TD BD : le Modèle Relationnel

1. Schéma et instance de relation

Soit le schéma de relation suivant :

NOTE(N ET NUMBER(8), CODE CHAR(8), DATEXAM DATE, VALEUR NUMBER)

avec la sémantique suivante :

- N ET est le numéro d'étudiant ;
- CODE est le code du module ;
- DATEXAM est la date de l'examen ;
- VALEUR est la note obtenue par l'étudiant N ET à l'examen du module CODE en date du DATEXAM.

Soit *l'instance* suivante de NOTE :

N_ET	CODE	DATEXAM	VALEUR
3	BD	11/09/2000	12
5	PROG	11/09/2000	8
13	BD	11/09/2000	15
3	PROG	11/09/2000	8
13	BD	05/06/2000	6
5	PROG	06/06/2000	4
13	PROG	11/09/2000	9
2	BD	11/09/2000	12

Questions:

- 1. Quelles sont l'arité et la cardinalité de la relation NOTE?
- 2. Combien de représentations tabulaires distinctes représentent cette même instance ?
- 3. Peut-on ajouter les n-uplets suivants à la relation NOTE théoriquement et pratiquement ? Pourquoi ?

5	PROG	06/06/2000	4
8	BD		12
13	BD	05/06/2000	9

- 4. Ecrire le résultat des requêtes suivantes :
- ensemble des dates d'examen ;
- ensemble des notes de BD supérieure à 10 ;
- nombre de notes de PROG inférieure à 10 ;
- moyenne des notes de l'étudiant 13 ;
- classement des étudiants (N ET, RANG) avec RANG∈ [1,n] en fonction de leur moyenne générale.
- 5. Les dépendances fonctionnelles suivantes sont-elles cohérentes avec cette instance de NOTE :

N_ET \rightarrow VALEUR, VALEUR \rightarrow DATEXAM, CODE \rightarrow DATEXAM, CODE \rightarrow CODE, {N_ET, CODE, DATEXAM} \rightarrow VALEUR.

- 6. Exprimer l'ensemble des identifiants de NOTE cohérents avec cette instance.
- 7. Quelles sont les clés candidates cohérentes avec cette instance ? Choisir la clé primaire en expliquant votre choix.

2. Schéma de BD et Contraintes d'Intégrités

Soit le schéma relationnel de la BD « SCOLARITE » suivant :

```
NOTE(N_ET NUMBER(8), CODE CHAR(8), DATEXAM DATE, VALEUR NUMBER)
ETUDIANT(N_ET NUMBER(8), NOM CHAR(20), PRENOM CHAR(20))
INSC(N_ET NUMBER(8), CODE CHAR(8))
MODULE(CODE CHAR(8), MATIERE CHAR(20))
EXAMEN(CODE CHAR(8), DATEXAM DATE, PROF CHAR(20))
```

Soient les règles de gestion (contraintes) de la scolarité suivantes :

- un étudiant est identifié par son numéro ;
- un module est identifié par son code ;
- après son inscription administrative, un étudiant peut s'inscrire dans plusieurs modules existant mais au plus une fois;
- un module accueille plusieurs étudiants ;

- un examen concerne un module ; plusieurs examens d'un même module peuvent avoir lieu mais à des dates différentes ; le nom du professeur ayant donné le sujet est enregistré ;
- une note unique est attribuée à chaque étudiant ayant participé à un examen; un étudiant ne peut pas participer à un examen d'un module où il n'est pas inscrit; les étudiants absents à un examen ne sont pas enregistrés dans NOTE.

Questions:

- 1. Décrire les CI de clé primaire, et les CIR équivalentes à ces règles.
- 2. Dessiner le multigraphe de références correspondant.
- 3. Donner les cardinalités minimales des 4 dernières tables du schéma en fonction de l'instance de NOTE.
- 4. Les lignes suivantes peuvent-elles être ajoutées dans les relations du schéma et à quelles condition ?
 - (8, Dupont, Michel) dans ETUDIANT;
 - (3, BD) dans INSC;
 - (PROG, 06/06/2000, 'Dupont') dans EXAMEN;
 - (SYST, 11/09/2000, 'Dupont') dans EXAMEN;
 - (3, BD, 05/06/2000, 8) dans NOTE;
 - (16, SYST, 05/06/2000, 13) dans NOTE;
- 5. Si on transforme la CIR « NOTE(N_ET, CODE)⊆ INSC(N_ET, CODE) » en deux CIR « NOTE(N_ET)⊆ INSC(N_ET) » et « NOTE(CODE)⊆ INSC(CODE) », qu'est-ce que cela change ?
- 6. Ecrire le résultat des requêtes suivantes :
 - 1) ensemble des étudiants présents à au moins un examen ;
 - 2) ensemble des étudiants absents à au moins un examen d'un module où ils sont inscrits ; peut-il y avoir d'autres absents ?
 - 3) note moyenne de chaque étudiant dans chaque module sans tenir compte des absences ;
- 7. Ecrire 2 algorithmes qui fournisse le résultat des requêtes 1 et 3 précédentes.

