
Reasoning with type de�nitionsM. Lecl�ereIRIN { IUT de Nantes2, rue de la Houssini�ere - BP 9220844 322 Nantes cedex 03 - FrancePh.: +33 2 40 37 49 01 Fax: +33 2 40 37 49 70E-mail: leclere@irin.univ-nantes.frAbstract. This article presents an extension of the basic model of con-ceptual graphs : the introduction of type de�nitions. We choose to con-sider de�nitions as su�cient and necessary conditions to belong to atype. We extend the specialization/generalization relation on conceptualgraphs to take advantage of these de�nitions. Type contractions andtype expansions are clearly de�ned. We establish the correspondencewith projection by use of the atomic form of conceptual graphs. Finally,we give a logical interpretation of type de�nitions and prove than thecorrespondence between logical deduction and generalization relation ismaintained.Keywords: type de�nitions, contraction, expansion, atomic form, projection, logicalinterpretation.1 IntroductionThe aim of knowledge representation is to provide formal model which allow tomodelize di�erent kinds of knowledge and allow to reason with this knowledge.In conceptual graphs (CGs), the knowledge is split into several levels. The ter-minological level de�nes the conceptual vocabulary. It contains the concept typelattice and the relation type poset. These two taxonomies are simply composedof strings, representing concept types or relation types, which are ordered bya speci�c/generic relation. At the assertional level, one describes some facts byCGs constructed with the conceptual vocabulary.However, we often dispose of general knowledge which is relevant to termino-logical level but one can't represent it with a simple speci�c/generic relation. J.Sowa proposes the formalism of abstractions to answer this need. In this paper,we study a kind of complex terminological knowledge: the type de�nition.We start from the basic model of CGs, introduced by J. Sowa in [Sow84] andclari�ed by M. Chein and M.L. Mugnier in [CM92, MC96], and extend it to takeinto account type de�nitions when we are reasoning at assertional level. Thisextension includes contraction and expansion operations in the specializationrules. The connection with the projection is established once again. After givinga logical interpretation for de�nition, one demonstrates that the specializationrelation always corresponds to a complete and sound set of inference rules.



In section 2, we present the di�erent semantics that we can give to typede�nitions and we remind the type de�nition syntax. Then we choose to considera de�nition as a set of su�cient and necessary conditions for belonging to a type.Section 3 introduces the four new specialization rules allowing to manipulate thetype de�nitions at assertional level: contraction and expansion of concept typesor relation types. Then we show in section 4 how projection allows to computethe new specialization relation. The section 5 is devoted to logical interpretationof type de�nitions and contraction/expansion rules.2 Type de�nition formalismIn the basic model of CGs, the meaning of a type is given by position whichhold into the taxonomy of types. The speci�c/generic relation is thus the onlyde�nitional mechanism. Such a representation of meaning for concept types andconcept relations is very poor. Often one has some generic information on typeswhich are not expressible by this single mechanism. The mechanism of type def-inition address this problem by associating a formal description to a type. Thisdescription is constructed with atomic types (a type without description) andalready de�ned types. The semantics given to the type/description associationdetermine the reasoning technics to use with this form of knowledge representa-tion.In this work, we consider that descriptions represent a set of characteristics,properties, attributes which can be shared by objects of the domain of represen-tation. A description is thus the intensional representation of a set of objects.It remains to de�ne the semantics given to the link between a type and itsdescription. In general, two semantics are used:{ the description represents a set of su�cient and necessary conditions to be-long to its type. Any object recognized by the description must belong to thetype and any instance of type owns the attributes of the description. Thedescription is thus the intensional representation of type. These semanticsare given to de�ned concepts in the kl-one derived systems [WS92]. Suchsemantics are called de�nition;{ the description only represents a set of necessary conditions to belong to itstype. These are semantics that is used for natural kinds. In kl-one systems,they are given to primitive concepts. These semantics are sometimes calledpartial de�nition.In CGs, the descriptions are represented by abstractions (cf. [Sow84] section3.6). They are conceptual graphs which one or several generic concepts are con-sidered as formal parameters. In the following, we study description mechanismto do some de�nitions and not to do partial de�nitions.De�nition 1 A concept type de�nition asserts an equivalence between a concepttype and a monadic abstraction. We denote tc(x) def, D(x) the de�nition of typetc with x the variable of formal parameter. The formal parameter concept vertex



