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Abstract

We consider positive rules in which the conclusion may contain existentially quanti-
fied variables, which makes reasoning tasks (such as conjunctive query answering or
entailment) undecidable. These rules, called ∀∃-rules, have the same logical form as
tuple-generating dependencies in databases and as conceptual graph rules. The aim
of this paper is to provide a clearer picture of the frontier between decidability and
non-decidability of reasoning with these rules. Previous known decidable classes were
based on forward chaining. On the one hand we extend these classes, on the other hand
we introduce decidable classes based on backward chaining. A side result is the defini-
tion of a backward mechanism that takes the complex structure of ∀∃-rule conclusions
into account. We classify all known decidable classes by inclusion. Then, we study the
question of whether the union of two decidable classes remains decidable and show that
the answer is negative, except for one class and a still open case. This highlights the
interest of studying interactions between rules. We give a constructive definition of de-
pendencies between rules and widen the landscape of decidable classes with conditions
on rule dependencies and a mixed forward/backward chaining mechanism. Finally, we
integrate rules with equality and negative constraints to our framework.

Key words: Rules, TGD, Decidability, Forward Chaining, Chase, Backward
Chaining, Rule Dependency
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1. Introduction

Rules are fundamental constructs in knowledge-based systems and databases. Here
we consider positive rules in first-order logic (FOL) without functions, of the form
H → C, where H and C are conjunctions of atoms, respectively called the hypothesis
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and conclusion of the rule, and there might be existentially quantified variables in the
conclusion. E.g., the rule R = Human(x) → Parent(y, x) ∧ Human(y) stands for
the formula ∀x(Human(x) → ∃y(Parent(y, x) ∧ Human(y))). We call this kind of
rules ∀∃-rule (pronounced “forall-exist-rule”). Existentially quantified variables in the
conclusion, associated with arbitrary complex conjunctions of atoms, make ∀∃-rules
very expressive but also lead to undecidability of reasoning. Several decidable classes
have been exhibited, in both artificial intelligence and database domains. The general
aim of this paper is to bring out a clearer picture of the frontier between decidability
and undecidability of reasoning.

∀∃-rules have the same logical form as very general database dependencies called
tuple-generating dependencies (TGD) [1] and as conceptual graph (CG) rules [36, 8].
TGDs have been extensively used in databases as high-level generalizations of different
kinds of constraints. An example of a prominent application is data exchange, where
a building block is the notion of schema mapping, which specifies the relationships
between heterogeneous database schemas [30]. Schema mappings rely on TGDs to
generate unknown values, i.e., existentially quantified variables. Among new applica-
tions, let us mention web data extraction, which consists of automatically identifying
and extracting objects from web pages using domain-specific knowledge, and gener-
ating from them higher level objects, which involves dynamically creating new object
identifiers [15]. More generally, ∀∃-rules are well-suited to applications where new
entities need to be automatically generated.

Querying knowledge bases is a central problem in knowledge representation and
in database theory. A knowledge base (KB) is classically composed of a terminolog-
ical part (called here the ontology) and an assertional part (called here the facts). KB
queries are supposed to be at least as expressive as the basic queries in databases, i.e.,
conjunctive queries, which can be seen as existentially closed conjunctions of atoms. A
fundamental decision problem is thus (Boolean) conjunctive query answering, which
can be expressed as an entailment problem: is a (Boolean) conjunctive query entailed
by a KB? ∀∃-rules are an abstraction particularly well-suited to the representation of
ontological knowledge in this context. They generalize several specific knowledge rep-
resentation languages adapted to query answering, e.g., RDFS [31] (the basic semantic
web language), constraints in F-logic-Lite [16, 12] (a powerful subset of F-logic, a for-
malism for object-oriented deductive databases), as well as the core of new families of
description logics (DL) tailored for conjunctive query answering [18, 33, 6, 13].

In this paper, instead of focusing on a particular formalism, we consider an ab-
stract framework expressed in first-order logic and based on ∀∃-rules. Our fundamen-
tal entailment problem (noted ENTAILMENT) can be expressed as the above mentioned
Boolean conjunctive query answering problem, or equivalently as a fact entailment
problem (is a fact entailed by a KB?) or as a rule entailment problem (is a rule en-
tailed by a KB?). These three problems can also be recast as fundamental problems
in databases, respectively known as (Boolean) conjunctive query answering under con-
straints expressed by TGDs, conjunctive query containment w.r.t. a set of TGDs and
TGD implication. Our results on ENTAILMENT are thus directly applicable to any of
these problems.

As ENTAILMENT is undecidable ([10][19] for TGDs, [3][8] for CG rules), our aim
is to define large decidable classes of ∀∃-rules, expressive enough to generalize various

2



specific formalisms or languages for describing ontologies. Until now, there were only
decidable cases based on the forward chaining scheme (called the chase in databases
[32]). Forward chaining may not halt, as can be seen for instance with the rule R =
Human(x) → Parent(y, x) ∧ Human(y): once R has been applied, it can be applied
again infinitely and each application produces a fact that is not equivalent to any of
the previous ones. Exhibited decidable classes of rules are based on cases where the
forward chaining halts (e.g., positive Datalog rules, in which the rule conclusions do
not add new variables), or can be stopped after a number of steps depending on the KB
and the query [32, 12]. We enrich the landscape of decidable cases by extending known
decidable classes based on forward chaining but also by introducing new decidable
classes based on backward chaining.

The next question is whether known decidable cases can be combined while keep-
ing decidability. We show that the answer is generally “no” if by “combining” we
mean making the rough union of decidable sets of rules. We thus refine this notion
by considering the notion of dependency between rules introduced in [4]. We use the
structure of the graph that encodes rule dependencies to define conditions under which
decidable classes of rules can be safely combined.

Outline of our contributions. We now present our main results in further detail. De-
cidable classes of ∀∃-rules have long been defined and used. To classify them, we dis-
tinguish between abstract and concrete decidable classes. Abstract classes are based
on the behavior of reasoning mechanisms, i.e., forward and backward chaining mech-
anisms. This behavior is generally not provided with a finite procedure allowing to
determine whether a given set of rules has the property or not. Concrete classes are
defined by computable syntactic properties.

In this paper, we identify three abstract classes. Two of them are based on a forward
chaining scheme: finite expansion sets (fes) [8], ensuring that a finite number of rule
applications is sufficient to answer any query, and the more general bounded treewidth
sets (bts), inspired by the work of [12], that relies on the finite treewidth model property
of [25]. The third class is based on a backward chaining scheme: a finite unification set
(fus) [7] ensures that any query can be finitely rewritten. Unsurprisingly, these abstract
classes are not recognizable, i.e., checking whether a given set of rules belongs to one
of these classes is undecidable (Theorem 5).

