Reasoning with type definitions

M. LECLERE

IRIN — IUT DE NANTES
2, rue de la Houssiniere - BP 92208
44 322 Nantes cedex 03 - France
Ph.: 433 2 40 37 49 01 Fax: +33 2 40 37 49 70
E-mail: leclere@irin.univ-nantes.fr

Abstract. This article presents an extension of the basic model of con-
ceptual graphs : the introduction of type definitions. We choose to con-
sider definitions as sufficient and necessary conditions to belong to a
type. We extend the specialization/generalization relation on conceptual
graphs to take advantage of these definitions. Type contractions and
type expansions are clearly defined. We establish the correspondence
with projection by use of the atomic form of conceptual graphs. Finally,
we give a logical interpretation of type definitions and prove than the
correspondence between logical deduction and generalization relation is
maintained.

Keywords: type definitions, contraction, expansion, atomic form, projection, logical
interpretation.

1 Introduction

The aim of knowledge representation is to provide formal model which allow to
modelize different kinds of knowledge and allow to reason with this knowledge.
In conceptual graphs (CGs), the knowledge is split into several levels. The ter-
minological level defines the conceptual vocabulary. It contains the concept type
lattice and the relation type poset. These two taxonomies are simply composed
of strings, representing concept types or relation types, which are ordered by
a specific/generic relation. At the assertional level, one describes some facts by
CGs constructed with the conceptual vocabulary.

However, we often dispose of general knowledge which is relevant to termino-
logical level but one can’t represent it with a simple specific/generic relation. J.
Sowa proposes the formalism of abstractions to answer this need. In this paper,
we study a kind of complex terminological knowledge: the type definition.

We start from the basic model of CGs, introduced by J. Sowa in [Sow84] and
clarified by M. Chein and M.L. Mugnier in [CM92, MC96], and extend it to take
into account type definitions when we are reasoning at assertional level. This
extension includes contraction and expansion operations in the specialization
rules. The connection with the projection is established once again. After giving
a logical interpretation for definition, one demonstrates that the specialization
relation always corresponds to a complete and sound set of inference rules.

In section 2, we present the different semantics that we can give to type
definitions and we remind the type definition syntax. Then we choose to consider
a definition as a set of sufficient and necessary conditions for belonging to a type.
Section 3 introduces the four new specialization rules allowing to manipulate the
type definitions at assertional level: contraction and expansion of concept types
or relation types. Then we show in section 4 how projection allows to compute
the new specialization relation. The section 5 is devoted to logical interpretation
of type definitions and contraction/expansion rules.

2 Type definition formalism

In the basic model of CGs, the meaning of a type is given by position which
hold into the taxonomy of types. The specific/generic relation is thus the only
definitional mechanism. Such a representation of meaning for concept types and
concept relations is very poor. Often one has some generic information on types
which are not expressible by this single mechanism. The mechanism of type def-
inition address this problem by associating a formal description to a type. This
description is constructed with atomic types (a type without description) and
already defined types. The semantics given to the type/description association
determine the reasoning technics to use with this form of knowledge representa-
tion.

In this work, we consider that descriptions represent a set of characteristics,
properties, attributes which can be shared by objects of the domain of represen-
tation. A description is thus the intensional representation of a set of objects.
It remains to define the semantics given to the link between a type and its
description. In general, two semantics are used:

— the description represents a set of sufficient and necessary conditions to be-
long to its type. Any object recognized by the description must belong to the
type and any instance of type owns the attributes of the description. The
description is thus the intensional representation of type. These semantics
are given to defined concepts in the KL-ONE derived systems [WS92]. Such
semantics are called definition;

— the description only represents a set of necessary conditions to belong to its
type. These are semantics that is used for natural kinds. In KL-ONE systems,
they are given to primitive concepts. These semantics are sometimes called
partial definition.

In CGs, the descriptions are represented by abstractions (cf. [Sow84] section
3.6). They are conceptual graphs which one or several generic concepts are con-
sidered as formal parameters. In the following, we study description mechanism
to do some definitions and not to do partial definitions.