of D(x) is called the head of tc. In the aristotelician approach, the genus of newtype is the type of the head concept and D(x) represents the di�erentiae from tcto its genus.
Rectangle(x)   <=>

def
Right Angle:   ATTR *Parallelogram  :    x*Fig. 1. De�nition of a rectangle as a parallelogram with right angles..De�nition 2 A relation type de�nition asserts an equivalence between a relationtype and a n-ary abstraction. We denote tr(x1; x2:::xn) def, D(x1; x2:::xn) thede�nition of type tr with x1; x2:::xn the variables of formal parameters. Theformal parameter concept vertices of D(x1; x2:::xn) are called the arguments oftr.
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CONTENT(x,y) <=>
def

Entity :    xFig. 2. De�nition of content relation as a link between an object and an entity whichcontains the object.Restriction: In the following, we assume there is neither direct nor undirectrecursive type de�nition.3 Extension of the modelThe mechanism of type de�nition grows expressivity of the CG model. It remainsto extend the specialization/generalization relation to take advantage of thesede�nitions. We believe that in order to keep the speci�city of the CG model,



such an extension must keep the triple correspondence: specialization rules /projection / logical inference. We need to modify some parts of CG model toperform that.3.1 The canonThe canon contains the conceptual vocabulary of the domain of representation. Itrepresents the terminological component of the CG model. The canon is sharedin two taxonomies: Tc the concept type taxonomy and Tr the relation typetaxonomy.These two type posets are composed of atomic types or de�ned types. A typede�nition is attached to each de�ned type. For atomic types, the order relations�c and �r are simply given by the user (who is supposed to be a specialist ofthe domain of representation).The concept type de�nitions extend the �c relation. Since a concept type isintroduced by de�nition as subtype of its genus, the �c relation is modi�ed:De�nition 3 Let tc be a de�ned concept type, we have tc �c genus(tc).The genus of a de�ned concept type may be atomic or de�ned. If the genusis de�ned then, by transitivity of tc, the new type is also a subtype of the genusof its genus. As no recursive de�nition is permitted, one can de�ne the smallestatomic super-type of a de�ned concept type that we call atomic genus.De�nition 4 Let tc be a de�ned concept type, the atomic genus of tc denotedby AG(tc) is the atomic type obtained from tc by successive applications of thegenus function.We immediately get the following property:Property 1 Let tc be a de�ned concept type and t0c an atomic concept type,tc �c t0c if and only if AG(tc) �c t0c.On the contrary, the relation type de�nitions does not extend the �r rela-tion. This is because such a kind of de�nition does not derive from Aristotle'smethod. Each relation type owns a signature which �xes the arity and the con-cept authorized as maximal types for arguments of a relation of this type. Thesignature of atomic relation types is given by the user. For de�ned relation types,the signature is deduced from type de�nition in the following way.De�nition 5 Let tr be a de�ned relation type:{ the arity of tr is equal to the arity of the abstraction which de�nes tr;{ the concept maximal type of the i-th argument of tr is the type of the i-thformal parameter of the abstraction.A conceptual graph must verify the canonicity property and the conformityproperty. The �rst property enforces the neighbour concepts of a relation vertexto accord with the signature of the relation type. The second property enforcesthe concepts to have a referent according with the type.