Since abstract classes are not recognizable, we turn our attention to concrete classes
implementing their abstract behavior. These classes are less expressive but recogniz-
able.

In relationship with forward chaining, we introduce two new decidable classes im-
plementing bts behavior: frontier-guarded rules and their extension to weakly frontier-
guarded sets of rules, which are generalizations of the classes defined in [12]. These
classes have the advantage of unifying some other known classes [7]. We point out that
their expressive power allows us to represent a set of description logic statements that
are particularly interesting in the context of new DLs designed for query answering. To
show that (weakly) frontier-guarded rules have the bts property, we introduce a simple
tool, called the Derivation Graph, as well as reduction operations on this graph. The
fundamental property of this tool is as follows: if every derivation graph produced by
a set of rules can be reduced to a tree (or a forest), then this set of rules has the bts
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property, which is especially the case for (weakly) frontier-guarded rules (Theorem 7).
To study the backward chaining behavior, we define a backward chaining mech-

anism tailored for ∀∃-rules. The backward chaining mechanisms classically used in
logic programming process rules and goals (i.e., queries) atom by atom. Our back-
ward chaining mechanism keeps accounting for the complex structure of a rule con-
clusion induced by existential variables, by characterizing sets of atoms which should
not be processed separately. More precisely, rule conclusions and goals are decom-
posed into subsets of atoms, called pieces, which can be seen as “units of knowledge”
and are processed as a whole. E.g., in the above rule R, {Parent(y, x), Human(y)}
is a piece. We thus define unification based on pieces, called piece-unification. We
exhibit two concrete classes implementing fus behavior: atomic-hypothesis rules and
domain-restricted rules.

Having a range of decidable classes at our disposal, an interesting question is
whether the union of two decidable classes remains decidable. This question is of ut-
most importance if we want to merge two ontologies for which decidability of reason-
ing is ensured by different syntactic properties, or if, having implemented the semantics
of two knowledge representation languages with sets of rules belonging to decidable
classes, we want to consider the language built from the union of both languages. We
present a systematic study of this question for all decidable classes we are aware of.
With the exception of disconnected rules, which are universally compatible, and of a
still open case, we show that the union of two incomparable decidable classes is never
decidable (Theorem 13). These rather negative results on the rough union of decidable
cases highlight the interest of precisely studying interactions between rules.

A complementary result is that ENTAILMENT remains undecidable even with a sin-
gle rule (Theorem 8). This result has an important immediate consequence: adding
a single rule to any set belonging to a decidable class of rules can make the problem
undecidable.

We then turn our attention to dependencies between rules [4]: a rule R′ is said to
depend on a rule R if the application of R on a fact may trigger a new application of
R′. We show that this abstract definition can be effectively implemented by the piece-
unification of our backward chaining mechanism: R′ depends on R if and only if there
is a piece-unifier between the hypothesis of R′ and the conclusion of R (Theorem 15).
We are thus able to effectively build a graph encoding dependencies between rules.

ENTAILMENT is decidable when this graph has no circuit [4]. Furthermore, when
all strongly connected components of this graph are fes (resp. fus), then the set of
rules is a fes (resp. fus), Theorem 17. Even more interesting is the fact that, with
additional conditions on this graph, it is possible to combine a bts and a fus into a
new decidable class, which strictly contains both bts and fus (Theorem 19). In the
case where this bts is a fes, or more generally is provided with an effective procedure
based on forward chaining, one can use a mixed forward/backward chaining algorithm.
Note that this algorithm does not merge forward chaining and backward chaining into
a single mechanism (like some Datalog evaluation techniques [1]), but rather partitions
the set of rules into a bts part and a fus part, and processes each part separately: the bts
in forward chaining and the fus in backward chaining.

This combination of abstract classes effectively combines any concrete classes im-
plementing their behavior, including those we are not yet aware of. This shows that
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using abstract classes is a powerful method for building generic decidability results.
Finally, we consider the extension of the framework with rules with equality and

negative constraints. Whereas negative constraints come for free, equality is a well-
known source of undecidability. In particular, we show that the addition of one equality
rule to a fes (a fortiori a bts) or a fus does not preserve decidability (Theorem 20).

Paper Organization. Section 2 defines the basic framework. Section 3 introduces
backward chaining based on pieces. Sections 4 and 5 respectively deal with abstract
and concrete decidable cases. Section 6 studies the union of decidable cases. Section
7 introduces the graph of rules dependencies and uses it to safely combine decidable
cases. Rules with equality and negative constraints are considered in Section 8. Section
9 is devoted to related work in databases and conceptual graphs.

2. Preliminaries

In this section,we provide fundamental definitions and properties on facts, ∀∃-rules
and the associated entailment problems. In the fragment of facts, entailment can be
checked by a homomorphism test. In the fragment of facts and rules, it can be computed
by a forward chaining mechanism based on homomorphism. The associated soundness
and completeness results (Theorems 1 and 2) are not new: they follow from early
results in databases (resp. [20] and [34][2]), as well as from more recent results in a
graph-based framework (resp. [22] and [35]). However, we provide novel and simple
proofs, whose intermediate results will be used as building blocks for the remainder of
the paper. These proofs are detailed in Appendix A.

2.1. Vocabulary

We consider first-order logical languages with constants but no other function sym-
bols. A term is thus a variable or a constant. A vocabulary V = (P, C) is composed
of two disjoint sets: a set P of predicates and a set C of constants. Hence, an atom
on V is of form p(t1, . . . , tk), where p is a predicate in P with arity k and the ti are
variables or constants in C. A ground atom contains only constants. In examples, we
use uppercase letters for constants and lowercase letters for variables. Given a formula
φ, we note V(φ) the restriction of V to symbols occurring in φ and pred(φ), const(φ),
var(φ), term(φ) resp. the set of predicates, constants, variables and terms occurring
in φ.

Definition 1 (Interpretation of a vocabulary). An interpretation of a vocabulary V =
(P, C) is a pair I = (∆, .I) where ∆ is a (possibly infinite) set called the interpretation
domain and .I is an interpretation function such that:

1. for each constant c ∈ C, cI ∈ ∆;

2. for each predicate of arity k p ∈ P , pI ⊆ ∆k;

3. for each pair (c, c′) of distinct constants in C, cI 6= c′I .
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The third condition in the above definition corresponds to the unique name assump-
tion, which is often made in knowledge representation. However, note that as long as
equality is not considered (see Section 8), adopting the unique name assumption or not
does not make any difference in the considered reasoning tasks.

We rely on the classical definitions to assert that a formula φ is true in an interpre-
tation I of V(φ), i.e., I is a model of φ. |= denotes the classical logical consequence
(or entailment) and ≡ the associated equivalence.