TD BD: l'algèbre relationnelle

1. Combinatoire

Deux tables représentent la même relation si l'une peut être obtenue à partir de l'autre par permutation de lignes et/ou de colonnes, à condition que l'attribut désignant chaque colonne soit déplacé avec le contenu de la colonne.

Si le schéma de la relation comporte m attributs, et si une instance comporte p nuplets, combien peut-on construire de représentations tabulaires distinctes de cette même instance?

2. Calculs algébriques

Soient R et S les relations suivantes :

R	
A	В
a	b
С	b
d	e

C
c
a
d

On pose aussi S'[A,B] = S[B,C], domaine(A)=domaine(B)=domaine(C)

Calculer:

- a) R U S'
- b) R S'
- c) R MS
- g) R \bowtie S (semi-jointure : $\Pi_{\text{attributs}(R)}(R \bowtie S))$
- e) Π A (R) et Π B (R)
- f) $\sigma_{A=C}(R \times S)$
- g) R \bowtie _{R.B<C} S (prendre < comme ordre alphabétique sur les lettres)

3. Autres calculs

Soient les deux relations suivantes R et S :

K		
A	В	C
a	b	c
c	d	e
b	e	f
d	a	h

. 3		
A	В	D
a	b	c
a	e	f
b	e	f
e	b	a

on pose S'[ABC] = S[ABD]

Calculer:

- a) R U S'
- b) S' R
- c) R > S

4. Quotient

Calculer R ÷ S avec S=S1, S2, S3

R	
A	В
a1	b1
a2	b2
a2	b1
a3	b3
a1	b2
a1	b3

	S1
	B b1
	b1
ı	

S2	
В	
b1	
b2	

S3
В
b1
b2
b3

5. Autres quotients

calculer R ÷ S avec S=S1, puis S2, puis S3

R		
A	В	C
a1	b1	c1
a1	b1	c2
a1	b2	c2
a2	b2	c2
a2	b1	c1
a2	b1	c3
a2	b2	c1

S1	/ 1
A	В
al	b1
a2	b1
a2	b2

S2	
A	В
a1	b1
a2	b2

6. Calculs avec sémantique

6.1 Bières et buveurs

Soit le schéma relationnel suivant :

BIERE (<u>marque</u>, <u>nom</u>, degré, couleur)

BAR (<u>numBar</u>, adresse, enseigne)

BUVEUR (<u>numéro</u>, nomB)

FREQUENTE (<u>numBuv</u>, <u>numBar2</u>) avec numBuv ⊆ numéro, numBar2 ⊆ numBar

SERT(<u>numBar3</u>, <u>marque2</u>, <u>nom2</u>) (marque2, nom2)⊆(marque, nom), numBar3⊆numBar

APPRECIE(numApp, marque3, nom3, niveau) (marque3, nom3)⊆(marque, nom), numApp⊆numéro

Répondre aux questions suivantes :

- 1. Ensemble des bières appréciées avec un niveau « excellente » par au moins un buveur.
- 2. Ensemble des marques appréciées de façon ni médiocre, ni exécrable par dupont.
- 3. Ensemble des bières servies par un bar et qui sont appréciées de manière exécrable par au moins un buveur.
- 4. Ensemble des bières appréciées par tous les buveurs dont le nom est 'martin'.