Definition 1 A concept type definition asserts an equivalence between a concept

. . d .
type and a monadic abstraction. We denote t.(x) Ce{ D(x) the definition of type
t. with x the variable of formal parameter. The formal parameter concept vertex

of D(z) is called the head of t.. In the aristotelician approach, the genus of new
type is the type of the head concept and D(z) represents the differentiae from t.
to its genus.

def
Rectangle(X) <=> | Parallelogram : # @ Right Angle: *

Fig. 1. Definition of a rectangle as a parallelogram with right angles..

Definition 2 A relation type definition asserts an equivalence between a relation

, d
type and a n-ary abstraction. We denote t,(x1,s...2p) Ce{ D(x1,@a...2n) the
definition of type t,. with xq,xs...x, the variables of formal parameters. The
formal parameter concept vertices of D(x1, #a...xy) are called the arguments of
tr.

def
CONTENT(xy) <=>

Object : * y % Interior : *
B T S

Fig. 2. Definition of content relation as a link between an object and an entity which

contains the object.

Restriction: In the following, we assume there is neither direct nor undirect
recursive type definition.

3 Extension of the model

The mechanism of type definition grows expressivity of the CG model. It remains
to extend the specialization/generalization relation to take advantage of these
definitions. We believe that in order to keep the specificity of the CG model,

such an extension must keep the triple correspondence: specialization rules /
projection / logical inference. We need to modify some parts of CG model to
perform that.

3.1 The canon

The canon contains the conceptual vocabulary of the domain of representation. It
represents the terminological component of the CG model. The canon is shared
in two taxonomies: T, the concept type taxonomy and 7T, the relation type
taxonomy.

These two type posets are composed of atomic types or defined types. A type
definition is attached to each defined type. For atomic types, the order relations
<. and <, are simply given by the user (who is supposed to be a specialist of
the domain of representation).

The concept type definitions extend the <. relation. Since a concept type is
introduced by definition as subtype of its genus, the <. relation is modified:

Definition 3 Let t. be a defined concept type, we have t. <. genus(t.).

The genus of a defined concept type may be atomic or defined. If the genus
is defined then, by transitivity of ., the new type is also a subtype of the genus
of its genus. As no recursive definition is permitted, one can define the smallest
atomic super-type of a defined concept type that we call atomic genus.

Definition 4 Let t. be a defined concept type, the atomic genus of t. denoted
by AG(t.) is the atomic type obtained from t. by successive applications of the
genus function.

We immediately get the following property:

Property 1 Let t. be a defined concept type and !, an atomic concept lype,
te <ct!if and only if AG(t.) <. t..

On the contrary, the relation type definitions does not extend the <, rela-
tion. This is because such a kind of definition does not derive from Aristotle’s
method. Each relation type owns a signature which fixes the arity and the con-
cept authorized as maximal types for arguments of a relation of this type. The
signature of atomic relation types is given by the user. For defined relation types,
the signature is deduced from type definition in the following way.

Definition 5 Let ¢, be a defined relation type:

— the arity of t, s equal to the arity of the abstraction which defines t,;
— the concept maximal type of the i-th argument of t, s the type of the i-th
formal parameter of the abstraction.

A conceptual graph must verify the canonicity property and the conformity
property. The first property enforces the neighbour concepts of a relation vertex
to accord with the signature of the relation type. The second property enforces
the concepts to have a referent according with the type.

3.2 Extension of specialization relation

A specialization relation is defined on CGs by a set of specialization rules. The
reverse relation, the generalization, corresponds to logical deduction. First part
of this theorem (the soundness of the CG model) has been demonstrated by J.
Sowa [Sow84]. The reciprocal part (the completeness) has been demonstrated by
M. Chein and M.L. Mugnier [CM92, MC96] with CGs in normal form (normal
form does not allow CGs to have several individual concepts with the same
referent).

Using type definitions allows to represent knowledge to different levels of
abstraction. But generalization relation forgets some inferences. In figure 3 for
instance, there is no possibility to derive H from G (or G from H) though these
two CGs represent the same knowledge (according to the type definition of figure

).

G
Small : = @ Parallelogram : #15
Right Angle: * %

H
g D

Fig. 3. Two equivalent graphs according to the type definition of Rectangle.