2.2. Facts
We now introduce the notions of fact and homomorphism. In the literature, a fact

is classically defined as a ground atom; since ∀∃-rules produce atoms with variables
that are globally existentially quantified, we extend the notion of fact to an existentially
closed conjunction of atoms.

Definition 2 (Conjuncts, Facts). Given a vocabulary V = (P, C), a conjunct on V is
a conjunction of atoms on V . A fact on V is the existential closure of a conjunct on V .

By default, we assume that conjuncts and facts are finite. For some results, we will
consider possibly infinite conjuncts or facts (more precisely, we will have to consider
homomorphisms from finite facts to possibly infinite facts). W.l.o.g. we exclude du-
plicate atoms in facts, which allows to see a fact as a set of atoms. For instance the
fact F = ∃x∃y(p(A, x,B) ∧ q(B, y) ∧ r(B, y) ∧ q(B, A) ∧ r(A,A) ∧ r(A,A)) can
be seen as the set {p(A, x,B), q(B, y), r(B, y), q(B, A), r(A,A)}. In proofs, we will
use a specific fact of which every fact is a consequence:

Definition 3 (All-true fact). The all-true fact on a finite vocabulary V = (P, C) is the
fact containing all atoms that can be built with the set of predicates P and the set of
terms C if C 6= ∅, otherwise {x} where x is a variable.

A useful encoding of a fact F is its encoding as a directed labeled multiple hyper-
graph, say F : the sets of nodes and hyperarcs in F are respectively in bijection with
term(F ) and with the set of atoms F ; this hypergraph is said to be multiple because
there may be several hyperarcs with the same argument list (but with different predi-
cates); to fully encode a fact, nodes and hyperarcs are labeled: a node in F assigned to
a constant is labeled by this constant, otherwise it is not labeled (indeed, variable names
are not needed to encode the fact) and a hyperarc in F is labeled by the corresponding
predicate.

For drawing purposes, it is convenient to consider the incidence graph of F : it is a
bipartite undirected multigraph (i.e., multiple graph), with one set of nodes representing
the terms (i.e., the nodes in F), and the other set of nodes representing the atoms (i.e.,
the hyperarcs in F). More precisely, for each atom p(t1, . . . , tk) in F , there is a node
labeled by p and this node is incident to k edges linking it to the nodes assigned to
t1, . . . , tk. Each edge is labeled by the position of the corresponding term in the atom.
See Figure 1. Note that this graph can be seen as the basic conceptual graph assigned
to the formula [23]. The hypergraph/graph view of facts enables one to focus on their
structure. For instance in this paper we rely on it to define the decidable class of
“bounded treewidth sets” (Section 4) and it is at the origin of the piece notion (Section
3.1).
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Figure 1: Graph view of a fact

Definition 4 (Substitution, Homomorphism, Isomorphism). Given a set of variables
X and a set of terms T , a substitution σ of X by T (notation σ : X → T ) is a map-
ping from X to T . Given a conjunct C, σ(C) denotes the conjunct obtained from C
by replacing each occurrence of x ∈ X ∩ var(C) by σ(x). If a fact F is the existen-
tial closure of a conjunct C, then σ(F ) is the existential closure of σ(C). A renaming
substitution is an injective substitution that maps variables to “fresh” variables1. A ho-
momorphism from a fact F to a (possibly infinite) fact F ′ is a substitution σ of var(F )
by (a subset of) term(F ′) such that σ(F ) ⊆ F ′. If there is a homomorphism from F to
F ′, we say that F maps to F ′. An isomorphism from a fact F to a fact F ′ is a bijective
substitution σ from var(F ) to var(F ′) such that σ(F ) = F ′.

For convenience, we will sometimes extend the domain of a substitution to a set of
terms, with a constant being necessarily mapped to the same constant. The conjunction
of two facts F1 and F2 is equivalent to a fact, say F ; in the set-representation of facts, F
is obtained by making the union of F1 and σ(F2), where σ is a renaming substitution
of variables common F1 and F2. In the following, we identify a set of facts with a
single fact.

Given a fact F and a substitution σ, we will often consider a safe substitution in F
according to σ, denoted σsafe(F ). This substitution replaces all variables x of F that are
in the domain of σ by σ(x) and renames all other variables, i.e., σsafe(F ) = σ(σ′(F )),
where σ′ is a renaming substitution of term(F ) \ domain(σ).

Homomorphism and isomorphism can also be defined on the hypergraphs or multi-
graphs corresponding to facts (f.i., [23]). The next theorem expresses that homomor-
phism checking is sound and complete in the logical fragment of facts, which has been
proven in several contexts:

Theorem 1 (Homomorphism). Let F and F ′ be two facts, with F ′ being possibly
infinite. F ′ |= F if and only if there is a homomorphism from F to F ′.

1A fresh variable x is an element of a totally ordered infinite set of variables Vf , that is disjoint from the
set of variables used in the input knowledge base, and such that x is greater than all elements of Vf already
introduced.
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Proof: See Appendix A.
¤

Let us say that two facts F and F ′ are hom-equivalent if they map to each other by
homomorphism. From the previous theorem, it holds that F and F ′ are hom-equivalent
if and only if F ≡ F ′. Thus, from now on we identify both notions. The following
notion of a core comes from graph theory:

Definition 5 (Core). The core of a fact F , denoted core(F ), is a minimal subset of F
equivalent to F .

The following properties are folklore: the core of a fact is unique up to isomor-
phism; given two facts F and F ′, if F ≡ F ′ then core(F ) and core(F ′) are isomor-
phic.

2.3. Rules

We now introduce ∀∃-rules and define the saturation mechanism, which is at the
core of a breadth-first forward chaining mechanism, known as the chase in databases
[32].

Definition 6 (∀∃-rule, Frontier). A ∀∃-rule R = (H, C) on a vocabulary V is a
closed formula of form ∀x1 . . . ∀xp(H → (∃z1 . . . ∃zqC)) where H and C are two
(finite) conjuncts on V; {x1, . . . , xp} = var(H); and {z1 . . . zq} = var(C) \ var(H).
H and C are respectively called the hypothesis and the conclusion of R, also noted
hyp(R) and conc(R). The frontier of R (notation fr(R)) is the set of variables occur-
ring in both H and C: fr(R) = var(H) ∩ var(C).

In examples, we use the form R = H → C with implicit quantifiers. In the
following, we will often consider H and C as facts by considering their existential
closure.

Note that a ∀∃-rule is not a Horn clause because of existential variables in its con-
clusion. However, both are closely related, since by skolemisation (i.e., replacing each
existential variable by a Skolem function) a ∀∃-rule can be transformed into a set of
Horn clauses with functions (e.g., see Example 4 in Section 3.2). This transforma-
tion yields a reduction from our entailment problem (see Section 2.4) to the entailment
problem on a set of Horn clauses.

