
Web Page Personalization to Improve
e-Accessibility for Visually Impaired People

Yoann BONAVERO, Marianne HUCHARD and Michel MEYNARD

LIRMM, CNRS and University Montpellier II, Montpellier, France

bonavero or huchard or meynard @lirmm.fr

Abstract—Today’s assistive technologies aim to improve the
quality of information acquisition for visually impaired persons.
Screen readers and screen magnifiers are the main visual assis-
tive technologies that are currently proposed. However, due to
economical reasons, these technologies do not consider specific
needs of visually impaired people. In this paper, we propose
an approach to make Web pages more accessible for users
who have specific needs. User wishes, like text color, font size,
link color or even more complex wishes including wishes about
brightness or contrast are encoded as user preferences. We also
encode designer graphical choices as designer preferences. From
these preferences, a new Web page design is computed using
a resolution algorithm. We compare two distinct approaches to
make this computation: resolution algorithms from preference
theory domain and an evolutionary algorithm. The comparison
evaluates running time on automatically generated data and on
the sign in Facebook page.

Keywords-Web page, Personalization, visually impaired, evolu-
tionary algorithm.

I. INTRODUCTION

About 285 million people are estimated to be visually
impaired worldwide (39 million are blind and 246 have low vi-
sion) [1]. These figures are constantly growing mainly because
of increased life longevity due to medical advances. In France,
people with disabilities, especially visually impaired people,
use internet more frequently and have more computer devices
or interfaces than the average French sighted population [2].

Information and communication technologies are increas-
ingly used by everyone in everyday life. Unfortunately, it can
be a double-edged issue for people with visual impairment.
On the one hand, these technologies offer many solutions for
current life activities like online purchase or administrative
services. They give access to information that was previously
inaccessible. On the other hand, many issues remain, due to
the design, development and technologies used to make the
website content. As a consequence, these technologies which
are able to compensate user disabilities can also be a new
source of exclusion and discrimination.

Today’s technological environment offers numerous online
services and multiple data sharing capabilities. This data is
distributed in many places and under different formats. Data
can be a Web page, text based document, images, video,
sound, etc. Concerning websites, data is displayed on pages
according to a visual style defined by the author. The different
choices made by the designer create the graphical context
of the page which reflects the brand or the organization.

This graphical design is intended to influence the reader to
recognize, assimilate, guide, memorize a page and associate it
with the related brand or organization. It also determines the
page understanding and user’s navigation, and it is intended
to help the user in these tasks.

The W3C consortium publishes sets of technical specifica-
tions to make accessible websites. The conformity of websites
to these specifications assumes that they can be used by
assistive technologies. Tools and guidelines are provided to
developers and end users; Web Content Accessibility Guide-
line (WCAG 2.0 [3]), and other guidelines including User
Agent Accessibility Guideline (UAAG [4]), Authoring tool
Accessibility Guideline (ATAG [5]) and the Web Accessibility
Initiative - Accessible Rich Internet Application (WAI - ARIA
[6]). Organizations, like BrailleNet, have been created to
operationalize the different standards of the W3C guidelines
including “AccessiWeb”. Unfortunately e-accessibility is not a
main concern of website designers and developers. It is often
considered as a waste of time or an additional development
cost, giving unsightly results which are only targeting a small
part of the population.

Assistive technologies have existed for several years and
are widely used by disabled people. Screen readers allow the
user to get information in another communication way: vocal
synthesis or braille display are used to vocalize information or
display it in braille. Visually impaired people with low vision,
use their partial sight as the principle means to access infor-
mation. Screen magnifiers are applications that improve visual
comfort and increase information acquisition. With these tools,
it is possible to use zoom and color filters to compensate visual
issues. These tools are useful but not sufficient to ensure e-
accessibility because they have a general purpose, and they
are not adapted to specific needs. This is mainly due to an
important maintenance cost to maintain compatibility with
some applications like browsers, and to after-sales technical
issues.

In this paper, we address the problems of adapting Web page
design to the specific needs of a visually impaired person. Our
approach proposes replacing the current pixel-level treatment
process (in magnification filters) by an adaptation process
based on the knowledge of the HTML element types and their
properties. The adaptation is performed from a set of user
wishes also called preferences. These preferences are the basis
for a dynamic adaptation. Firstly, the users specify their spe-
cific needs in terms of wishes. Then, some Web page elements

are adapted by solving the preference set. In Section II, we
explain how existing visual assistive technologies work, and
we highlight their main drawbacks. Section III presents our
approach in detail and proposes a user wishes representation.
We present in Section IV the user’s preference theory as a
basis of this work. We develop in Section V a new approach
allowing us to deal with real simple pages. We conclude in
Section VI.