6.2 Notes d'étudiants

Soit le schéma relationnel suivant :

Répondre aux questions suivantes :

- 1. ensemble des numéros d'étudiants absents à au moins un examen d'un module où ils sont inscrits ;
- 2. ensemble des numéros d'étudiants ayant passé un examen rédigé par un professeur ayant le même nom (PROF) qu'eux ;

TD BD: SQL LMD

1. Requêtes d'interrogation

1.1 Interprétations

Soit le schéma relationnel suivant :

Donnez une interprétation en français de chacune des requêtes suivantes :

- 1. SELECT DISTINCT prenom FROM etudiant WHERE nom='dupont';
- 2. SELECT DISTINCT prof FROM examen E, module M WHERE E.code=M.code AND matiere='programmation';
- 3. SELECT n et, nom FROM etudiant E, insc I WHERE E.n et=I.n et AND code='BD';
- 4. SELECT MAX(valeur) FROM note WHERE code IN ('BD', 'PROG');
- 5. SELECT prof, AVG(valeur) FROM note N, examen E WHERE N.code=E.code AND N.datexam=E.datexam AND TO_CHAR(datexam,'yyyy')='2000' GROUP BY prof HAVING AVG(valeur)>12;

1.2 Bières et buveurs

Soit le schéma relationnel suivant :

```
BIERE (marque, nom, degré, couleur)
BAR (numBar, adresse, enseigne)
BUVEUR (numéro, nomB)
FREQUENTE (numBuv, numBar2) avec numBuv ⊆ numéro, numBar2 ⊆ numBar
SERT(numBar3, marque2, nom2) (marque2, nom2)⊆(marque, nom), numBar3⊆numBar
APPRECIE(numApp, marque3, nom3, niveau) (marque3, nom3)⊆(marque, nom), numApp⊆numéro
```

Répondre aux questions suivantes :

- 1. Ensemble des bières appréciées avec un niveau « excellente » par au moins un buveur.
- 2. Ensemble des marques appréciées de façon ni médiocre, ni exécrable par dupont.
- 3. Ensemble des bières servies par un bar et qui sont appréciées de manière exécrable par au moins un buveur.
- 4. Ensemble des bières testées par **tous** les buyeurs dont le nom commence par un 'D'.

1.3 Notes d'étudiants

Soit le schéma relationnel suivant :

```
NOTE(N_ET, CODE, DATEXAM, VALEUR) avec NOTE(N_ET, CODE) \subseteq INSC(N_ET, CODE), NOTE(CODE, DATEXAM) \subseteq EXAMEN(CODE, DATEXAM) ETUDIANT(N_ET, NOM, PRENOM) INSC(N_ET, CODE) avec INSC(N_ET) \subseteq ETUDIANT(N_ET), INSC(CODE) \subseteq MODULE(CODE) MODULE(CODE, MATIERE) EXAMEN(CODE, DATEXAM, PROF) avec EXAMEN(CODE) \subseteq MODULE(CODE
```

Répondre aux questions suivantes :

- 1. ensemble des numéros d'étudiants et des examens où ils ont été absents ; examen d'un module où ils sont inscrits :
- 2. ensemble des numéros d'étudiants ayant passé un examen rédigé par un professeur ayant le même nom (PROF) qu'eux ;
- 3. classement des étudiants pour l'examen de BD du 11/09/2000 (ex-aequo possibles!); {(n et, rang), ...};
- 4. créer une vue NOTEABS affectant un 0 à tous les couples (étudiant, examen) où l'étudiant ne s'est pas présenté à cet examen de module où il était inscrit ;
- 5. créer une vue MOYENNE calculant la moyenne de chaque étudiant dans chaque module où il est inscrit ; les absences sont comptabilisées comme des 0 ;

6. calcul de l'obtention du diplôme : un étudiant est admis si et seulement s'il a obtenu une moyenne supérieure ou égale à 10 dans chaque module où il est inscrit ; dans le cas contraire, il est ajourné ; liste de couples {(n_et, 'admis'|'ajourné'), ...} trié par numéro d'étudiant ;

2. Requêtes de modification

Soit le schéma notes d'étudiants rappelé ci-après, écrire les requêtes SQL suivantes :

```
NOTE(N_ET NUMBER(8), CODE CHAR(8), DATEXAM DATE, VALEUR NUMBER)
ETUDIANT(N_ET NUMBER(8), NOM CHAR(20), PRENOM CHAR(20))
INSC(N_ET NUMBER(8), CODE CHAR(8))
MODULE(CODE CHAR(8), MATIERE CHAR(20))
EXAMEN(CODE CHAR(8), DATEXAM DATE, PROF CHAR(20))
```