In order to preserve the truth of the generalization relation, we must add
four new specialization rules: type contractions and type expansions. These op-
erations are close to J. Sowa’s operations [Sow84] but not identical. First we
introduce these operations in order to extend the formal model of CGs when J.
Sowa presents these operations as tools to simplify CGs. So we search to give a
well-defined framework to manipulate type definitions rather than an algorithm
of graph reduction. Secondly, J. Sowa’s contraction (cf. section 3.6.5 of [Sow84])
does not compute an equivalent graph but a more general one than the original
(e.g. some informations can be lost). As for his expansions, either it does not
preserve truth, or the defined type is not replaced by its genus.

We state that our following operations preserve truth. We define them as re-
versible operations which replace a defined type with its definition and conversely
replace a graph corresponding to a type definition with a defined type.

Definition 6 (concept type expansion) Let G be a conceptual graph con-

taining a concept ¢ with a defined type t.. Let t.(x) cg D(z) be the definition.
H 1s obtained by expansion in the following way:

1. replace t. the type of ¢ by its genus;
2. restrict the head of t. by changing its referent to the referent of ¢;
3. join G and D on ¢ and the head of t.;

This operation is permitted only if the resulting graph is canonical (e.g. ¢ does
not violate signature of neighbouring relation types).

Definition 7 (relation type expansion) Let G be a conceptual graph con-

taining a relation r with a defined type t,.. Let t,(xy, ...xy) “ D(xy,...xy) be the
definition. H s obtained by expansion in the following way:

1. restrict each argument ¢; of t. by changing its type and referent to type and
referent of the i-th neighbour of r;

2. perform n joins to identify the i-th neighbouring concept of v with the i-th
argument of t,;

3. delete v and all its edges from G.

Definition 8 (concept type contraction) Let G be a CG containing a sub-
graph G’ isomorphic to the definition D(z)! of a defined concept type t. (concept
¢ in G’ corresponding to formal parameter of D(x) in isomorphism can have an
individual referent yet). If moreover ¢ is a cut point between G' and the other
part of G (i.e. all the paths from one vertex of G' to one vertex of the rest of G
go through the verter c), H is obtained by contraction in the following way:

1. replace the type of ¢ with t.;
2. delete subgraph G'\ {¢} from G.

This operation is permitted only if ¢ in the resulting graph is conform.

Definition 9 (relation type contraction) Let G be a CG containing a sub-
graph G’ isomorphic to the definition D(x1,...x,) of a defined relation type t,
(concepts ¢; (i € [1..n]) in G' corresponding to formal parameters of D(xy, ...xy)
can have yet individual referents and types lesser than types of corresponding
arguments of t.). If moreover the concepts ¢; (i € [1..n]) allow to disconnect G’
from G, H is obtained by contraction in the following way:

1. wnsert a relation having type t, to G;
2. Vi € [1..n] link the i-th edge of v to concept ¢; of G;
3. delete subgraph G'\ {c1,...cp} from G.

! The variable in the formal parameter concept is though not considered for
isomorphism.

Observe that concept type expansion and concept type contraction are not
necessarily permissible due to the respect constraint of canonicity and confor-
mity. There is no problem with relation contraction and relation expansion.

Let us recall the basic specialization rules before defining the specialization
relation on CG model extended to type definitions. We consider the following
four rules:

— concept restriction which allows to replace a type with a subtype or generic
referent with an individual one (conformity must be preserved);

— relation restriction which allows to replace a type with a subtype (canonicity
must be preserved);

— join which allows to merge two identical concepts (perform from two graphs
or only one);

— simplification which allows to delete a duplicated relation.

Definition 10 H is a specialization of G, written H <p G, if and only if one
can derive H from G using both the basic specialization rules and the new spe-
ctalization rules. Respectively G is thus a generalization of H.

Note that the new specialization relation produces equivalent classes greater
than the equivalent classes of the basic specialization relation. This is due to
the semantics of definition which enforce to consider the resulting graph of a
contraction (or expansion) operation equivalent to the original graph.