3.2 Extension of specialization relationA specialization relation is de�ned on CGs by a set of specialization rules. Thereverse relation, the generalization, corresponds to logical deduction. First partof this theorem (the soundness of the CG model) has been demonstrated by J.Sowa [Sow84]. The reciprocal part (the completeness) has been demonstrated byM. Chein and M.L. Mugnier [CM92, MC96] with CGs in normal form (normalform does not allow CGs to have several individual concepts with the samereferent).Using type de�nitions allows to represent knowledge to di�erent levels ofabstraction. But generalization relation forgets some inferences. In �gure 3 forinstance, there is no possibility to derive H from G (or G from H) though thesetwo CGs represent the same knowledge (according to the type de�nition of �gure1).
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ATTRSmall :   *Fig. 3. Two equivalent graphs according to the type de�nition of Rectangle.In order to preserve the truth of the generalization relation, we must addfour new specialization rules: type contractions and type expansions. These op-erations are close to J. Sowa's operations [Sow84] but not identical. First weintroduce these operations in order to extend the formal model of CGs when J.Sowa presents these operations as tools to simplify CGs. So we search to give awell-de�ned framework to manipulate type de�nitions rather than an algorithmof graph reduction. Secondly, J. Sowa's contraction (cf. section 3.6.5 of [Sow84])does not compute an equivalent graph but a more general one than the original(e.g. some informations can be lost). As for his expansions, either it does notpreserve truth, or the de�ned type is not replaced by its genus.We state that our following operations preserve truth. We de�ne them as re-versible operations which replace a de�ned type with its de�nition and converselyreplace a graph corresponding to a type de�nition with a de�ned type.



De�nition 6 (concept type expansion) Let G be a conceptual graph con-taining a concept c with a de�ned type tc. Let tc(x) def, D(x) be the de�nition.H is obtained by expansion in the following way:1. replace tc the type of c by its genus;2. restrict the head of tc by changing its referent to the referent of c;3. join G and D on c and the head of tc;This operation is permitted only if the resulting graph is canonical (e.g. c doesnot violate signature of neighbouring relation types).De�nition 7 (relation type expansion) Let G be a conceptual graph con-taining a relation r with a de�ned type tr. Let tr(x1; :::xn) def, D(x1; :::xn) be thede�nition. H is obtained by expansion in the following way:1. restrict each argument ci of tr by changing its type and referent to type andreferent of the i-th neighbour of r;2. perform n joins to identify the i-th neighbouring concept of r with the i-thargument of tr;3. delete r and all its edges from G.De�nition 8 (concept type contraction) Let G be a CG containing a sub-graph G0 isomorphic to the de�nition D(x)1 of a de�ned concept type tc (conceptc in G0 corresponding to formal parameter of D(x) in isomorphism can have anindividual referent yet). If moreover c is a cut point between G0 and the otherpart of G (i.e. all the paths from one vertex of G0 to one vertex of the rest of Ggo through the vertex c), H is obtained by contraction in the following way:1. replace the type of c with tc;2. delete subgraph G0 n fcg from G.This operation is permitted only if c in the resulting graph is conform.De�nition 9 (relation type contraction) Let G be a CG containing a sub-graph G0 isomorphic to the de�nition D(x1; :::xn) of a de�ned relation type tr(concepts ci (i 2 [1::n]) in G0 corresponding to formal parameters of D(x1; :::xn)can have yet individual referents and types lesser than types of correspondingarguments of tr). If moreover the concepts ci (i 2 [1::n]) allow to disconnect G0from G, H is obtained by contraction in the following way:1. insert a relation having type tr to G;2. 8i 2 [1::n] link the i-th edge of r to concept ci of G0;3. delete subgraph G0 n fc1; :::cng from G.1 The variable x in the formal parameter concept is though not considered forisomorphism.