II. EXISTING WORK AND PROBLEM STATEMENT

In this section, we explore several hardware and software
solutions developed to improve website accessibility for visu-
ally impaired people with low vision. We distinguish between
two main categories of approaches and tools. Some of them
are used as development tools whilst others are used by end-
users.

The World Wide Web Consortium (W3C) is the origin of
HTML and CSS standardization. It also works on accessibility
via several initiatives including the Web Accessibility Initiative
- Accessible Rich Internet Application (WAI-ARIA [6]). These
standards have evolved through many versions to address
the emergence of new technologies. They have two main
objectives. The first is to ensure that resources can be parsed
and used by external assistive technologies. The second is
to provide a minimal access to contents for people who
don’t use assistive technologies. These standards do not target
a specific programming language (HTML, JavaScript, CSS,
etc.). In addition to the standards, guidelines like WCAG [3],
UAAG [4] or ATAG [5] framework and tools are published to
ease the use of the standards. We can mention “AccessiWeb”,
developed by the BrailleNet organization which provides a
simple operational interpretation of standards. The rules and
standards are classified according to their importance in mak-
ing websites accessible. Three increasing accessibility levels
have been defined (A, AA and AAA). The first level (A) gives
basic mandatory advice to ensure information accessibility.
The second level (AA) notifies important recommendations
to be respected to avoid difficulties in accessing information.
The third and latest level (AAA) is about additional and
optional ways to improve information access quality. When
Web designers and developers include accessibility dimension
in their websites, they mainly try to reach the intermediary AA
level. Only a few websites which are very specialized require
the highest level AAA.

Many existing tools allow developers to improve accessibil-
ity of their websites. These tools analyze the HTML source
code and automatically rewrite it, or assist the developer
to correct it in accordance with the standards [7]. These
tools can be split into two categories: evaluation tools and
transformation tools. The main drawback of these tools is
that they do not permit adaptation for all user’s needs. Some
user needs can contradict each other. Conflicts can appear
due to dependencies between needs. Consequently, automated
evaluation and transformation tools can only assist developers
to reach a general scope accessibility but are limited to
implementation of the minimum recommended by standards.

Some kinds of applications which are improving accessibil-
ity tools are available to get information from websites and
report it to the user through another communication protocol.
For example, for users with low vision, it is possible to retrieve
information by transforming visual output with magnification
applications or accessibility browser options and extensions.
Magnification programs allow the user to zoom on windows.
Some of them propose font smoothing to avoid blurred char-
acters, and mouse pointer modification to improve tracking
movements. As a last example, magnification programs can
apply filters on the window. Filters include “grey scale”, “one
color scale”, “black and white”, or “color inversion”. The
browser options and extensions enable us to manipulate style
sheets. It is possible to completely remove style sheets or to
define a unique style sheet that will be applied to all Web
pages. To facilitate modifications, many browsers provide a
graphical interface to help configuration of such properties as
background color, text color and size or link color.

With the two solutions defined previously (screen magnifier
and style sheet redefinition), we can theoretically adapt almost
all pages to be suitable for a large part of the impaired popu-
lation. However, in practice it is more complex. These pages
could be even better modified for the population, and there is a
requirement for additional tools to meet more needs of visually
impaired people. For various reasons, the existing solutions are
not suitable for everyone. For example, magnification tools
perform treatments on global images. Hereafter, we develop a
small practical example.

Text
Text

Text Text

Text
Text

Text Text

Ct=2.5
Ct=2.5

Ct=2.5 Ct=1

A
B

C D

Ct : Contrast
A : Original
B : grey scale filter

C : invert color filter
D : black & white filter

Figure 1. Filter application

Figure 1 illustrates in A an original text and its background.
In B, we apply color inversion to A; C is obtained by applying
grey scale filter to A; D is obtained by applying black and
white filter to A. The contrast between two graphical elements
is a value between 1 and 21, 1 is the null contrast and 21 the
maximum contrast. The problem is that if there is low initial
contrast between text and background, a filter cannot increase
it to improve readability, except the black and white filter.
However, in the “black and white” filter case, if both text and
background are too light or too dark, both will become equal
to white or dark. Thus the contrast is reduced to 1. This is
due to the conversion threshold of the application when all

elements are both below or both higher than this threshold.
To avoid this, the filter software should have an adjustable
threshold but this is not often the case in practice.