4 Computing the specialization relation

In the basic model, the projection operator is used to detect the specialization
relation between CGs. In our extended model, projection can still exhibit the spe-
cialization relation but it is not a complete operator to detect the specialization
relation between CGs. For instance, there is no projection between conceptual
graphs in figure 3 though there exists a mutual specialization relation between
these two graphs.

Using projection operator to detect again specialization relation needs to
define a transformation on conceptual graphs on which one computes projection.
For that, we reuse the atomic form introduced in [CL94]. Indeed, we extend this
form to take into account the defined relation types.

Definition 11 Let G be a CG, we call atomic form of G, written AF(G), the

graph without defined types obtained by a succession of type expansions.

Property 2 Without recursive type definitions, one can compute the atomic
form of a CG in a finite number of type expansions.

¢ [reasemn |—=oomer > e |

Parallelogram: #3 Parallelogram: x
o

Hollow : *

Fig.4. G and its atomic form according to Rectangle definition, CONTENT definition
and supposing that Right Angle is defined as an Angle of 90 degrees.

Proof

Let GG be a CG containing vertices with defined types. As no constraint exists
to perform relation type expansions, one can compute from G a graph G’
without any relation having a defined type (we have just to perform relation
type expansions while it remains relations with defined types). Since relation
type definitions are not recursive, one can do it in a finite number of relation
type expansions.

Let’s prove that we can now perform concept type expansion from any
concept ¢ of G' having a defined type (e.g. the resulting graph is canon-
ical). Since G’ is canonical, any neighbouring relation r of ¢ is such as:
type(c) <. Sig;(type(r)) with ¢ being the i-th neighbour of r and Sig;
representing the maximal concept type of the i-th argument of a relation.
Moreover, the type of r is atomic according to the construction of G’.
With property 1, we conclude that AG(type(c)) <. Sig;(type(r)). Thus
genre(type(c)) <. Sig;(type(r)) and so the resulting graph will be canonical.
Consequently, we can perform the concept type expansions from all the con-
cepts with defined types of G’. Let G’ the resulting graph. The concept type
definitions may contain vertices with defined types, we must redo the two
preceding phases. But these definitions being no recursive, we will obtain a
graph without defined types in a finite number of repetitions. a

Theorem 1. The atomic form of a CG s unique.

Proof

We must demonstrate that whatever succession order chosen to perform the
type expansions, we obtain isomorphic graphs. We use the proof schemes
proposed by G. Chaty and M. Chein in [CC81] for studying the graph re-
ductions. These proof schemes based on the Church-Rosser’s systems take
advantage of properties on the confluent reductions demonstrated by G. Huet
[Hue80].

Firstly, we define the R relation on set of the isomorphic CG classes by:
CyRCy aff 3G € Cy and IH € Cy, such as H 1s obtained from G by a type
eTpansion.

Secondly, we demonstrate R is locally confluent that is VCy,Cy,,Cy, €G,
if C4RCy, and CyRCy, then AC), € G such as Cy, R*Cy, and Cy,R*C), with
R* 1s the transitive closure of R.

With the different properties on confluent reductions, we conclude that
atomic form of a graph is unique. A detailed proof is given in [Lec95]. a

Atomic form of CG being obtained by type expansions, we immediately have
the following property:

Property 3 Atomic form of a graph is equivalent to the original graph according
to the specialization relation. We thus have AF(G) <p G and G <p AF(G).

In order to establish the link between projection operator and specialization
relation in the extended model, we first demonstrate that two CGs belong to
specialization extended relation if and only if their atomic forms belong to spe-
cialization basic relation. In the following, specialization basic relation is written
< while the specialization extended relation is written <p.

Theorem?2. If AF(H) < AF(G) then H <p G.