Observe that concept type expansion and concept type contraction are notnecessarily permissible due to the respect constraint of canonicity and confor-mity. There is no problem with relation contraction and relation expansion.Let us recall the basic specialization rules before de�ning the specializationrelation on CG model extended to type de�nitions. We consider the followingfour rules:{ concept restriction which allows to replace a type with a subtype or genericreferent with an individual one (conformity must be preserved);{ relation restriction which allows to replace a type with a subtype (canonicitymust be preserved);{ join which allows to merge two identical concepts (perform from two graphsor only one);{ simpli�cation which allows to delete a duplicated relation.De�nition 10 H is a specialization of G, written H �D G, if and only if onecan derive H from G using both the basic specialization rules and the new spe-cialization rules. Respectively G is thus a generalization of H.Note that the new specialization relation produces equivalent classes greaterthan the equivalent classes of the basic specialization relation. This is due tothe semantics of de�nition which enforce to consider the resulting graph of acontraction (or expansion) operation equivalent to the original graph.4 Computing the specialization relationIn the basic model, the projection operator is used to detect the specializationrelation between CGs. In our extended model, projection can still exhibit the spe-cialization relation but it is not a complete operator to detect the specializationrelation between CGs. For instance, there is no projection between conceptualgraphs in �gure 3 though there exists a mutual specialization relation betweenthese two graphs.Using projection operator to detect again specialization relation needs tode�ne a transformation on conceptual graphs on which one computes projection.For that, we reuse the atomic form introduced in [CL94]. Indeed, we extend thisform to take into account the de�ned relation types.De�nition 11 Let G be a CG, we call atomic form of G, written AF (G), thegraph without de�ned types obtained by a succession of type expansions.Property 2 Without recursive type de�nitions, one can compute the atomicform of a CG in a �nite number of type expansions.
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CHRCFig. 4. G and its atomic form according to Rectangle de�nition, content de�nitionand supposing that Right Angle is de�ned as an Angle of 90 degrees.ProofLet G be a CG containing vertices with de�ned types. As no constraint existsto perform relation type expansions, one can compute from G a graph G0without any relation having a de�ned type (we have just to perform relationtype expansions while it remains relations with de�ned types). Since relationtype de�nitions are not recursive, one can do it in a �nite number of relationtype expansions.Let's prove that we can now perform concept type expansion from anyconcept c of G0 having a de�ned type (e.g. the resulting graph is canon-ical). Since G0 is canonical, any neighbouring relation r of c is such as:type(c) �c Sigi(type(r)) with c being the i-th neighbour of r and Sigirepresenting the maximal concept type of the i-th argument of a relation.Moreover, the type of r is atomic according to the construction of G0.With property 1, we conclude that AG(type(c)) �c Sigi(type(r)). Thusgenre(type(c)) �c Sigi(type(r)) and so the resulting graph will be canonical.Consequently, we can perform the concept type expansions from all the con-cepts with de�ned types of G0. Let G00 the resulting graph. The concept typede�nitions may contain vertices with de�ned types, we must redo the twopreceding phases. But these de�nitions being no recursive, we will obtain agraph without de�ned types in a �nite number of repetitions. 2Theorem1. The atomic form of a CG is unique.