Definition 7 (Application of a ∀∃-rule). Let F be a fact and R = (H, C) be a ∀∃-
rule. R is said applicable to F if there is a homomorphism, say π, from H to F .
In that case, the application of R to F according to π produces a fact α(F, R, π) =
F ∪ πsafe(C). α(F, R, π) is said to be an immediate derivation from F . This rule
application is said to be redundant if α(F, R, π) ≡ F .

Note that α(F, R, π) is unique up to isomorphism (encoded in the safe substitution
according to π). To check whether α(F,R, σ) ≡ F , it suffices to check that α(F, R, σ)
maps to F .
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Definition 8 (Derivation). Let F be a fact and R be a set of ∀∃-rules. A fact F ′ is
called anR-derivation of F if there is a finite sequence (called the derivation sequence)
F = F0, F1, . . . , Fk = F ′ such that for all 1 ≤ i ≤ k, there is a rule R = (H, C) ∈
R and a homomorphism π from H to Fi−1 with Fi = α(Fi−1, R, π), i.e., Fi is an
immediate derivation from Fi−1.

Intuitively, the saturation mechanism can be seen as a breadth-first forward chain-
ing scheme. Let F0 be the initial fact F . Each step consists of producing a fact, say Fi

at step i, from the current fact Fi−1, by computing all homomorphisms from each rule
hypothesis to Fi−1, then performing all corresponding rule applications. The fact Fk

obtained after the step k is called the k-saturation of F .

Definition 9 (k-saturation). Let F be a fact and R be a set of ∀∃-rules. Π(R, F )
denotes the set of homomorphisms from a rule hypothesis in R to F :
Π(R, F ) = {(R, π)|R = (H, C) ∈ R and π is a homomorphism from H to F}.
The direct saturation of F with R is defined as:
α(F,R) = F ∪(R=(H,C),π)∈Π(R,F ) πsafe(C).
The k-saturation of F with R is denoted by αk(F,R) and is inductively defined as
follows: α0(F,R) = F and, for i > 0, αi(F,R) = α(αi−1(F,R),R).

We note α∞(F,R) = ∪k∈INαk(F,R). α∞(F,R) is possibly infinite. A variant of
k-saturation (let us note it αc

k) is obtained by computing the core of the obtained fact at
each step: αc

0(F,R) = core(F ) and, for i > 0, αc
i (F,R) = core(α(αc

i−1(F,R),R)).
We note αc

∞(F,R) = ∪k∈INαc
k(F,R). A straightforward induction allows to check

that, for any i > 0, core(αi(F,R)) is isomorphic to αc
i (F,R), i.e., αi(F,R) ≡

αc
i (F,R).

Property 1. Let F and F ′ be two facts and R be a set of ∀∃-rules. There is a homo-
morphism from F ′ to α∞(F,R) if and only if there is an integer k and a homomor-
phism from F ′ to αk(F,R).

Proof: (⇐) Trivial, since αk(F,R) ⊆ α∞(F,R). (⇒) We number each atom a in
F ∗ = α∞(F,R) by the rank at which it has been produced, i.e., by the smallest integer
i such that a ∈ αi(F,R). Suppose that there is a homomorphism π from F ′ to F ∗.
Since π(F ′) is a finite subset of atoms of F ∗, these atoms admit a maximum rank, say
k. Then there is a homomorphism from F ′ to αk(F,R). ¤

Note that the above property also holds for the variant of k-saturation based on the
core computation: there is a homomorphism from F ′ to αc

∞(F,R) if and only if there
is an integer k and a homomorphism from F ′ to αc

k(F,R).

Property 2. Let F and F ′ be two facts and R be a set of ∀∃-rules. There is a ho-
momorphism from F ′ to α∞(F,R) if and only if there is a homomorphism from F ′ to
αc
∞(F,R).

Proof: F ′ can be mapped to α∞(F,R) if and only if, by Property 1, there is k such that
F ′ can be mapped to αk(F,R). Equivalently, F ′ can be mapped to core(αk(F,R)),
and since core(αk(F,R)) is isomorphic to αc

k(F,R), F ′ can be mapped to αc
k(F,R),

which holds if and only if F ′ can be mapped to αc
∞(F,R). ¤
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The next theorem states that the saturation scheme is sound and complete in the
logical fragment of facts and rules.

Theorem 2 (Saturation). Let F and F ′ be two facts andR be a set of ∀∃-rules. Then
F,R |= F ′ if and only if there is a homomorphism from F ′ to α∞(F,R).

Proof: See Appendix A.
¤

2.4. ENTAILMENT and Equivalent Problems

A knowledge baseK = (F,R) is composed of a (finite) fact F and a finite setR of
∀∃-rules. From a logical viewpoint, a (finite) fact is a ∀∃-rule with an empty hypothesis,
thus {F}∪R could be seen as a set of rules. However, the distinction between both sets
is meaningful from a knowledge representation viewpoint. A formula φ is said to be a
consequence of K = (F,R) if {F} ∪ R |= φ (short notations: K |= φ or F,R |= φ).

The following problems are fundamental on these knowledge bases:

• FACT ENTAILMENT: given a KB K and a (finite) fact Q, does K |= Q hold true?

• ∀∃-RULE ENTAILMENT: given a KB K and a ∀∃-rule R, does K |= R hold true?

Property 3. FACT ENTAILMENT and ∀∃-RULE ENTAILMENT are polynomially equiv-
alent.

Proof: FACT ENTAILMENT is a specific case of ∀∃-RULE ENTAILMENT. For the other
direction, we rely on [11], in which the “TGD implication” problem is considered,
whose logical form is the same as ∀∃-RULE ENTAILMENT. ¤

An important task on knowledge bases is query answering. Let us focus on con-
junctive queries, which are considered as the basic queries in databases and knowledge-
based systems. Such a query is often written a la Datalog: Q = ans(x1, . . . , xk) ← B,
where B (the “body” of Q) is a fact, x1, . . . , xk occur in B and ans is a special k-ary
predicate, whose arguments are used to build an answer. A relational database can be
identified with a ground fact. Given a ground fact D, an answer to Q in D is a tuple
of constants (a1, . . . , ak) such that there is a homomorphism h from B to D, with
(h(x1), . . . , h(xk)) = (a1, . . . , ak). If k = 0, i.e., Q is a Boolean query, the unique
answer to Q is the empty tuple if there is a homomorphism from B to D, otherwise
there is no answer to Q. The following basic query problems are easily shown to be
equivalent to FACT ENTAILMENT:

• QUERY ANSWERING decision problem: given a KB K and a conjunctive query
Q, is there an answer to Q in K?

• QUERY EVALUATION decision problem: given a KB K, a conjunctive query Q
and a tuple of constants t, is t an answer to Q in K?