The most currently used browsers have modules, extensions
or simply options to transform Web pages. This is based on
style sheet rewriting or disabling. Disabling the style sheet
only keeps the content, and a lot of information about the
context of the page, the brand image, etc. is lost. An incon-
venience of this solution is that if developers don’t respect a
proper separation between source code and style sheet, several
problems of overlap, missing, or unreadable information can
occur. Style sheet rewriting is another alternative where the
page design is changed. In this alternative, the user can define
some properties like text color, background color, link color.
More advanced users can define their own style sheet and
use it for all the Websites they browse. This solution allows
the user to keep the page layout and to change properties
such as colors, but the context is still lost when important
modifications have been done in order to compensate the user
disabilities. Moreover, in this solution, the user often has to set
many properties, including text color, link color, visited link
color, hovered link color, title level 1 color, title level 2 color,
etc. As a result, he has to manipulate a set of technical terms
and a lot of options, and this task often is cumbersome and
time consuming. Furthermore, these property changes have to
be done through interfaces that may be difficult to manipulate
by an impaired person.

Beyond these modules or extensions, some more evolved
proposals try to enhance them with the widest physical char-
acteristics configuration support [8]. In these applications, real
time transformations are applied on Web pages in order to
address these needs. These end-user side applications allow the
user to configure text properties such as size, letter spacing,
or line spacing, colors of the text, background and links. They
also allow the user to configure the image display (show or
hide) and table display. Once the modifications are applied,
almost all information about website colors may disappear.
Then, the chosen site ambiance may be lost. In our approach,
our objective is to adapt a page in accordance with its original
appearance, with its structure and with the user’s preferences.

Even if some navigation problems can be avoided when
webmasters respect all standards, statistics tell us that less than
10% of public websites would be fully accessible [9]. Other
problems only depend on user vision. For example, if a user
needs to have a dark text on a light background and if the
page already contains both situations which are one menu with
light text on dark background as well as a dark text on a
light background, it is impossible with classical filters to get
a relevant adaptation. If we use inversion color filter to make
the menu accessible, the page content becomes inaccessible.
Moreover, this kind of manipulation can generate dazzle from
other parts of the website.

This last example shows us that it is not relevant to deal with
a global image. To adapt the previous page we have to split
it into two parts, the menu and the content, thus considering
the type of the manipulated elements. We propose in the next

section a new approach to separately process page elements
according to their semantics.

Two research works close to ours deserve to be mentioned.
In [10], authors propose to configure Web page display ac-
cording to user actions and behavior. In our case, we want to
propose an accessible Web page using user’s needs considering
the initial page. In [11], they propose to personalize Web
display (shopping gallery) to a specific user or user group.
The analysis of user usage on existing websites allows user
pages to be shown with different structure and navigation. In
our case, we want to apply adaptation in the client-side on
original pages which initially are identical for all users. Our
approach is led by all these observations and aims at proposing
a personal adaptation following the wishes of users. The main
principles of this approach are developed in the next section.

III. OUR APPROACH

We aim to develop a general approach which is independent
from specific pages and which is able to respond to any
specific user’s wish. This new approach attempts to solve the
principles problems shown in the previous section.

To solve the global treatment problems described in section
II, our approach considers the following four components:
Objects and properties (HTML elements and style) of the
page written in the HTML and CSS files; Variation points
(for example the color of a specific element); User’s wishes;
Algorithms for finding an adaptation from initial Web page
according to the user’s wishes.

Web pages are composed of HTML elements. These ele-
ments are organized within a tree structure. Each element has
physical properties that determine its appearance, including
its size or its color and more abstract properties that define
the element type (menu, content, image, etc.). From HTML
5 version, there are tags to describe semantic types including
navigation blocks (menu), articles, sections, Thus, if the
page is implemented in HTML 5, we have adequate high-level
information, but where the page is written in an older HTML
version, it is necessary to detect some important parts of the
page particularly the menu and the main content section.

We define a set of objects {O1, O2, .., On} that represent all
HTML elements that are important in the page modification
process. Elements that will not be updated or that will not be
used in computing are excluded from the object set.

