
ACM Communications in Computer Algebra, TBA TBA

On the complexity of computing certain resultants

Romain Lebreton

LIX, École polytechnique, France
lebreton@lix.polytechnique.fr

Esmaeil Mehrabi and Éric Schost
Computer Science Department, Western University, Canada

emehrab@uwo.ca, eschost@uwo.ca

Computing resultants is a fundamental algorithmic question, at the heart of higher-level algorithms
for solving systems of equations, computational topology, etc. However, in many situations, the
best known algorithms are still sub-optimal. The following table summarizes the best results known
to us (from [3]), using soft-Oh notation to omit logarithmic factors. In all cases, we assume that
f, g have coefficients in a field k, and that their partial degrees in all variables is at most d. The
partial degree in all remaining variables of their resultant r = res(f, g, x1) is then at most 2d2. In
this note, the cost of an algorithm is the number of arithmetic operations in k it performs.

f, g are in . . . k[x1] k[t, x1] k[t, x0, x1]
number of terms in f, g Θ(d) Θ(d2) Θ(d3)

number of terms in r = res(f, g, x1) 1 Θ(d2) Θ(d4)
cost of computing r (best known bound) O (̃d) O (̃d3) O (̃d5)

optimal? yes, up to log factors no no

In the last cases, one can replace the ring k[t] by Z and consider the bit-complexity of computing
resultants of polynomials in Z[x1] or Z[x0, x1]. We do not give details, but most results carry over,
mutatis mutandis. One can also consider polynomials in Z[t, x0, x1], etc; we do not discuss this.

Main result. Our contribution is on the third case, with f, g in k[t, x0, x1]. We make the following
assumptions (which hold for generic f, g):

A1. The reduced Groebner basis of the ideal 〈f, g〉 in k(t)[x0, x1] for the lexicographic order x1 > x0
has the form 〈R(x0), x1 − S(x0)〉, with R, S in k(t)[x0] and R monic.

A2. All solutions of the system f = g = 0 in k(t) have multiplicity 1.

Our algorithm uses matrix multiplication; we let 2 < ω ≤ 3 be such that one can multiply n × n
matrices over k in nω operations. The best known result [5] is ω ' 2.37.

Theorem 1 Let f, g be in k[t, x0, x1], with degree at most d in all variables and that satisfy A1,A2.
Suppose that k has cardinality at least 12d4. There exists a probabilistic algorithm that computes
r = res(f, g, x1) using O(d

ω+7
2) operations in k and success probability at least 1/2.

Since we have 2 < ω ≤ 3, the exponent ρ in our running time satisfies 4.5 < ρ ≤ 5. This improves on
the best previous results, getting us closer to an optimal O (̃d4). Even under assumptions A1,A2,
and allowing probabilistic algorithms, we are not aware of any previous improvements over O (̃d5).

1

Title of your paper TBA

Sketch of our algorithm. The polynomial R introduced in A1 and the resultant r of f and g
are related by the equality R = r/LeadingCoefficient(r, x0). We describe how to compute R, since
finding the proportionality factor that gives r is straightforward.

The algorithm uses Newton / Hensel lifting techniques. We choose a random expansion point
τ for t in k. This is the source of the probabilistic aspect of the algorithm: we expect that no
denominator in R or S vanishes at τ , and that the solutions of the system f(τ, x0, x1) = g(τ, x0, x1) =
0 in k still have multiplicity 1; the analysis in [4, Prop. 3] and our assumption on the cardinality of
k show that at least half the points in k are “lucky” for this random choice. Below, we take τ = 0
for simplicity; then, by assumption, for κ ≥ 1, Rκ = R mod tκ and Sκ = S mod tκ are well-defined;
they lie in Aκ[x0], with Aκ = k[t]/tκ.

We first compute R1 = R mod t and S1 = S mod t, using Reischert’s algorithm in k[x0, x1]; this
costs O (̃d3). Then, we compute Rκ and Sκ for some κ ≥ 4d2 using lifting techniques: the suc-
cessive lifting steps compute (R2, S2), (R4, S4), . . . , (R2` , S2`), The assumption that the system
f(τ, x0, x1) = g(τ, x0, x1) = 0 has simple roots makes this step well-defined; we analyze its cost
below. Finally, we get R by applying rational reconstruction to all coefficients of Rκ in time O (̃d4).

The key subroutine. The above process is hardly new: the references [2, 4] give details on such
lifting algorithms, in more general contexts; however, as explained now, a direct application of these
results performs poorly in our context.

Given (Rκ, Sκ), the algorithm of [2, 4] computes (R2κ, S2κ) as follows. LetBκ = A2κ[x0, x1]/〈Rκ, x1−
Sκ〉 = k[t, x0, x1]/〈t2κ, Rκ, x1− Sκ〉. First, compute the normal form of (f, g), and of their Jacobian
matrix J , in Bκ; then, deduce the vector[

δR
δS

]
=

[
R′κ 0
−S ′κ 1

]
J−1

[
f
g

]
∈ B2×1

k .

Taking canonical preimages of δR and δS in A2κ[x0], we have R2κ = Rκ + δR and S2κ = Sκ + δS.
The bottleneck is the computation of the normal form of f , g and J : the algorithm in [2, 4] does
O(d) operations in Bκ, for a total of O (̃κd3) operations in k. Summing over all lifting steps, with
κ = 1, 2, 4, 8, . . . up to about κ ' d2 leads to the bound O (̃d5), which is no better than Reischert’s
algorithm.

We now sketch how to compute e.g. the normal form of f in Bk more efficiently, using a baby-
steps / giant-steps approach inspired by Brent and Kung’s algorithm [1].

1. Seeing f as a polynomial of degree d in x1, with coefficients fi ∈ A2κ[x0] of degree d in x0,
build the

√
d+ 1×

√
d+ 1 matrix M1 = (f(

√
d+1−i)

√
d+1+j−1) with entries in A2κ[x0].

2. Compute σ0 = S0
κ, σ1 = S1

κ, · · · , σ√d+1−1 = S
√
d+1−1

κ in Bk (baby steps).

3. Cut all σi into slices, writing σi =
∑d−1

j=0 σi,jx
dj
0 , with σi,j ∈ A2κ[x0] of degree less than d in x0.

Build the
√
d+ 1× d matrix M2 = (σi,j) and compute M = (mij) = M1M2.

4. Using the mi,j, reconstruct f mod 〈Rκ, x1 − Sκ〉 using Horner’s scheme (giant steps).

As in Brent and Kung’s algorithm, the dominant cost is matrix multiplication (Step 3). We do
matrix multiplication in sizes

√
d+ 1 ×

√
d+ 1 and

√
d+ 1 × d, with entries in k[t, x0], of degrees

at most 2κ in t and d in x0. The cost is thus O (̃κd
ω+3
2) operations in k.

Summing over all lifting steps, using the fact that we take κ = 1, 2, 4, 8, . . . (powers of 2) until

approximately d2, the total cost is O (̃d
ω+7
2), as claimed.

2

Author’s Name

References

[1] R. P. Brent and H. T. Kung. Fast algorithms for manipulating formal power series. Journal of
the ACM, 25(4):581–595, 1978.

[2] M. Giusti, G. Lecerf, and B. Salvy. A Gröbner free alternative for polynomial system solving.
Journal of Complexity, 17(1):154–211, 2001.

[3] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC’97, pages 233–240.
ACM, 1997.

[4] É. Schost. Computing parametric geometric resolutions. Appl. Algebra Engrg. Comm. Comput.,
13(5):349–393, 2003.

[5] V. Vassilevska Williams. Breaking the Coppersmith-Winograd barrier. 2011.

3