• BOOLEAN QUERY ANSWERING problem: given a KBK and a Boolean conjunc-
tive query Q, is () an answer to Q in K?
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Moreover, several fundamental problems on TGDs in databases are equivalent to
the above problems, see Section 9. From now on, we consider FACT ENTAILMENT
as the representative of this family of equivalent problems and simply call it ENTAIL-
MENT. All results obtained regarding this problem can be immediately recast in terms
of the other problems. Furthermore, we will simply write “rule” instead of ∀∃-rule.

2.5. On the Undecidability of ENTAILMENT

ENTAILMENT is undecidable. The oldest proofs of this result are for the equivalent
problem of TGD implication [10][38][19] (see Section 9). Other proofs have been built
for the entailment problem with conceptual graph rules [3] [8] (see Section 9). It is to
be noticed that ENTAILMENT remains undecidable even with very strong restrictions.
For instance, in the reduction of [8], the produced rules have a frontier of size 2 and
the hypothesis and conclusion are paths. In [3], it is shown that ENTAILMENT can be
reduced to its restriction where the vocabulary is limited to a single binary predicate.
In Section 6, we show that this problem remains undecidable when the set of rules is
restricted to a single rule (Theorem 8).

3. Piece-based Backward Chaining

While forward chaining uses rules to enrich facts and produce a fact to which the
query maps, backward chaining proceeds in the “reverse” manner: it uses the rules to
rewrite the query in different ways and produce a query that maps to the facts. The key
operation in a backward chaining mechanism is the unification operation between part
of a current goal (a conjunctive query or a fact in our framework) and a rule conclusion.
This mechanism is typically used in logic programming, with rules having a single
atom in the conclusion, which is unified with an atom of the current goal. Since the
conclusion of a ∀∃-rule has a more complex structure (it may contain several atoms
and possibly existentially quantified variables), the associated unification operation is
also more complex. It allows to process conclusions and goals without decomposing
them into single atoms, and we will show that it is worthwhile to do so. We rely on
the notion of a piece, which stems from a graph vision of rules and was introduced in
[35] for CG rules. We reformulate it, as well as the associated unification notion, in
a logical framework. As shown in Section 7.1, we will also use unification in a new
perspective, namely as a tool to characterize the notion of dependency between rules.

3.1. Pieces

Given a subset T of its terms, a fact can be partitioned into pieces according to T .
The piece notion is easier to grasp if we view a fact as a graph (see Section 2.2 and
Figure 2). Then, given a set of term nodes T , two atom nodes a1 and a2 are in the
same piece if there is a path between them that does not go through a node of T . If
T = ∅, each connected component of T is a piece. In the following, we will impose
that T contains all constant nodes in the fact, i.e., for a fact F , T = const(F ) ∪ X
with X ⊆ var(F ). Then, a1 and a2 are in the same piece if they are connected by a
path of nodes corresponding to atoms and variables outside X . The next logic-based
definition corresponds to this view of pieces.
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{p(x, z), p(z, t), p(t, x), p(x, u), p(u, x)} and T = {x}
Figure 2: Pieces

Definition 10 (Piece). Let F be a fact and X ⊆ var(F ). A piece of F according to X
is a minimal non-empty subset P of F such that, for all a and a′ in F , if a ∈ P and
(var(a) ∩ var(a′)) 6⊆ X , then a′ ∈ P . Let R = (H,C) be a rule. A piece in R is a
piece of C according to fr(R).

Definition 11 (Cutpoints). Let R = (H,C) be a rule. A cutpoint in R is either a
frontier variable or a constant in C. We note cutp(R) = fr(R) ∪ const(C) the set of
cutpoints in R.

The notion of a piece in R can equivalently be defined according to cutp(R) instead
of fr(R). Indeed, only existential variables in the rule conclusion allow to “glue” atoms
into pieces.

Example 1. [Pieces] Cf. Figure 2.
R = p(x, y) → p(x, z)∧ p(z, t)∧ p(t, x)∧ p(x, u)∧ p(u, x). The frontier of R is {x},
hence R has two pieces {p(x, z), p(z, t), p(t, x)} and {p(x, u), p(u, x)}. Would u be
replaced by a constant, the second piece would be cut into two pieces.

A piece in a rule R can be seen as a “unit” of knowledge brought by an application
of R in forward chaining. Indeed, on the one hand R can be decomposed into an
equivalent set of rules with the same hypothesis and exactly one piece in the conclusion:

Property 4. Let R = (H,C) be a rule and P1, . . . , Pk be the pieces of R. Then R is
equivalent to the conjunction of the rules R1, . . . , Rk, where Ri = (H, Pi).

On the other hand, the conclusions of the obtained rules cannot be further decom-
posed while keeping a set of ∀∃-rules with the same semantics as R (provided that
H is not modified, otherwise other decompositions are possible: see for instance the
“atomic decomposition” in Section 3.2).

3.2. Piece-Unifiers
Backward chaining erases whole pieces of a goal Q. To explain the key ideas of

the following unifier definition, let us present it as performing the inverse of a rule
application to a potential fact. Given Q and a rule R = (H, C), assume that Q can be
proven by an application of R to a fact F according to a homomorphism π, i.e., there
is a homomorphism π′ from Q to α(F, R, π) and π′(Q) is not included in F . Let σR

be the substitution of fr(R) (extracted from π) used to apply R to F . Q can then be

12



partitioned into Q′ and Q′′, such that π′ maps Q′ to σR(C) and Q′′ to F . Let TQ be
the set of terms (or simply variables) t in Q such that π′(t) is in σR(cutp(R)).

TQ defines pieces of Q, which can be partitioned into pieces of Q′ and pieces of
Q′′. Each piece of Q′ is mapped by π′ to a piece of σR(C). Roughly said, the backward
chaining step associated with σR erases from Q the pieces composing Q′, applies π′ to
the remaining variables of TQ and adds σR(H).

Definition 12 (Piece-unifier). Let Q be a fact and R = (H, C) be a rule. A piece-
unifier (or simply unifier) of Q with R is a tuple µ = (TQ, Q′, σR, πQ) where:

• TQ is a (possibly empty) subset of var(Q), which thus defines pieces in Q;

• Q′ is the union of one or more pieces of Q according to TQ;

• σR is a substitution of fr(R) (or equivalently of cutp(R)) by cutp(R)∪const(Q′);

• πQ is a homomorphism from Q′ to σR(C) such that, for all t ∈ TQ ∩ var(Q′),
there is t′ ∈ cutp(R) with πQ(t) = σR(t′).

Definition 13 (Rewriting of a fact). Let Q be a fact, R = (H, C) be a rule and µ =
(TQ, Q′, σR, πQ) be a unifier of Q with R. A rewriting of Q according to R and µ
produces a fact β(Q,R, µ) = σR

safe(H) ∪ πQ(Q \Q′).

