(y)}$$

However, the behavior is simpler in the symbolic world

Theorem - Symbolic Newton iteration

1. If y_0 satisfies $\Phi(y_0) = 0 + \mathcal{O}(x)$ then

the sequence (y_k) will converge to a solution $s \in \mathbb{K}[[x]]$ of $\Phi(x) = 0$

2. Quadratic convergence is guaranteed:

$$s = y_k + \mathcal{O}\left(x^{2^k}\right)$$

Remark: Only works for regular root, *i.e.* $\Phi'(y_0) \neq 0 \mod x$. Otherwise, $\Phi'(y)$ is not invertible.

Symbolic Newton operator

Reminder:
$$\Phi \in \mathbb{K}[[x]][y]$$
 and $\mathcal{N}(y) = y - \frac{\Phi(y)}{\Phi'(y)}$

Theorem - Symbolic Newton iteration

1. If y_0 satisfies $\Phi(y_0) = 0 + \mathcal{O}(x)$ then

the sequence (y_k) will converge to a solution $s \in \mathbb{K}[[x]]$ of $\Phi(x) = 0$

2. Quadratic convergence is guaranteed:

$$s = y_k + \mathcal{O}\left(x^{2^k}\right)$$

Sketch of the proof:

Suppose we have an approximate solutions y, *i.e.* $\Phi(y) = 0 + \mathcal{O}(x^N) = x^N p(x)$.

Let us find a small perturbation $x^N \varepsilon$ of y that improves the solution.

Taylor expansion of Φ near y:

$$\Phi(y + x^{N}\varepsilon) = \Phi(y) + \Phi'(y) x^{N}\varepsilon + \mathcal{O}((x^{N}\varepsilon)^{2})$$

= $x^{N} \underbrace{(p(x) + \Phi'(y)\varepsilon)}_{\text{choose }\varepsilon \text{ to cancel this}} + \mathcal{O}(x^{2N})$

Example:

Compute the inverse of a power series $f \in \mathbb{K}[[x]]$

The series 1/f is a solution of $0 = \Phi(y) := 1/y - f$

Therefore we derive the Newton operator

 $\mathcal{N}(y) = y + (1 - y f) y$

x

Newton iteration: Take $f = 1 + x + x^2$

$$y_{0} := 1$$
 (Starting point. $1 = \frac{1}{f} \mod y_{1} = \mathcal{N}(y_{0}) = 1 - x - x^{2} + O(x^{10})$

$$y_{2} = \mathcal{N}(y_{1}) = 1 - x + x^{3} - 2x^{4} - 3x^{5} - x^{6} + O(x^{10})$$

$$y_{3} = \mathcal{N}(y_{2}) = 1 - x + x^{3} - x^{4} + x^{6} - x^{7} - x^{8} - 6x^{9} + O(x^{10})$$

$$y_{4} = \mathcal{N}(y_{3}) = 1 - x + x^{3} - x^{4} + x^{6} - x^{7} + x^{9} + O(x^{10})$$

Example:

Compute the Catalan generating function $G(x) = \sum_{n \in \mathbb{Z}} C_n x^n = \frac{1 - \sqrt{1 - 4x}}{2x}$

G(x) is a solution of $0 = \Phi(y) := (2 x y - 1)^2 - (1 - 4 x)$

The Newton operator becomes

$$\mathcal{N}(y) = y - \frac{(2 x y - 1)^2 - (1 - 4 x)}{4 x (2 x y - 1)} = y + \frac{(1 - y + x y^2)}{(1 - 2 x y)}$$