ProofWe must demonstrate that whatever succession order chosen to perform thetype expansions, we obtain isomorphic graphs. We use the proof schemesproposed by G. Chaty and M. Chein in [CC81] for studying the graph re-ductions. These proof schemes based on the Church-Rosser's systems takeadvantage of properties on the con
uent reductions demonstrated by G. Huet[Hue80].Firstly, we de�ne the R relation on set of the isomorphic CG classes by:CgRCh i� 9G 2 Cg and 9H 2 Ch such as H is obtained from G by a typeexpansion.Secondly, we demonstrate R is locally con
uent that is 8Cg; Cg1; Cg2 2 G,if CgRCg1 and CgRCg2 then 9Ch 2 G such as Cg1R�Ch and Cg2R�Ch withR� is the transitive closure of R.With the di�erent properties on con
uent reductions, we conclude thatatomic form of a graph is unique. A detailed proof is given in [Lec95]. 2Atomic form of CG being obtained by type expansions, we immediately havethe following property:Property 3 Atomic form of a graph is equivalent to the original graph accordingto the specialization relation. We thus have AF (G) �D G and G �D AF (G).In order to establish the link between projection operator and specializationrelation in the extended model, we �rst demonstrate that two CGs belong tospecialization extended relation if and only if their atomic forms belong to spe-cialization basic relation. In the following, specialization basic relation is written� while the specialization extended relation is written �D.Theorem2. If AF (H) � AF (G) then H �D G.ProofSince AF (H) � AF (G) then we have AF (H) �D AF (G) because �D isde�ned as an extension from �. With the property 3 and considering thetransitivity of �D we immediately conclude that H �D G. 2In order to demonstrate the reciprocal lemma, we show that to each spe-cialization rule allowing to derive H from G in the extended model, there corre-sponds a sequence of specialization elementary rules allowing to derive AF(H)from AF(G) (a detailed correspondence is established in [Lec96]):{ for a join on concepts with atomic types there corresponds a similar join onatomic forms;{ for a join on concepts with de�ned types there corresponds a sequence ofjoins and simpli�cations;{ for a simpli�cation with relations having atomic types there corresponds asimilar simpli�cation;



{ for a simpli�cation with relations having de�ned types there corresponds asequence of joins and simpli�cations;{ for a relation restriction which necessarily replaces an atomic type with anatomic subtype there corresponds a similar restriction;{ for a concept restriction which replaces a generic referent with an individualreferent there corresponds a similar restriction;{ for a concept restriction which replaces an atomic type with an atomic sub-type there corresponds a similar restriction;{ for a concept restriction which replaces an atomic type with a de�ned sub-type there corresponds a concept restriction and an external join (to connectthe atomic form of the subtype de�nition);{ for a concept restriction which replaces a de�ned type with a de�ned sub-type there corresponds an external join and a sequence of internal joins andsimpli�cations (to merge the two type de�nitions);{ for a contraction or expansion there corresponds the empty sequence of spe-cialization rules on atomic forms.Theorem3. If H �D G then AF (H) � AF (G).ProofFor each rules of specialization extended relation allowing to derive H fromG, we have exhibited a sequence of rules of specialization basic relation allow-ing to derive AF (H) fromAF (G). Since H �D G, we obtain, by compositionof specialization rules, AF (H) � AF (G). 2Consequently, any sequence of specialization rules allowing to derive H fromG in the extended model can be reorganized in:1. a sequence of expansions to derive AF (G) from G;2. a sequence of specialization elementary rules to derive AF (H) from AF (G);3. a sequence of contractions to derive H from AF (H).Let us recall the complete correspondence between projection and special-ization basic relation established by M. Chein and M.L. Mugnier in [CM92]:Theorem4. H � G i� there exists a projection from G to H.The three previous theorems yield:Theorem5. H �D G if and only if there exists a projection from AF (G) toAF (H).5 Logical interpretationWe extend the operator � to take into account type de�nitions in the logical in-terpretation of CG model. A type de�nition represents an equivalence between