The variation points are a set of variables {V1, V2, .., Vm}
induced by properties which are either basic properties written
in the HTML or CSS files, or computed from these basic
properties. For example, height, width or color are basic
properties found in the HTML or CSS files, while area is
a computed property derived from height and width.

To be able to change the value of the red color component
of an object, a variable is added to the variation points. This
variable domain is the value set of the red color component
of the object. A pair composed of an object and a feature is
associated with one and only one variable.

On these variables, a user can make choices that are called
preferences or wishes {C1, C2, .., Ck}. For instance a user

can say: “I prefer light background to dark background for
the main body page”. This preference only concerns the main
body background and ignores the background of other page
elements. With this page element segmentation we can define
different preferences for each object. All choices made on
one or more variables constitute user’s preferences. The main
difference to existing work using user’s preferences is that our
preferences are not direct values for features like in [8], but
constraints to determine such values.

We have considered different levels in the description
of preferences. The basic preferences are represented as
Vi op xi >p Vj op yj , where Vi and Vj are two variables
(with possibly Vi = Vj), >p the preference symbol (A >p B
means A preferred to B), op is a boolean operator like = and
xi (resp. xj) is in the domain of Vi (resp. Vj). To represent
the user’s wish “I prefer black text to blue text”, we use the
variable cT to represent the color of a text object T . The
domain of cT is {white, red, blue, black}. The user’s wish is
expressed as: cT = black >p cT = blue.

This representation can be improved by adding conditional
preferences to be able to represent: “I prefer bold font to
normal font if the font color is yellow”. Here, we introduce a
new variable wT for representing the weight of the text, and a
new operator ’:’ to represent the condition. This wish can be
represented as cT = yellow : wT = bold >p wT = normal.
This representation is considered in Section IV. In this paper
we do not explore how to obtain the user’s wishes. It is another
research element that will be explored in future work. For
example, we may be able to ascertain a user’s wishes using a
preference learning algorithm.

We also explored in Section V another extended represen-
tation in which we use any complex function on variables and
their domain values. This allows us to express wishes like
“I would like to have a text size higher or equal to 14pt”
or “I would like to have a contrast between text and direct
background higher or equal to 50%”. In this last example, the
contrast is a binary function. It represents a distance between
the colors of the two objects: the text T and the body B.
We define two variables, cT that represents the text object
color and cB that represents the text body color. We define
a contrast function contrast(x, y) that returns the contrast
between x and y. The result of this function is compared to a
user specified domain value, giving a complex wish, which is
an evaluable expression: contrast(cT , cB) ≥ l where l is the
required level.

We evaluated the size of the input data of our approach on a
few sample websites. Depending on the Web page, the number
of variables representing HTML elements associated with a
basic feature can vary from around 10 to hundreds for the
biggest websites. For example, among most visited websites,
the “Facebook” registration page will be represented in our
system by about 40 variables to implement the preference:
“contrast between text and direct background higher or equal
to x”. For this preference we have to extract all text elements
and their direct backgrounds, making contrast variables. For
the Google search page (not the result page) we obtain around

17 variables, while for “BBC News” home page we obtain
around 200 variables. These values are rounded because large
parts of websites are dynamic and have different elements each
time a page is loaded (these computations have been made on
november, 14, 2013).

Domains of variables may have several dimensions. For
example, the text size variable domain generally has about
10 or 20 values. By contrast, the color variable domain can
reach 224 values in a true context. The number of variables
depends on the type and the complexity of the given user’s
preferences.

In the next section, we introduce preference theory as a the-
oretical framework for solving our problem. This theory also
provides a comparative basis for another solving algorithm.

IV. PREFERENCE THEORY

The first approach that we considered to solve the adaptation
problem is the preference theory approach [12]. In this section,
we explain how user’s preference theory can solve Web
page adaptation problems and we outline the main resolution
process. We also explain why a direct implementation of this
approach does not scale in our context.

Many representations [13], [14], [15] allow formal descrip-
tion of user’s wishes for solving different problems. Most
of the approaches rely on basic and conditional preferences
as defined in previous Section III. In our context, general
preferences like "something preferred to something else" may
have to be duplicated. For instance, for a text size variable
V and its domain {6, 8, .., 14}, if the value 14 is preferred
to the others we have to create the following preferences:
V = 14 > V = 6, V = 14 > V = 8, V = 14 > V = 10,
V = 14 > V = 12. The approach works on two data sets. The
first set groups all variables, while the second set gathers the
user’s preferences. Two ways of solving and finding solutions
exist: an explicit resolution or an implicit resolution.