Note that, as for the operator α that applies a rule, the operator β produces a fact
that is unique up to variable renaming.

Example 2 (Piece-unifier). Cf. Figure 3. Let R = h(x, y) → p(x, z) ∧ q(z, y) ∧
r(z, t). Let Q = {p(u, v), q(v, u), s(u,w)}. Q is unifiable with R by the following
unifier µ = (TQ, Q′, σR, πQ): TQ = {u} defines two pieces Q1 = {p(u, v), q(v, u)}
and Q2 = {s(u,w)} (see Figure 3: Q1 is colored in gray); Q′ = Q1; σR = {(y, x)};
πQ = {(u, x), (v, z)}. The new fact β(Q,R, µ) is {h(x, x), s(x, w)}.

It might be argued that the unifier notion would be simpler if rule conclusions were
decomposed, not only into single pieces, but into single atoms.

Indeed, a rule (H,C) can be equivalently2 encoded by the following set of rules:
{(H,R(t1, . . . , tk)), (R(t1, ..., tk), Ac)Ac∈C}, where R is a new predicate assigned
to the rule and t1, . . . , tk are the variables in C. However, the rewriting mechanism
would then build “nogood” unifications that would have been avoided with piece-based
unification, as illustrated in Example 3. Besides the loss of efficiency in backward
chaining, this decomposition of rule conclusions beyond single pieces weakens the
characterization of decidable cases, as shown in Section 7.1.

Example 3 (Atomic decomposition). The rule R = h(x, y) → p(x, z) ∧ p(z, t) ∧
p(t, x), which has a single piece, could be replaced by four rules: RA

1 = h(x, y) →
R(x, z, t), RA

2 = R(x, z, t) → p(x, z), RA
3 = R(x, z, t) → p(z, t) and RA

4 =
R(x, z, t) → p(t, x). Let Q = p(u, v) ∧ p(v, u). Q is not piece-unifiable with R,
but it is with RA

2 , RA
3 and RA

4 . Indeed, the information that these rules cannot be
considered independently has been lost.

2See Section 6.3 for a precise definition of equivalence.
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Figure 3: Piece-unifier

Moreover, having a piece restricted to an atom does not really simplify the unifier
notion. The main reason of the unifier complexity is the presence of existentially quan-
tified variables. To come to Horn rules and rely on usual binary unification, one may
replace existential variables by Skolem functions (on frontier variables) and split rules
into rules with an atomic conclusion. However, as for the preceding transformation,
this leads to perform nogood unifications, see Example 4.

Example 4 (Transformation into Horn rules (skolemisation)). Let us decompose the
rule R in Example 3 into three Horn rules: RH

1 = h(x, y) → p(x, f(x)), RH
2 =

h(x, y) → p(f(x), g(x)) and RH
3 = h(x, y) → p(g(x), x). Q = {p(u, v), p(v, u)} is

not piece-unifiable with R, but each atom in Q is unifiable with the conclusion of each
RH

i .

3.3. Backward Chaining
Definition 14 (Rewriting sequence). Let Q and Q′ be two facts, and R be a set of
rules. We say that Q′ is an R-rewriting of Q if there is a finite sequence (called the
rewriting sequence) Q = Q0, Q1, . . . , Qk = Q′ such that for all 1 ≤ i ≤ k, there is a
rule R ∈ R and a unifier µ of Qi−1 with R such that Qi = β(Qi−1, R, µ).

The soundness and completeness of backward chaining (next theorem) relies on
the following equivalence between R-rewriting and R-derivation: given F and Q two
facts and R a set of rules, there is an R-rewriting of Q that maps to F if and only if
there is an R-derivation F ′ of F such that Q maps to F ′. The precise correspondence
between derivation and rewriting is stated in Lemmas 7 and 8 given in Appendix B.
The proof of the following theorem relies on these lemmas.
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Theorem 3. Let K = (F,R) be a KB and Q be a fact. Then F,R |= Q if and only if
there is an R-rewriting of Q that maps to F .

Proof: See Appendix B. ¤

4. Abstract Decidable classes

We distinguish between several kinds of known decidable cases according to the
properties defining them:

• abstract classes are defined by abstract properties that ensure decidability but
for which the existence of a procedure for deciding whether a given set of rules
fullfils the property is not obvious; in fact, we will show that none of the three
known abstract classes is recognizable;

• concrete classes are defined by syntactic properties. These properties can be
defined on a set of rules–they are called global properties–or individually on
each rule –they are called individual properties.

In this section, we study abstract classes. These classes will be used to structure
the set of known concrete decidable classes.

Let us consider a forward chaining scheme directly based on the saturation no-
tion. One step consists in finding all new3 homomorphisms from the rule hypotheses
to the current fact and performing the corresponding rule applications. Two halting
conditions can be defined: if there is a homomorphism from Q to the current fact, the
answer is yes; otherwise, if it is useless to continue applying the rules, the answer is no.
In the second case, one can stop at a rank k because no new homomorphism is found,
or because all new rule applications are redundant, which is a stronger condition and
in general allows to stop sooner (for a discussion of this distinction, see [8]). Sets of
rules that guarantee that such a k exists are called finite expansion sets [8]. With these
sets, ENTAILMENT is obviously decidable.

Definition 15 (Finite Expansion Set). A set of rulesR is said to be a finite expansion
set (fes) if and only if, for every fact F , there exists an integer k such that Fk =
αk(F,R) ≡ Fk+1 = αk+1(F,R) (i.e., all rule applications to Fk are redundant). Fk

is called a full R-derivation of F .

Property 5. ENTAILMENT is decidable if R is a finite expansion set of rules.

[12] studies conditions on rules that ensure the decidability of ENTAILMENT even
when the saturation is not a finite process. The following definition of an abstract
class called bounded treewidth set of rules (Definition 17) translates the fundamental
property underlying the concrete decidable classes studied in the latter paper.

3A homomorphism π from a rule hypothesis H to Fk is new if π is not a homomorphism from H to
Fk−1.
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As already mentioned, a fact can naturally be seen as a hypergraph whose nodes
encode its terms and hyperarcs encode its atoms. The primal graph (also called Gaif-
man graph) of this hypergraph is the undirected graph with the same set of nodes and
such that there is an edge between two nodes if they belong to the same hyperarc, i.e.,
the corresponding terms occur in the same atom. The following treewidth definition
for a fact corresponds to the usual treewidth definition for the associated primal graph.

Definition 16 (Treewidth of a fact). Let F be a (possibly infinite) fact. A tree decom-
position of F is a (possibly infinite) tree T = (X = {X1, . . . , Xk, . . .}, U) where:

1. the Xi are sets of terms of F with
⋃

i Xi = term(F );

2. For each atom a in F , there is Xi ∈ X such that term(a) ⊆ Xi;

3. For each term e in F , the subgraph of T induced by the nodes Xi such that
e ∈ Xi is connected.

The width of a tree decomposition T is the size of the largest node of T , minus 1.
The treewidth of a fact F is the minimal width among all its possible tree decomposi-
tions.