a type and its description, we must preserve these semantics in logical interpre-tation. Let t(x1; :::xn) def, D(x1; :::xn) be a relation type de�nition or a concepttype de�nition (in this case n = 1). The logical formula associated with thisde�nition, written �(Def(t)), is determined by the following construction:{ with the type t, associate a n-adic predicate having the same name;{ with the left hand of the de�nition, associate the atomic formula t(x1; :::xn);{ with the right hand of the de�nition, associate the formula �(D(x1; :::xn))computed in the same way as for a normal CG but without existential closureof variables x1; :::xn;{ connect the two previous formula with an equivalence logical operator;{ universally quantify the variables x1; :::xn of the constructed formula.For instance, the formulae associated with type de�nitions in �gures 1 and 2are:8x(Rectangle(x)$ 9y(Parallelogram(x) ^RightAngle(y) ^Attr(x; y)))8x8y(Content(x; y) $ 9w9z(Object(y) ^ Interior(w) ^Entity(x) ^Hollow(z)^Loc(y; w) ^ Part(x;w)^Attr(x; z)))With this extension of �, we can show that type expansions and type con-tractions preserve the semantics of the formulae associated with CGs before andafter the operation.Property 4 Let H be a CG derived from G by a type expansion (or G derivedfrom H by a type contraction) of a de�ned type t, we have �(Def(t)) ` �(G)$�(H).ProofSuppose that H is obtained from G by a concept type expansion on c. Lett(x) def, D(x) be the type de�nition of the type of c. We have �(Def(t)) =8x(t(x)$ FD[x]) (FD[x] is the formula associated with D(x)).If c is a generic concept then �(G) = EC(t(x)^A[x]) and �(H) = EC(FD[x]^A[x]) (EC represents the existential closure). Furthermore A[x] and FD[x]do not contain any common variable except x. Since �(Def(t)) is valid, wealso have �(G)$ �(H) is valid.If c owns an individual referent m then �(G) = t(m) ^ EC(A) and �(H) =EC(FD[m] ^ A) with EC(FD[m]) = Subst[x=m](EC(FD[x])). FurthermoreA[x] and FD[m] do not contain any common variable. Since �(D�ef(t)) isvalid, we also have �(G)$ �(H).Suppose that H is obtained from G by a relation type expansion on r. Lett(x1; :::xn) def, D(x1; :::xn) be the type de�nition of type of r. We have�(Def(t)) = 8x1:::8xn(t(x1; :::xn) $ FD[x1; :::xn]) (FD[x1; :::xn] is the for-mula associated with D(x1; :::xn)).



�(G) = EC(t(t1; :::tn)^A[t1; :::tn]) and �(H) = EC(FD[t1; :::tn]^A[t1; :::tn])and t1; :::tn are constants or variables according to referents of neighbouringconcepts of r.EC(FD[t1; :::tn]) = Subst[x1=t1;:::xn=tn](EC(FD[x1; :::xn])). Furthermore,A[t1; :::tn] and FD[t1; :::tn] do not contain any common variable except possi-ble variables in t1; :::tn. Since �(Def(t)) is valid, we also have �(G)$ �(H)is valid. 2We denote �(S) the set of formulae associated with the relations �c and �rde�ned on the atomic type sets. Let us recall that with each pair (concept orrelation types) such as t � t0 is associated the formula 8x1:::8xn(t(x1; :::xn) !t0(x1; :::xn)). We denote �(D) the set of formulae associated with type de�nitionset. We now demonstrate that generalization rules (the reverse specializationrules) still corresponds to a set of inference rules.Theorem6. If G �D H then �(S); �(D); �(G) ` �(H).ProofUsing �(S), M. Chein and M.L. Mugnier demonstrated that elementaryrules of generalization correspond to inference rules [CM92]. Using �(D),I have demonstrated that type contractions and type expansions correspondto equivalence rules (cf. previous property). By composition of di�erent rules,we obtain �(G)! �(H) is valid. 2Moreover, we have immediately:Property 5 Let G be a CG, �(D) ` �(G)$ �(AF (G)).The normal form restriction is not still su�cient to demonstrate the com-pleteness of the CG model. Suppose that a normal form graph G contains aconcept with the individual referent m and another concept with a de�ned typet. And suppose that the type de�nition of t contains a concept with the sameindividual referent m. Then the atomic form of G will not be in a normal formand so the specialization relation can miss some deductions. For instance, thegraph G in �gure 5 can not be derived fromH but the logical formula associatedwith G implies the logical formula associated with H.Theorem7. Let G and H be two CGs with atomic forms in normal form.�(S); �(D); �(G) ` �(H) if and only if G �D H.ProofSince �(S); �(D); �(G) ` �(H), property 5 entails �(S); �(D); �(AF (G)) `�(AF (H)), and then the set f�(S); �(D); �(AF (G));:�(AF (H))g is incon-sistent. The resolution method allows to derive the empty clause from clausesgenerated by this set.
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Place :     Fig. 5. An example with normal form graphs such as G 6�D H while�(S);�(D); �(G) ` �(H).Each formula in �(S) is of type 8x1:::8xn(t(x1; :::xn) ! t0(x1; :::xn)) andgenerates a clause of type: :t(x1; :::xn) _ t0(x1; :::xn).Each formula in �(D) is of type:8x1:::8xn(td(x1; :::xn)$ 9y1:::9ym(P1[x1; :::xn; y1; :::ym]^:::Pk[x1; :::xn; y1; :::ym]))with td the de�ned type predicate and Pi (i 2 [1::k]) predicates associatedwith other vertices of the de�nition. The argument terms are either de�nedtype variables x1; :::xn, or variables y1; :::ym and constants associated withother concepts. Each formula generates k clauses of type::td(x1; :::xn) _ Pi[x1; :::xn; f1(x1; :::xn); :::fm(x1; :::xn)](fi functions result from the skolemisation of variables yi), and a clause oftype: td(x1; :::xn) _ :P1[x1; :::xn; y1; :::ym]_ ::::Pk[x1; :::xn; y1; :::ym].The formula �(AF (G)) is of type: 9x1:::9xn(Q1[x1; :::xn] ^ :::Qm[x1; :::xn])with Qi (i 2 [1::m]) predicates associated with vertices of AF (G). It gener-ates m clauses of type: Qi[a1; :::an] (with ai the Skolem constants).The formula:�(AF (H)) is of type: :9x1:::9xn(R1[x1; :::xn]^ :::Rl[x1; :::xn])with Ri (i 2 [1::l]) predicates associated with vertices ofAF (H). It generatesa clause of type: :R1[x1; :::xn] _ ::::Rl[x1; :::xn].The empty clause is necessarily produced in emptying the clause associ-ated with :�(AF (H)). The clauses generated by the type de�nitions areneedless in the resolution process. Using these clauses will introduce somenew predicates (the predicate associated with de�ned type). Since to deletethese predicates one should have to re-introduce previous deleted predicates.Thus the empty clause can be produced from the other clauses and thus