Newton iteration:

$$\begin{split} y_0 &:= C_0 = 1 \\ y_1 &= 1 + x + O(x^{10}) \\ y_2 &= 1 + x + 2 x^2 + 5 x^3 + 6 x^4 + 2 x^5 + O(x^{10}) \\ y_3 &= 1 + x + 2 x^2 + 5 x^3 + 14 x^4 + 42 x^5 + 132 x^6 + 429 x^7 + 1302 x^8 + 3390 x^9 + O(x^{10}) \\ y_4 &= 1 + x + 2 x^2 + 5 x^3 + 14 x^4 + 42 x^5 + 132 x^6 + 429 x^7 + 1430 x^8 + 4862 x^9 + O(x^{10}) \\ \end{split}$$
Remark: the inverse of $(1 - 2x y_k)$ is computed using previous Newton iteration

Complexity to compute an approximate solution of $\Phi(y) = 0$ at order $\mathcal{O}(x^N)$:

- The cost of the last iteration is dominant.
- The last iteration involves some multiplication and additions at order $\mathcal{O}(x^N)$ to evaluate $\Phi(y_k)$, $\Phi'(y_k)$ (and invert $\Phi'(y_k)$)
- $\Rightarrow \quad \text{The cost is } \mathcal{O}(\mathsf{M}(n))$

Remark: The complexity of evaluation of Φ is a constant hidden in the \mathcal{O}

So far,

- Newton iteration computes power series f solutions of implicit equations $\Phi(y) = 0$
- It costs asymptotically a constant number of multiplication.

Upcoming, Relaxed algorithms

- the second important paradigm to compute common power series
- It computes power series f solutions of "recursive" equations $\Phi(y) = y$

These two techniques are complementary

They yield the current best complexity to compute power series at high precision

Improved data structure for power series

The lazy representation – An improved data structure for $f \in \mathbb{K}[[x]]$

1. Storage of the current approximation modulo \boldsymbol{x}^N of \boldsymbol{f}

2. Attach a function increasePrecision() to f

Examples:

• Based on Newton iteration:

Store the current approximation Y_k increasePrecision() perform $Y_{k+1} = \mathcal{N}(Y_k)$

 \rightsquigarrow doubles precision

• Naive multiplication of $f = g h \in \mathbb{K}[[x]]$:

increasePrecision() computes one more term of $f = \sum f_n x^n$ using

$$f_n = \sum_{i=0}^n g_i h_{n-i}$$

Pros: Management of precision is more user-friendly

Controlling the reading of inputs

In a context of lazy representation, the following question is important:

Which coefficients of the input are required to compute the output at order $\mathcal{O}(x^N)$?

Why is it important ?

- 1. First of all, these coefficients of the inputs may require computation \longrightarrow can be costly
- 2. Controlling the access of the inputs will be the cornerstone of the new technique to compute *recursive* power series

Controlling the reading of inputs

In a context of lazy representation, the following question is important:

Which coefficients of the input are required to compute the output at order $\mathcal{O}(x^N)$?

Very different dependency on the inputs

• Newton iteration for e.g. power series inversion

Computing the coefficients of $1\,/\,f$ in $x^{2^k},\,...,\,x^{2^{k+1}-1}$ requires reading the same coefficients of f

Indeed $y_{k+1} = \mathcal{N}(y_k) = [y_k + (1 - y_k f) y_k] \mod x^{2^{k+1}}$

More precisely: Read f_{2^k} ,..., read $f_{2^{k+1}-1}$ then output $(1/f)_{2^k}$,..., $(1/f)_{2^{k+1}-1}$

• Fast multiplication $f = g h \mod x^n$ (FFT)

Read all coefficients $g_0, ..., g_{n-1}$, $h_0, ..., h_{n-1}$ of inputs then output $f_0, ..., f_n$

• Naive multiplication

Read g_0, h_0 , output $f_0 \mid \text{Read } g_0, g_1, h_0, h_1$, output $f_1 \mid \text{Read } g_0, g_1, g_2, h_0, h_1, h_2$, output f_2

We are interested in algorithms that control the reading of their inputs

Definition (on-line or relaxed algorithm) [HENNIE '66] $a = \sum_{i \ge 0} a_i x^i$ $b = \sum_{i \ge 0} b_i x^i$ $\downarrow f$ $c = f(a, b) = \sum_{i \ge 0} c_i x^i$ C₀ ····