Definition 17 (Bounded Treewidth Set). (basically [12]) A set of rules R is called a
bounded treewidth set (bts) if for any fact F there exists an integer b such that, for any
fact F ′ that can be R-derived from F , the treewidth of core(F ′) is less or equal to b.

Note that, for any fact F , the treewidth of core(F ) is less or equal to the treewidth
of F (since core(F ) ⊆ F ), thus by considering the cores of derived facts instead of the
derived facts themselves, we define a larger bts class than the one we introduced in [5].

Theorem 4 (Decidability of bts). 4 The restriction of ENTAILMENT to bounded treewidth
sets of rules is decidable.

Proof: Let R = {R1, . . . , Rn} be a bts. By definition, for any fact F , there exists a
bound b such that any core (of a fact) R-derivable from F has treewidth at most b.

Let F ∗ be the union of all cores of facts in the (potentially infinite) saturation of
F with R, i.e. F ∗ = αc

∞(F,R) (notation introduced below Definition 9). Thanks
to the treewidth compactness theorem [37], F ∗ has bounded treewidth. Let F and Q
be facts. By Theorems 1 and 2 , F,R |= Q iff α∞(F,R) |= Q, i.e., by Property 2,
F ∗ |= Q, i.e., F ∗ ∧ ¬Q is unsatisfiable. Let I∗ be an isomorphic model of F ∗ (for
a precise definition of isomorphic model, see Appendix A, Lemma 4). It holds that
when F ∗ ∧ ¬Q is satisfiable, then I∗ is a model of it. To prove it, we use the notions
introduced in Appendix A (by absurd: assume that F ∗ ∧ ¬Q is satisfiable and I∗ is
not a model of it, i.e., I∗ is a model of Q; then by Property 21, there is a witness
of Q in I∗, hence, by Lemma 3.1, there is a homomorphism from Q to F ∗, thus, by

4This theorem is an immediate generalization of Theorem 23 in [12], that applies to the concrete bts class
called “weakly guarded TGD”.
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Theorem 1, F ∗ |= Q, which contradicts the hypothesis that F ∗ ∧ ¬Q is satisfiable). It
follows that formulas of the form F ∧ R1 . . . ∧ Rn ∧ ¬Q have the bounded treewidth
model property (i.e., they have a model of bounded treewidth, here I∗, when they are
satisfiable). We conclude with [25], that states that classes of first-order logic having
the bounded treewidth model property are decidable. ¤

Note that the proof of the previous theorem does not directly provide an algorithm
for ENTAILMENT with bts, whereas algorithms are naturally associated with the other
abstract classes (i.e., the fes class and the fus class defined hereafter).

A fes is a bts, since all full derivations of F have isomorphic cores, whose treewidth
is bounded by their own size.

Backward chaining looks for a rewriting of Q that maps to F . Note that not all
rewritings are useful: indeed, let Q1 and Q2 be two rewritings such that Q1 maps to
Q2 (i.e., Q1 is “more general” than Q2); if Q1 does not map to F , neither does Q2.

Now, consider a backward chaining mechanism that builds R-rewritings of Q in
a breadth-first way and maintains a set Q of the most general R-rewritings built, i.e.,
it does not add a new R-rewriting Q′′ to Q if there is Q′ ∈ Q with Q′′ |= Q′ (it
should also remove an existing element of Q when a more general Q′′ has been found,
but this has no influence of the abstract decidable class defined); it answers yes if it
finds an R-rewriting Q′ such that F |= Q′. This algorithm is sound and complete and
halts on positive instances of the problem. Whereas finite expansion sets ensure that all
information entailed by a finite fact in forward chaining can be encoded in a finite fact,
the finite unification sets presented hereafter ensure that the above set Q of rewritings
is finite.

Definition 18 (Finite Unification Set). A set of rules R is called a finite unification
set (fus) if for every fact Q, there is a finite set Q of R-rewritings of Q such that, for
any R-rewriting Q′ of Q, there is an R-rewriting Q′′ in Q that maps to Q′. We say
that Q is a full R-rewriting set of Q.

Note that it may be the case that the set of the most general rewritings is finite
while the set of rewritings is infinite. F.i. let Q = t1(x), R1 = p(x, y)∧ t2(x) → t1(y)
and R2 = p(x, y) ∧ t1(x) → t2(y); the set of the most general rewritings is {t1(x),
p(x, y) ∧ t2(x)}.

The above backward chaining mechanism halts in finite time if R is a fus, hence:

Property 6. ENTAILMENT is decidable if R is a finite unification set of rules.

We show now that fes, bts and fus yield abstract characterizations that are not recog-
nizable, with a proof applying to the three abstract classes. Note that the undecidability
of fes recognition has also been proven in [27], with a reduction from the halting prob-
lem of a Turing Machine.

Theorem 5. Deciding if a set R is a finite expansion (resp. finite unification, resp.
bounded treewidth) set is undecidable.

The proof of this theorem relies on the following lemmas.
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Lemma 1. Let (F,R, Q) be an instance of ENTAILMENT. Let V be the vocabulary
obtained by considering predicates and constants occurring in F , R and Q. We note
R′ = allrules(F,R, Q) = R ∪ {(∅, F ); (Q,U)} a new set of rules, where U is the
all-true fact. Then F,R |= Q if and only if ∅,R′ |= U .

Proof: Since the fact F and the rule (∅, F ) are equivalent, we prove that F,R |= Q iff
F,R∪ {(Q,U)} |= U .
(⇒) Immediate, since F,R |= Q and Q, (Q,U) |= U implies F,R′ |= U .
(⇐) If F,R′ |= U , then there exists a derivation F = F0, F1, ...., Fk such that Fk |=
U . Suppose that the rule RU = (Q,U) is not used in this derivation. Then F,R |= U
and since any fact is entailed by U , we have F,R |= Q. Otherwise, let us consider the
smallest i such that Fi is obtained from Fi−1 by an application of RU . It means that
there is a homomorphism from Q to Fi−1 (applicability of the rule) and that F,R |=
Fi−1 (RU was not needed). Then F,R |= Q. ¤

Lemma 2. Let (F,R, Q) be an instance of ENTAILMENT. LetR′ = allrules(F,R, Q)
be defined as in Lemma 1. If ∅,R′ |= U , then R′ is a fes, a fus and a bts.