In explicit resolution, the first step consists of creating all
possible adaptation solutions. In our context, this consists
of creating all combinations of valued Web page properties.
A solution is a set of valued variables, where each defined
variable has a value. For example, if we only have the two
variables cT for text color and cB for background color, a
solution may be {cT = blue, cB = white}. The next step
consists of producing for each preference, a pair of sets where
the first set contains solutions satisfying the preference and
the second contains solutions that satisfy the complementary
preference. Solutions that do not satisfy the preference or
its complementary are not included in the sets. For pages
with over 10 elements of 10 or more values in domain, it
is impossible to process this first generation step in a short
time. By short time we mean an additional time to the page
loading time that can be accepted by the user. If the user has
to wait too long for each page to load, the application based
on this approach will rarely be adopted. We implemented this
solution to evaluate its feasibility.

The implicit resolution is slightly different. All combina-
tions of variable sets and values don’t need to be generated.

Preferences are given in intent (using a description in a
formula in propositional logic) and the resolution uses these
intents as input parameters. Ultimately, we obtain a partially
ordered set of expressions which describe the solutions. An
example of such expression, for representing “a blue text
and a minimal contrast of x% between text and background
color” is cT = blue ∧ contrast(cT , cB) ≥ x. The initial
resolution process is faster than the previous one. However,
the difficulty has just been delayed. Now, a partially ordered
set of expressions is produced, and we have to find in the
whole set of solutions if a solution exists and if this is the
case, which solutions correspond to these expressions. If top
solutions contain a computed part like contrast(cT , cB) ≥ x,
then we have to calculate the contrast for each solution to
determine if it has the required level.

The preference theory approach gives the best solutions in
adapting Web pages but we show in the following section
that, with a direct implementation of the approach, the running
time exceeds what a user may find acceptable. Nevertheless,
preference theory provides a theoretical framework and an
initial way to achieve adaptation solutions. In the next section
we present a second approach that allows us to deal with
practical cases.

V. AN EVOLUTIONARY ALGORITHM BASED APPROACH

In order to face the scalability issues, we considered defining
our problem as an optimization problem and to adopt a meta-
heuristic approach. An evolutionary algorithm has been chosen
to cross the whole solution set in order to find a “good”
solution, using a set of basic modifications on a solution.
These basic modifications must allow us to potentially reach
any solution of the whole solution set, but only part of the
solutions will be explored in order to reduce the computational
complexity. Basic modifications are implemented by operators
including selection, crossover or mutation. The chosen algo-
rithm processes a local search trying to reach a best local
solution.

Among evolutionary algorithms, we chose the Non dom-
inated Sorting Genetic Algorithm II (NSGA-II [16]) which
is a multi-objective genetic algorithm (MOGA). This feature
allows us to separate basic objective functions into differ-
ent main objectives and to obtain multiple Pareto-optimal
solutions. NSGA-II is the evolution of NSGA [17], and it
mainly reduces the complexity of the previous version. It has
a computational complexity of MN2 instead of MN3 where
M is number of objectives and N is the population size. A
population is a set of solutions evolving through operators
along algorithm execution.

NSGA-II is an iterative process. At the first iteration we
create and randomly initialize a population P0 that contains
N solutions. Duplicated solutions may exist. Each individual
is rated by objectives functions. We sort the population based
on non-domination to obtain several solution groups called
fronts. Rank one is assigned to the first front (solutions not
dominated by any other solution), rank two to the second
front (solutions dominated only by solutions of the first

front) and so on. To each solution is assigned a distance
value called crowding distance [18], which maintains diversity
between the solutions. This distance is used by the selection
operator to select solutions that may evolve thanks to crossover
operator and mutation operator. The new population obtained
after application of the operators is called offspring O. We
compute the objective functions on each individual of O. The
union operator combines the previous population P0 and the
offspring O to get a doubled size intermediate population.
This intermediate population is reduced by keeping the N
best solutions in terms of non-domination to give the next
population P1. This is repeated until the termination criteria
is achieved.