We are interested in algorithms that control the reading of their inputs

Definition (on-line or relaxed algorithm) [HENNIE '66] $a = \sum_{i \ge 0} a_i x^i$ $b = \sum_{i \ge 0} b_i x^i$ $\int f$ $c = f(a, b) = \sum_{i \ge 0} c_i x^i$ $\boxed{c_0 \ c_1 \ \cdots}$ $c_1 \ \cdots$

We are interested in algorithms that control the reading of their inputs

Definition (on-line or relaxed algorithm) [HENNIE '66] $a = \sum_{i \ge 0} a_i x^i$ a_2 a_0 a_1 . . . $b = \sum_{i \ge 0} b_i x^i \downarrow f$: reading allowed b_1 b_2 b_0 . . . $c = f(a, b) = \sum_{i \ge 0} c_i x^i \quad \boxed{c_0}$ c_1 c_2 ...

We are interested in algorithms that control the reading of their inputs

Definition (on-line or relaxed algorithm) [HENNIE '66] $a = \sum_{i \ge 0} a_i x^i$ a_0 a_1 a_2 . . . : reading allowed $b = \sum_{i \ge 0} b_i x^i$ b_1 b_2 b_0 . . . $\downarrow f$ $c = f(a, b) = \sum_{i \ge 0} c_i x^i \quad \boxed{c_0}$ c_2 c_1 . . .

Off-line or zealous algorithm: condition not met.

Naive Addition: Compute f = g + h using $f_n = g_n + h_n$

The addition algorithm is *online*:

 \rightarrow it outputs f_i reading only g_i and h_i .

Naive Multiplication: Compute f = gh using $f_n = \sum_{i=0}^n g_i h_{n-i}$

- 1. This multiplication algorithm is *online*:
 - \rightarrow it outputs f_i reading $f_0, ..., f_i$ and $g_0, ..., g_i$.
- 2. Its complexity is quadratic !

Fast relaxed multiplications

Problem.

Fast multiplication algorithms (Karatsuba, FFT) are offline.

Challenge.

Find a *quasi-optimal on-line* multiplication algorithm.

Theorem.[FISCHER, STOCKMEYER '74], [SCHRÖDER '97], [VAN DER HOEVEN '97][BERTHOMIEU, VAN DER HOEVEN, LECERF '11], [L., SCHOST '13]

From an off-line multiplication algorithm which costs M(N) at precision N,

we can derive an on-line multiplication algorithm of cost

 $\mathsf{R}(N) = \mathcal{O}(\mathsf{M}(N) \log N) = \tilde{\mathcal{O}}(N).$

Fast relaxed multiplications

Problem.

Fast multiplication algorithms (Karatsuba, FFT) are offline.

Challenge.

Find a *quasi-optimal on-line* multiplication algorithm.

Theorem.[FISCHER, STOCKMEYER '74], [SCHRÖDER '97], [VAN DER HOEVEN '97][BERTHOMIEU, VAN DER HOEVEN, LECERF '11], [L., SCHOST '13]

From an off-line multiplication algorithm which costs M(N) at precision N,

we can derive an on-line multiplication algorithm of cost

 $\mathsf{R}(N) = \mathcal{O}(\mathsf{M}(N) \log N) = \tilde{\mathcal{O}}(N).$

Theorem. [VAN DER HOEVEN '07, '12]

 $\mathsf{R}(N) = \mathsf{M}(N) \log(N)^{o(1)}$

Seems not to be used yet in practice.

Definition

A power series $y \in \mathbb{Q}[[T]]$ is recursive if there exists Φ such that

- $y = \Phi(y)$
- $\Phi(y)_n$ only depends on $y_0, ..., y_{n-1}$

Example. Compute $g = \exp(f)$ defined as $\exp(f) := \sum_{i \ge 0} \frac{f^i}{i!}$ when f(0) = 0Remark that g' = f' g. So g is recursive with $y_0 = 1$ and $y = \Phi(y) = \int f' y$.