Proof

Since AF(H) < AF(G) then we have AF(H) <p AF(G) because <p is
defined as an extension from <. With the property 3 and considering the
transitivity of <p we immediately conclude that H <p G. a

In order to demonstrate the reciprocal lemma, we show that to each spe-
cialization rule allowing to derive H from G in the extended model, there corre-
sponds a sequence of specialization elementary rules allowing to derive AF(H)
from AF(G) (a detailed correspondence is established in [Lec96]):

— for a join on concepts with atomic types there corresponds a similar join on
atomic forms;

— for a join on concepts with defined types there corresponds a sequence of
joins and simplifications;

— for a simplification with relations having atomic types there corresponds a
similar simplification;

— for a simplification with relations having defined types there corresponds a
sequence of joins and simplifications;

— for a relation restriction which necessarily replaces an atomic type with an
atomic subtype there corresponds a similar restriction;

— for a concept restriction which replaces a generic referent with an individual
referent there corresponds a similar restriction;

— for a concept restriction which replaces an atomic type with an atomic sub-
type there corresponds a similar restriction;

— for a concept restriction which replaces an atomic type with a defined sub-
type there corresponds a concept restriction and an external join (to connect
the atomic form of the subtype definition);

— for a concept restriction which replaces a defined type with a defined sub-
type there corresponds an external join and a sequence of internal joins and
simplifications (to merge the two type definitions);

— for a contraction or expansion there corresponds the empty sequence of spe-
cialization rules on atomic forms.

Theorem 3. If H <p G then AF(H) < AF(G).

Proof

For each rules of specialization extended relation allowing to derive H from
G, we have exhibited a sequence of rules of specialization basic relation allow-
ing to derive AF () from AF(G). Since H <p G, we obtain, by composition
of specialization rules, AF(H) < AF(G). a

Consequently, any sequence of specialization rules allowing to derive H from
G in the extended model can be reorganized in:

1. a sequence of expansions to derive AF(G) from G}
2. asequence of specialization elementary rules to derive AF(H) from AF(G);
3. a sequence of contractions to derive H from AF(H).

Let us recall the complete correspondence between projection and special-
ization basic relation established by M. Chein and M.L. Mugnier in [CM92]:

Theorem4. H < G iff there exists a projection from G to H.
The three previous theorems yield:
Theorem 5. H <p G if and only if there exists a projection from AF(G) to

AF(H).

5 Logical interpretation

We extend the operator ¢ to take into account type definitions in the logical in-
terpretation of CG model. A type definition represents an equivalence between

a type and its description, we must preserve these semantics in logical interpre-

tation. Let t(x1, ...2p) P24 D(zy,...zy) be a relation type definition or a concept
type definition (in this case n = 1). The logical formula associated with this
definition, written ¢(Def(t)), is determined by the following construction:

— with the type ¢, associate a n-adic predicate having the same name;

— with the left hand of the definition, associate the atomic formula ¢(z1,...2,);

— with the right hand of the definition, associate the formula ¢(D(z1,...xy,))
computed in the same way as for a normal CG but without existential closure
of variables x1,...x,;

— connect the two previous formula with an equivalence logical operator;

— universally quantify the variables x4, ...x,, of the constructed formula.

For instance, the formulae associated with type definitions in figures 1 and 2
are:

Va(Rectangle(x) « y(Parallelogram(z) A Right Angle(y) A Attr(z,y)))

VaVy(Content(x,y) ¢+ JwIz(Object(y) A Interior(w) A Entity(z) A Hollow(z)
ALoc(y, w) A Part(z,w) A Attr(x, z)))

With this extension of ¢, we can show that type expansions and type con-
tractions preserve the semantics of the formulae associated with CGs before and
after the operation.

Property 4 Let H be a CG derived from G by a type expansion (or G derived
from H by a type contraction) of a defined type t, we have ¢(Def(t)) & ¢(G) &

¢(H).
Proof

Suppose that H is obtained from G by a concept type expansion on c. Let

t(x) “ D(z) be the type definition of the type of ¢. We have ¢(Def(t)) =
Va(t(z) & Fplxz]) (Fplx] is the formula associated with D(x)).

If ¢ is a generic concept then ¢(G) = EC (t(x)AA[z]) and ¢(H) = EC(Fp[z]A
Alz]) (EC represents the existential closure). Furthermore A[z] and Fp[«]
do not contain any common variable except z. Since ¢(Def(t)) is valid, we
also have ¢(G) & ¢(H) is valid.