f�(S); �(AF (G));:�(AF (H))g is inconsistent.Then the completeness of the basic model yields AF (G) � AF (H) and withthe theorem 2 we can conclude G �D H. The reciprocal is immediate withtheorem 6. 26 ConclusionWe have de�ned an extension of the CG model allowing to enrich the termi-nological knowledge representation. This extension clarify the type de�nitionmechanism proposed by J. Sowa in stating precisely the semantics of de�nitionsand providing a framework to exploit type de�nitions. We have introduced typecontractions and type expansions as new specialization rules and consequentlyextend the specialization relation. We have showed the correspondence betweenthe new specialization relation and projection operator on atomic forms of CGs.Finally we have demonstrated the soundness and completeness of the extendedmodel.This extension allows to de�ne a type classi�er in a kl-one-style [Lip82]which was introduced in [CL94]. We are currently working to take into accountpartial de�nitions in order to provide terminological knowledge representationsfor natural types.This theoretical work must be completed by a study of good algorithmsfor computing specialization relation. Totally compute the atomic forms to testprojection does not seem to be the best solution !References[CC81] G. Chaty and M. Chein. R�eduction de graphes et syst�emes de Church-Rosser.R.A.I.R.O., 15(2):109{117, 1981.[CL94] M. Chein and M. Lecl�ere. A cooperative program for the construction of aconcept type lattice. In Supplement Proceedings of the Second InternationalConference on Conceptual Structures, pages 16{30, College Park, Maryland,USA, 1994.[CM92] M. Chein and M.L. Mugnier. Conceptual graphs : fundamental notions. Revued'Intelligence Arti�cielle, 6(4):365{406, 1992.[Hue80] G. Huet. Con
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