Moreover

$$\Phi(y)_n = \left(\int f' y \right)_n \\ = 1/n \cdot (f' y)_{n-1} \\ = 1/n \cdot (f'_0 y_{n-1} + \dots + f'_{n-1} y_0)$$

So $\Phi(y)_n$ only depends on $y_0, ..., y_{n-1}$.

Definition

A power series $y \in \mathbb{Q}[[T]]$ is recursive if there exists Φ such that

- $y = \Phi(y)$
- $\Phi(y)_n$ only depends on $y_0, ..., y_{n-1}$

 \rightsquigarrow It is possible to compute y from Φ and y_0 . But how fast?

Relaxed algorithms allow the computation of recursive power series

On an example.

Compute
$$g = \exp(f)$$
 for $f = x + \frac{1}{2}x^2 + \mathcal{O}(x^2)$

We know that g is recursive with $y_0\!=\!1$ and $y\!=\!\Phi(y)\!=\!\int\,f'\,y.$

 \rightsquigarrow Use the relation $\Phi(y)_n\!=\!1/n\cdot(f'\,y)_{n-1}$ + online multiplication for $f'\cdot y$

$y = 1 + \mathcal{O}(x)$	
$\Phi(y)_1 = 1/1 \cdot (f' y)_0 = 1$	(read only y_0 using an online multiplication)
$y = \sum_{i \ge 0} y_i x^i$	y_0 ? ? \cdots : reading allowed
$\oint \Phi$	
$\Phi(y) = \sum_{i \ge 0} \varphi_i x^i$	$\varphi_0 \varphi_1 \cdots$

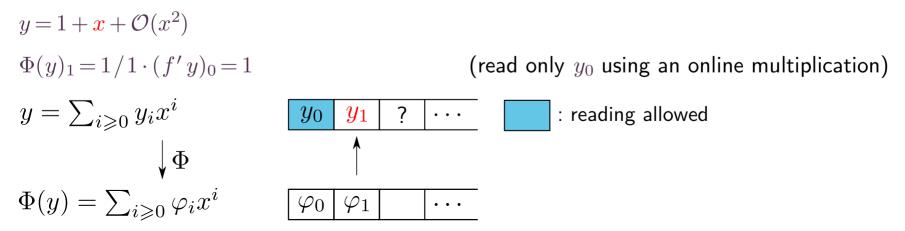
Relaxed algorithms allow the computation of recursive power series

On an example.

Compute
$$g = \exp(f)$$
 for $f = x + \frac{1}{2}x^2 + \mathcal{O}(x^2)$

We know that g is recursive with $y_0\!=\!1$ and $y\!=\!\Phi(y)\!=\!\int\,f'\,y.$

 \rightsquigarrow Use the relation $\Phi(y)_n \!=\! 1/n \cdot (f'\,y)_{n-1}$ + online multiplication for $f' \cdot y$



Relaxed algorithms allow the computation of recursive power series

On an example.

Compute
$$g = \exp(f)$$
 for $f = x + \frac{1}{2}x^2 + \mathcal{O}(x^2)$

We know that g is recursive with $y_0\!=\!1$ and $y\!=\!\Phi(y)\!=\!\int\,f'\,y.$

 \rightsquigarrow Use the relation $\Phi(y)_n\!=\!1/n\cdot(f'\,y)_{n-1}$ + online multiplication for $f'\cdot y$

$y = 1 + x + \mathcal{O}(x^2)$		
$\Phi(y)_2 = 1/2 \cdot (f'y)_1 = 1$	(read	d only y_0, y_1 using an online multiplication)
$y = \sum_{i \ge 0} y_i x^i$	y_0 y_1 ?	: reading allowed
$\checkmark \Phi$		
$\Phi(y) = \sum_{i \ge 0} \varphi_i x^i$	$\varphi_0 \varphi_1 \varphi_2 \cdots$	