If ¢ owns an individual referent m then ¢(G) = t(m) A EC(A) and ¢(H) =
EC(Fp[m] A A) with EC(Fp[m]) = Subst[,/m)(EC(Fp(x])). Furthermore
Alz] and Fp[m] do not contain any common variable. Since ¢(Déf(t)) is
valid, we also have ¢(G) & ¢(H).

Suppose that H is obtained from G by a relation type expansion on r. Let
t(ey, ...xn) =4 D(z1,...zy) be the type definition of type of r. We have
$(Def(t)) = Vaer. Ve, (t(x1,...xn) & Fpley, ...xn]) (Fpley,...xn] is the for-
mula associated with D(zy,...z,)).

$(G) = EC(t(t1, .. tn)ANA[t1, ..15]) and ¢(H) = EC(Fp[t1, .. ta) ANAlt1, .. 20])
and tq, ...t, are constants or variables according to referents of neighbouring
concepts of r.

EC(Fplty,..tn])) = Substip, e, 2,70,](EC(Fplx1,...xy])). Furthermore,
Alty, ...1,] and Fp[ty,...t,] do not contain any common variable except possi-
ble variables in 1, ...t,. Since ¢(Def(t)) is valid, we also have ¢(G) < ¢(H)
1s valid. ad

We denote ¢(S) the set of formulae associated with the relations <. and <,
defined on the atomic type sets. Let us recall that with each pair (concept or
relation types) such as ¢ < ¢ is associated the formula Ya;.. Vo, (t(21, ...2n) —
t'(x1,...25)). We denote ¢(D) the set of formulae associated with type definition
set. We now demonstrate that generalization rules (the reverse specialization
rules) still corresponds to a set of inference rules.

Theorem 6. If G <p H then ¢(S), ¢(D), ¢(G) - ¢(H).

Proof

Using ¢(S), M. Chein and M.L. Mugnier demonstrated that elementary
rules of generalization correspond to inference rules [CM92]. Using ¢(D),
I have demonstrated that type contractions and type expansions correspond
to equivalence rules (cf. previous property). By composition of different rules,

we obtain ¢(G) — ¢(H) is valid. a
Moreover, we have immediately:
Property 5 Let GG be a CG, ¢(D) F ¢(G) & ¢(AF(G)).

The normal form restriction is not still sufficient to demonstrate the com-
pleteness of the CG model. Suppose that a normal form graph G contains a
concept with the individual referent m and another concept with a defined type
t. And suppose that the type definition of ¢ contains a concept with the same
individual referent m. Then the atomic form of G will not be in a normal form
and so the specialization relation can miss some deductions. For instance, the
graph G in figure 5 can not be derived from H but the logical formula associated
with G implies the logical formula associated with H.

Theorem 7. Let G and H be two CGs with atomic forms in normal form.

6(8), 6(D), (G) - 6(H) if and only if G <p H.

Proof

Since ¢(S), ¢(D), ¢(G) b ¢(H), property b entails ¢(S), ¢(D), ¢(AF(G)) F
$(AF(H)), and then the set {$(S), ¢(D), ¢(AF(G)), ~¢(AF(H))} is incon-
sistent. The resolution method allows to derive the empty clause from clauses
generated by this set.

def

:

T
T S e S) B S S g e

Fig.5. An example with normal form graphs such as G «p H while
¢(8),8(D),d(G) + ¢(H).

Each formula in ¢(8S) is of type Yai..Va,(t(z1,...2n) — t'(21,...25)) and
generates a clause of type: —t(z1,..x0) V' (21, ...25).

Each formula in ¢(D) is of type:

Var. Yoo (ta(ey, ..xn) © Fyr. Fym (P, - n, Y1, - Ym] A P21, o, Y1, - Ym)]))
with t4 the defined type predicate and P; (¢ € [1..k]) predicates associated
with other vertices of the definition. The argument terms are either defined
type variables xq,...x,, or variables yi, ...y, and constants associated with
other concepts. Each formula generates & clauses of type:

Stg(y,...xn) V Biey, g, fi(y, . xn), o fm(21,)]
(f; functions result from the skolemisation of variables y;), and a clause of
type: ta(wy,..xn) VP, Zny Y1, Y] VP, T, Y1, Y]

The formula ¢(AF(G)) is of type: Jzy..3en (@171, ... 2] A ..Qm[2r1, ... 20])
with @; (¢ € [1..m]) predicates associated with vertices of AF(G). It gener-
ates m clauses of type: Q;fa,...an] (with a; the Skolem constants).