In our context, we represent a solution as a list of valued
variables. For example {V1 = x, V2 = y, V3 = z . . . } where
V1, V2 and V3 are three variables. x, y and z are respectively
in the domains of V1, V2 and V3. The crossover operator
builds a new solution by composing two parent solutions. The
new solution is composed of odd variables of the first parent
solution and even variables of the second parent solution. For
example, if the first parent is {Vi1 , Vi2 , Vi3 , Vi4 , Vi5 . . . } and
the second parent {Vj1 , Vj2 , Vj3 , Vj4 , Vj5 . . . } the crossover
operator builds {Vj1 , Vi2 , Vj3 , Vi4 , Vj5 . . . }. The mutation op-
erator randomly chooses which variables of a solution will
be mutated and assigns to these variables a value chosen
randomly in their respective domains. The selection operator
is based on crowding distance to select the solutions leading
to the next population.

As said previously, such an algorithm does not compute the
whole solution set. Rather, selection, crossover and mutation
operators enable us to compute solutions in the neighborhood
of the current considered solutions, trying to reach solutions
that improve the objectives. In this approach the complexity
induced by the huge number of adaptation solutions can be
highly reduced. We implemented this NSGA II version in C++
in order to evaluate its scalability on our problem. Table I
shows and compares on several datasets (A, B and Facebook)
the running time of our implementations of the algorithm of
preference solving and of the evolutionary algorithm NSGA-II.
For the NSGA-II implementation running time, these results
are the average of 400 executions. The results of Table I have
been obtained on a common laptop with quad core (2.6Ghz)
microprocessor assisted by 8GB of DDR3 RAM.

Table I
RUNNING TIME OF PREFERENCE THEORY ALGORITHMS AND NSGA-II

❳
❳
❳
❳
❳

❳
❳❳

Data
Algos

Pref. algos NSGA-II

A 6 mn < 1 ms
B > 24h 500ms

Facebook > 24h < 500ms

The two first datasets A and B have been automatically
generated in order to represent data that may be found in very
simple Web pages. A dataset is composed of only 6 variables
with 6 values in each domain. Some simple preferences
were given between two values of the same or of different

variables. In this case, preference theory algorithms (explicit
approach) have to generate the 66 solutions, which gives a
running time of 6 minutes. Meanwhile, NSGA-II algorithm
can find a “good” solution in less than one millisecond.
Each objective function returns for a solution a quality value
corresponding to one criterion. A good solution is a solution
that satisfies all the user’s wishes but is not especially the best
one regarding objectives. Best solutions have the optimal value
for all criteria. The second dataset (B) is also an automatically
generated dataset with 8 color type variables and 32768 values
in their domains. Here, with the first approach (preference
theory), there is a combinatorial explosion (327688 solutions
to be parsed) and we cannot obtain the results in less than
one day, while only about 500ms are necessary for NSGA-II
algorithm to get a good solution.

The last dataset is derived from the real Facebook home
page which is accessed when a user is not authenticated
(registry page). We consider the wishes “contrast between
text and direct background is higher or equal to x%” with
x = 40%. The variables correspond to the text elements
and their direct background. We obtain 36 variables and 24
binary relations representing wishes, and we consider 215

domain values. The running time tends to be lower than
the B case. The strong dependencies here, between variables
(many texts have the same background element then the
same associated background color variable) may explain the
short execution time. Population evolution through the chosen
operators appears to work better in this case.

The results obtained using a direct implementation of the
preference theory approach (explicit resolution) are disappoint-
ing, and we expect that implementing the implicit resolution
would produce similar results, because the implicit resolution
just moved the difficulty (generating all solutions) to the end
of the resolution process. As the best solutions are described
by an expression, we have to search these concrete solutions
(if any exists) in the whole solution set, leading to a huge
computational time. Fortunately, the results with NSGA-II are
very encouraging. They show the feasibility of the approach on
simulated data and on specific user preferences, corresponding
to a common case of visual disability.

VI. CONCLUSION

Existing assistive technologies help visually impaired peo-
ple in accessing information. However, they do not provide
fully relevant solutions for all kinds of visual disabilities and
they can radically change the website appearance. To address
the problem of adapting Web pages to specific needs, we
investigated the use of the theoretical framework of prefer-
ence theory. Nevertheless, while implementing the explicit
resolution approach, we faced a scalability issue. It is worth
noting that future research on preference theory may solve
this problem. Then we explored the use of the evolutionary
algorithm NSGA-II as an alternative approach. Even if they
still require confirming on more datasets, the initial results are
encouraging.