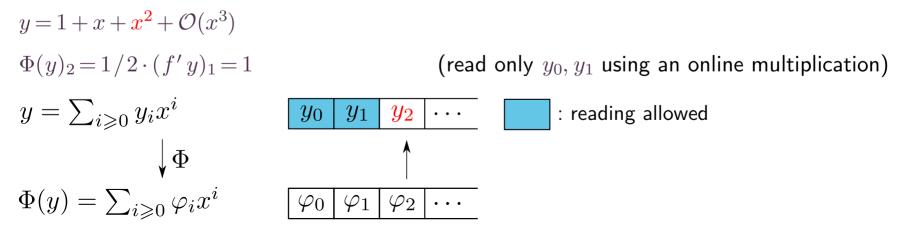
Relaxed algorithms allow the computation of recursive power series

On an example.

Compute
$$g = \exp(f)$$
 for $f = x + \frac{1}{2}x^2 + \mathcal{O}(x^2)$

We know that g is recursive with $y_0\!=\!1$ and $y\!=\!\Phi(y)\!=\!\int\,f'\,y.$

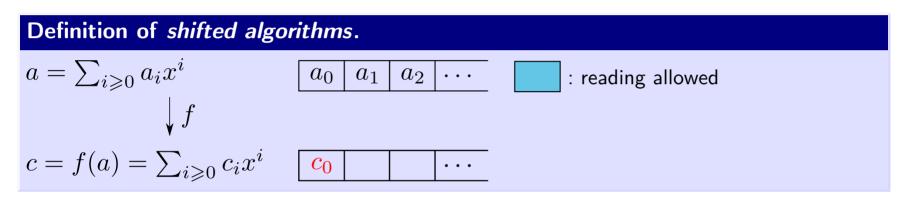
 \rightsquigarrow Use the relation $\Phi(y)_n\!=\!1/n\cdot(f'\,y)_{n-1}$ + online multiplication for $f'\cdot y$



Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

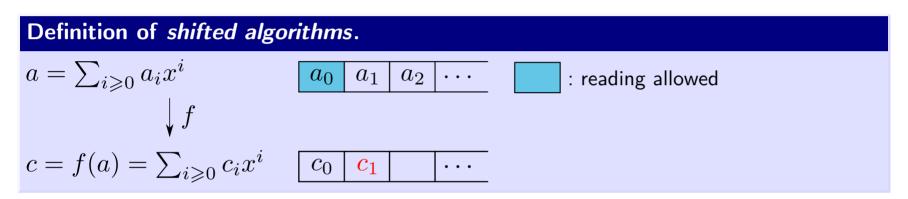


Remark. Shifted algorithms are built using online algorithms

Shifted Algorithms

What about the general context?

Recursive equations are evaluated using shifted algorithms

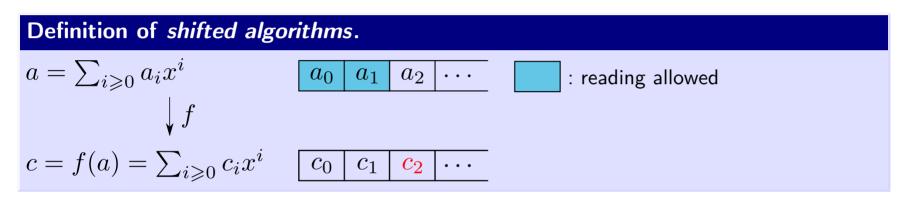


Remark. Shifted algorithms are built using online algorithms

Shifted Algorithms

What about the general context?