The formula ~¢(AF (H)) is of type: =3xy.. 3z, (Ry[x1, ... o] ARy, ...p))
with R; (¢ € [1..1]) predicates associated with vertices of AF(H). It generates
a clause of type: —Ri[z1,...xn] V ..o R[x1,...2p].

The empty clause is necessarily produced in emptying the clause associ-
ated with —¢(AF(H)). The clauses generated by the type definitions are
needless in the resolution process. Using these clauses will introduce some
new predicates (the predicate associated with defined type). Since to delete
these predicates one should have to re-introduce previous deleted predicates.
Thus the empty clause can be produced from the other clauses and thus

{6(8), ¢(AF(G)), ~¢(AF(H))} is inconsistent.

Then the completeness of the basic model yields AF(G) < AF(H) and with
the theorem 2 we can conclude G <p H. The reciprocal is immediate with
theorem 6. a

6 Conclusion

We have defined an extension of the CG model allowing to enrich the termi-
nological knowledge representation. This extension clarify the type definition
mechanism proposed by J. Sowa in stating precisely the semantics of definitions
and providing a framework to exploit type definitions. We have introduced type
contractions and type expansions as new specialization rules and consequently
extend the specialization relation. We have showed the correspondence between
the new specialization relation and projection operator on atomic forms of CGs.
Finally we have demonstrated the soundness and completeness of the extended
model.

This extension allows to define a type classifier in a KL-ONE-style [Lip82]
which was introduced in [CL94]. We are currently working to take into account
partial definitions in order to provide terminological knowledge representations
for natural types.

This theoretical work must be completed by a study of good algorithms
for computing specialization relation. Totally compute the atomic forms to test
projection does not seem to be the best solution !

References

[CC81] G. Chaty and M. Chein. Réduction de graphes et systémes de Church-Rosser.
R.A.LR.O., 15(2):109-117, 1981.

[CL94] M. Chein and M. Leclére. A cooperative program for the construction of a
concept type lattice. In Supplement Proceedings of the Second International
Conference on Conceptual Structures, pages 16-30, College Park, Maryland,
USA, 1994.

[CM92] M. Chein and M.L. Mugnier. Conceptual graphs : fundamental notions. Revue
d’Intelligence Artificielle, 6(4):365-406, 1992.

[Hue80] G. Huet. Confluent reductions : Abstract properties and applications to term
rewriting systems. J.A.C.M., 27:797-821, 1980.

[Lec95] M. Leclere. Le niveau terminologique du modéle des graphes conceptuels : con-
struction et explottation. PhD thesis, Université Montpellier 2, 1995.

[Lec96] M. Leclere. Raisonner avec des définitions de types dans le modéle des graphes
conceptuels. Rapport de recherche 143, IRIN, Nantes, France, Novembre 1996.

[Lip&2] T. Lipkis. A KL-ONE classifier. In J.G. Schmolze and R.J. Brachman, editors,
Proceedings of the 1981 KL-ONE Workshop, pages 126-143, Jackson, New
Hampshire, 1982. The proceedings have been published as BBN Report No.
4842 and Fairchild Technical Report No. 618.

[MC96] M.-L. Mugnier and M. Chein. Représenter des connaissances et raisonner avec
des graphes. Revue d’Intelligence Artificielle, 10(1):7-56, 1996.

[Sow84] J.F. Sowa. Conceptual Structures - Information Processing in Mind and Ma-
chine. Addison-Wesley, Reading, Massachusetts, 1984.

[WS92] W.A. Woods and J.G. Schmolze. The kl-one family. In F. Lehmann, editor,
Semantic Networks in Artificial Intelligence, pages 133-177, Pergamon Press,
Oxford, 1992.

This article was processed using the ITEX macro package with LLNCS style