As future work we plan to investigate other resolution
approaches. We plan to model our user’s wishes as a Constraint
Satisfaction Problem (CSP modelling) and to evaluate the
performance of the existing constraint solvers in our context.
Since our target is helping people with visual deficiency,
we will test the approach on many frequently accessed Web
pages and we will study how to facilitate the expression of
preferences by the end users. An experimentation with visually
impaired persons will be organized.
Acknowledgments The authors would like to thank Berger-
Levrault which supported this work with a grant and Martine
Hornby for her assistance in english revision.

REFERENCES

[1] “Visual impairment and blindness, fact sheet n°282,” World Health Org.,
http://www.who.int/mediacentre/factsheets/fs282/en, oct., 2013.

[2] G. Montagné, “Visually impaired and blind persons insertion in to-
day’s world (l’inclusion des personnes aveugles et malvoyantes dans
le monde d’aujourd’hui), in french,” Rapport pour le Ministère du
travail, des relations sociales et de la solidarité, 2007, http://lesrapports.
ladocumentationfrancaise.fr/BRP/084000321/0000.pdf.

[3] Web Content Accessibility Guidelines, World Wide Web Consortium,
http://www.w3.org/TR/WCAG20/.

[4] User Agent Accessibility Guidelines, World Wide Web Consortium, http:
//www.w3.org/TR/UAAG20/.

[5] Authoring tools Accessibility Guidelines, World Wide Web Consortium,
http://www.w3.org/TR/ATAG20/.

[6] Web Accessibility Initiative - Accessible Rich Internet Applications,
World Wide Web Consortium, http://www.w3.org/WAI/intro/aria.

[7] M. Y. Ivory, J. Mankoff, and A. Le, “Using Automated Tools to
Improve Web Site Usage by Users with Diverse Abilities,” Information
Technology and Society, vol. 3, no. 1, pp. 195–236, 2003.

[8] J. T. Richards and V. L. Hanson, “Web Accessibility: A Broader View,”
in In WWW ’04: Proceedings of the 13th international conference on
World Wide Web. ACM Press, 2004, pp. 72–79.

[9] K. Cullen, L. Kubitschke, T. Boussios, C. Dolphion, and I. Meyer,
“Web accessibility in european countries: level of compliance with
latest international accessibility specifications, notably wcag 2.0, and
approaches or plans to implement those specifications (2009),” 2009.

[10] C. Domshlak, R. I. Brafman, and S. E. Shimony, “Preference-based
Configuration of Web Page Content,” in Proc. of Int. Joint Conf. on
Artificial Intelligence, 2001, pp. 1451–1456.

[11] B. Mobasher, R. Cooley, and J. Srivastava, “Automatic personalization
based on Web usage mining,” Com. ACM, vol. 43, no. 8, pp. 142–151,
2000.

[12] S. Kaci, Working with Preferences: Less Is More, ser. Cognitive Tech-
nologies. Springer, 2011, iSBN:978-3-642-17279-3.

[13] C. Boutilier, F. Bacchus, and R. I. Brafman, “UCP-Networks: A Di-
rected Graphical Representation of Conditional Utilities,” CoRR, vol.
abs/1301.2259, 2013.

[14] C. Boutilier, R. I. Brafman, H. H. Hoos, and D. Poole, “Reasoning with
conditional ceteris paribus preference statements,” in Proc. of the Fif.
conf. on Uncertainty in artificial intelligence, ser. UAI’99, 1999, pp.
71–80. [Online]. Available: http://dl.acm.org/citation.cfm?id=2073796.
2073805

[15] P. Haddawy and S. Hanks, “Representations for decision-theoretic
planning: Utility functions for deadline goals.” in KR 1992.
Morgan Kaufmann, 1992, pp. 71–82. [Online]. Available: http:
//dblp.uni-trier.de/db/conf/kr/kr92.html#HaddawyH92

[16] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast and Elitist
Multi-Objective Genetic Algorithm: NSGA-II,” 2000.

[17] N. Srinivas and K. Deb, “Muiltiobjective optimization using nondomi-
nated sorting in genetic algorithms,” Evolutionary computation, vol. 2,
no. 3, pp. 221–248, 1994.

[18] M. Laumanns, L. Thiele, K. Deb, and E. Zitzler, “Combining con-
vergence and diversity in evolutionary multiobjective optimization,”
Evolutionary computation, vol. 10, no. 3, pp. 263–282, 2002.

	Introduction
	Existing work and problem statement
	Our approach
	Preference theory
	An evolutionary algorithm based approach
	Conclusion
	References