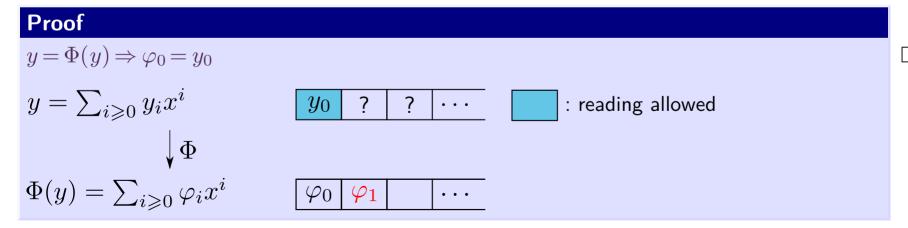
Recursive equations are evaluated using shifted algorithms



Remark. Shifted algorithms are built using online algorithms

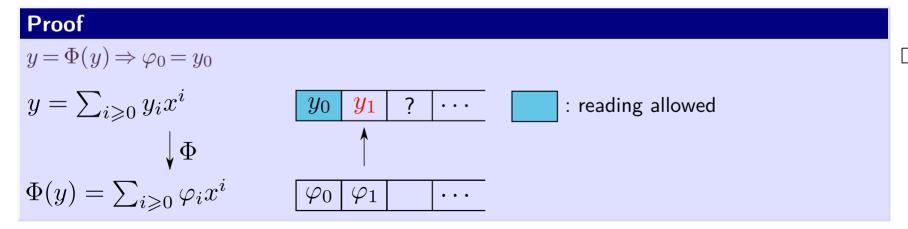
Let $y \in \mathbb{K}[[T]]$ be a recursive power series with $y = \Phi(y)$.

Given y_0 and Φ , we can compute y at precision N in the time necessary to evaluate $\Phi(y)$ by a shifted algorithm.



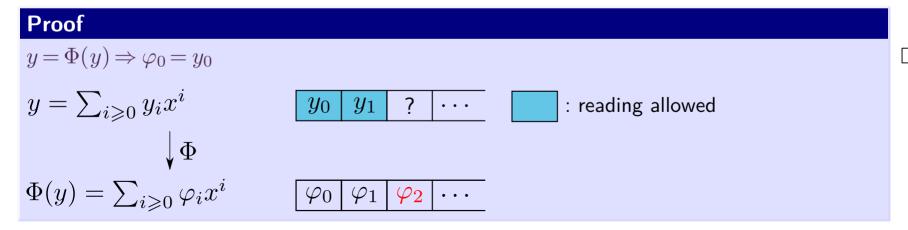
Let $y \in \mathbb{K}[[T]]$ be a recursive power series with $y = \Phi(y)$.

Given y_0 and Φ , we can compute y at precision N in the time necessary to evaluate $\Phi(y)$ by a shifted algorithm.



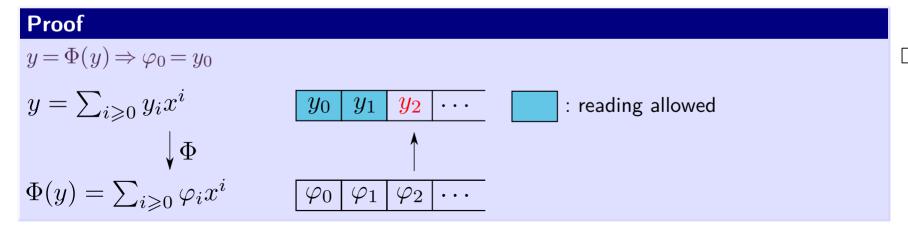
Let $y \in \mathbb{K}[[T]]$ be a recursive power series with $y = \Phi(y)$.

Given y_0 and Φ , we can compute y at precision N in the time necessary to evaluate $\Phi(y)$ by a shifted algorithm.



Let $y \in \mathbb{K}[[T]]$ be a recursive power series with $y = \Phi(y)$.

Given y_0 and Φ , we can compute y at precision N in the time necessary to evaluate $\Phi(y)$ by a shifted algorithm.



Conclusion

Two general paradigms:

Newton operator	Relaxed algorithms
Solve implicit equations $P(y) = 0$	Solve recursive equations $y = \Phi(y)$
Faster for higher precision	Less on-line multiplications

Implementations:

- Relaxed power series (and p-adics) in MATHEMAGIX
- Beginning of a C++ package based on NTL
- Also partially present in LinBox