- 1. ajout de l'étudiant 20001432, dupont pierre ;
- 2. suppression de l'étudiant 19981245;
- 3. suppression de tous les étudiants ayant comme prénom 'Firmin';
- 4. mise à jour de toutes les notes de l'examen de BD du 11/09/2000 : il faut rajouter un point à chaque étudiant ;
- 5. ajout dans la table INSC de tous les (étudiant, module), tels que l'étudiant s'est présenté à un examen du module ;
- 6. mise à jour à 'Durand' du nom du professeur responsable de tous les examens de BD;

TD BD: SQL LDD

1. Langage de Définition de Données

1.1 Bières et buveurs

Soit le schéma relationnel suivant :

```
BIERE (marque VARCHAR(10), nom VARCHAR(10), degré NUMBER, couleur VARCHAR(10))

BAR (numBar NUMBER, adresse VARCHAR(30), enseigne VARCHAR(10))

BUVEUR (numéro NUMBER, nom VARCHAR(20))

FREQUENTE (numBuv NUMBER, numBar2 NUMBER)

avec numBuv ⊆ numéro, numBar2 ⊆ numBar

SERT(numBar3 NUMBER, marque2 VARCHAR(10), nom2 VARCHAR(10))

avec (marque2,nom2)⊆(marque, nom), numBar3⊆numBar

APPRECIE(numApp NUMBER, marque3 VARCHAR(10), nom3 VARCHAR(10), niveau VARCHAR(10))

avec (marque3,nom3)⊆(marque,nom), numApp⊆numéro
```

La couleur d'un bière, l'adresse d'un bar, ne sont pas obligatoirement renseignées ; le degré d'une bière est défini par défaut à 5° ; toutes les autres colonnes doivent être saisies ; de plus, les clés étrangères doivent être renommées afin de correspondre aux noms des clés primaires qu'elles référencent ; toutes les Contraintes d'Intégrité (CI) de clé (primaire ou étrangère) doivent être nommées.

Ecrire le script SQL permettant de créer ces tables et les contraintes d'intégrité afférentes.

1.2 Notes d'étudiants

Soit le schéma relationnel suivant :

```
NOTE(N_ET NUMBER(8), CODE CHAR(8), DATEXAM DATE, VALEUR NUMBER)

avec NOTE(N_ET, CODE)⊆ INSC(N_ET, CODE),

NOTE(CODE, DATEXAM) ⊆ EXAMEN(CODE, DATEXAM)

ETUDIANT(N_ET NUMBER(8), NOM CHAR(20), PRENOM CHAR(20))

INSC(N_ET NUMBER(8), CODE CHAR(8))

avec INSC(N_ET)⊆ETUDIANT(N_ET), INSC(CODE) ⊆ MODULE(CODE)

MODULE(CODE CHAR(8), MATIERE CHAR(20))

EXAMEN(CODE CHAR(8), DATEXAM DATE, PROF CHAR(20))

avec EXAMEN(CODE)⊆ MODULE(CODE
```

Toutes les colonnes doivent être renseignées, chaque clé primaire et chaque clé étrangère doit être indexée ; la création des tables doit s'effectuer dans l'ordre du schéma.

- 1. Ecrire le script SQL permettant de créer ces tables, index et les contraintes d'intégrité afférentes.
- 2. Ecrire les requêtes suivantes :
 - supprimer l'index portant sur la clé primaire de NOTE ;
 - supprimer la table NOTE;
 - désactiver la contrainte de clé primaire de MODULE ;
 - ajouter la contrainte d'intégrité suivante : une note est comprise entre 0 et 20 ;
 - modifier le type de PROF en le transformant en VARCHAR(20) et en indiquant que cette colonne n'est pas obligatoire;

2. Problèmes

2.1 Mariages

Soit le schéma suivant :

```
MARI(NUM NUMBER(6), EPOUSE NUMBER(6)) avec MARI(EPOUSE) FEMME(NUM)

FEMME(NUM NUMBER(6), EPOUX NUMBER(6)) avec FEMME(EPOUX) MARI(NUM)
```

Quel problème pose-t-il? Comment, pratiquement en SQL, peut-on ajouter des données à une instance de ce schéma? On prendra comme exemple les couples (mari, femme) suivants : {(1,2), (2,1)}.

Dans ce schéma, une personne peut-elle être polygame?

2.2 Mariages bis

Soit le schéma suivant :

Quels avantages et inconvénients procure ce nouveau schéma par rapport au précédent ?

2.3 Mariages ter

Proposer un autre schéma respectant les mêmes contraintes sémantiques en indiquant à nouveau les avantages et inconvénients de votre solution.