Proof: Assume ∅,R′ |= U . We successively prove three implications:
1) It follows that, for any fact H on V , we have H,R′ |= U and then the forward
chaining algorithm produces in finite time a fact F ′ such that F ′ |= U (from semi-
decidability of ENTAILMENT proven with saturation, see Property 1). Thus F ′ ≡ U
and any fact that can be derived from F ′ is also equivalent to U : it means that R′ is a
fes.
2) Since all fes are also bts, R′ is also a bts.
3) It follows that, for any fact Q′, we have ∅,R′ |= Q′ and then a breadth-first ex-
ploration of all possible rewritings of Q′ will produce ∅ in finite time (from semi-
decidability of ENTAILMENT proven with backward chaining). Since ∅ is more general
than any other rewriting of Q′, R′ is a fus. ¤
Proof: [Theorem 5] (By absurd). Assume there exists a halting, sound and complete
algorithm that determines whether a set of rules is a fes (resp. a bts, resp. a fus). Then
we exhibit the following halting, sound and complete algorithm for ENTAILMENT.

Data: (F,R, Q) an instance of ENTAILMENT
Result: YES iff F,R |= Q, NO otherwise.
if R′ = allrules(F,R, Q) is a fes (resp. fus, resp. bts) then1

return YES iff ∅,R′ |= U , and NO otherwise;2

else return NO;3

This algorithm halts: the condition in line 1 is checked in finite time (by hypothe-
sis), and if this condition is fulfilled then the consequence (line 2) can also be checked
in finite time. This algorithm is sound and complete: line 2 returns the correct answer
(Lemma 1) and, assuming that the condition is not verified, line 3 also returns the cor-
rect answer (from Lemma 1 and contrapositive of Lemma 2, we have “ifR′ is not a fes
then F,R 6|= Q”). ¤
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5. Concrete Decidable Classes

In this section, we first review known concrete classes implementing the fes or bts
behaviors, and exhibit a generalization of them, which is still bts. Then, we introduce
concrete classes implementing the fus behavior. We end with a synthetic map of all
inclusions between decidable classes.

5.1. Known fes or bts Concrete Classes
A well-known concrete case of fes is that of range-restricted rules [1]5, whose

conclusion does not introduce new variables: a rule R = (H, C) is said to be range-
restricted (rr) if var(C) ⊆ var(H). rr-rules are exactly the rules in positive Datalog
and more generally they are widely used in logic programming. They typically allow
to express specialization relationships and properties of relations in ontological lan-
guages, such as reflexivity, symmetry or transitivity. Another concrete case of fes is
that of disconnected rules (disc), whose frontier is empty [8]. Note that the hypoth-
esis and the conclusion of a disc-rule may share constants, which allows to express
knowledge about specific individuals. The reason why a set of disc-rules is a fes is
that a disconnected rule needs to be applied only once: any further application of it is
redundant.

Let us now consider known concrete bts but not fes classes. Two classes are based
on individual criteria: rules with a frontier of cardinality exactly one (fr1), mentioned
in [7]; and guarded rules (g), in which an atom in the hypothesis contains (“guards”)
all variables of the hypothesis, studied in [12]. A subclass of guarded rules are the
so-called inclusion dependencies (ID) in databases: these rules have exactly one atom
in the hypothesis and in the conclusion.

Note that fr1-rules, g-rules and disc-rules are incomparable classes. However, they
all prevent the creation of cycles with unbounded length by controlling the way knowl-
edge added by a rule conclusion is “connected” to the current fact. This property is
made explicit by the class of frontier-guarded rules introduced hereafter, which gen-
eralizes them: the crucial point is to guard the frontier of rules. We will prove that
frontier-guarded rules, hence g-rules and fr1-rules, form a bts class in Section 5.2.

Example 5 (fes/bts concrete classes with individual properties).
The following rules show that rr, disc, fr1 and g are pairwise incomparable classes.
R1 = r(x, y) ∧ r(y, z) → r(x, z) is only rr;
R2 = r(x, y) ∧ r(y, z) → r(u, v) is only disc;
R3 = r(x, y) ∧ r(y, z) → r(z, u) is only fr1;
R4 = r(x, y) ∧ r(y, z) ∧ t(x, y, z) → t(y, z, u) is only g.

Let us now turn our attention to concrete classes defined by global properties. The
g-rule class is generalized by the class of weakly guarded rules (wg), in which only
some variables of the hypothesis need to be guarded [12]. Given a set of rules R, a

5These rules are also called full implicational dependencies [19] and total tuple-generating dependencies
[11] in databases.
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position i in a predicate p (notation (p, i)) is said to be affected if it may contain a new
variable generated by forward chaining. More precisely, the set of affected positions
w.r.t. R is the smallest set that satisfies the following conditions: (1) if there is a rule
conclusion containing an atom with predicate p and an existentially quantified variable
in position i, then position (p, i) is affected; (2) if a rule hypothesis contains a variable
x appearing in affected positions only and x appears in the conclusion of this rule in
position (q, j) then (q, j) is affected. Given R, a weak guard in a rule (H, C) ∈ R
is an atom in H that guards all variables in H that occur only in affected positions;
these variables are said to be affected. R is said to be weakly guarded if each rule
in R has a weak guard. wg are shown to be bts in [12]. Special cases of wg-rules
are g-rules (a guard is a weak guard) and rr-rules (no position is affected), both based
on individual properties. In Section 5.2, we will generalize weakly guarded rules into
weakly frontier-guarded rules and prove that we still have a bts class.

Two other concrete classes defined by global properties found in the literature are
weakly acyclic rules (wa) [29][28] and sets of rules with an acyclic graph of rule
dependencies (aGRD) [4]. Both are fes classes. The first class relies on a graph,
introduced for TGD and called dependency graph6, which encodes variable sharing
between positions in predicates. The nodes represent the positions in predicates (cf. the
notation (p,i) introduced for wg rules). For each rule R = (H, C) and each variable x in
H occurring in position (p, i): if x ∈ fr(R), there is an arc from (p, i) to each position
of x in C; furthermore, for each existential variable y in C (i.e., y ∈ var(C) \ fr(R))
occurring in position (q, j), there is a special arc from (p, i) to (q, j). The set of rules
is weakly acyclic if its dependency graph has no circuit passing through a special arc.
The second class relies on another graph, called the graph of rule dependencies, which
encodes possible interactions between rules: the nodes represent the rules and there is
an arc from Ri to Rj if an application of the rule Ri may create a new application of
the rule Rj (with this abstract condition being effectively implemented by a unification
operation, see Section 7). aGRD is the case where this graph is without circuit7.

Example 6 (bts concrete classes with global properties).
On Example 5: {R2} is not wg because both positions in r are affected, thus x, y and
z are affected but no atom guards them all. The same holds for {R3};
S1 = {q(x) → p(z, x), p(x, z) ∧ p(y, z) → r(x, y)} is wa and aGRD but it is not wg
because the variables x and y in the second rule are affected but not guarded;
S2 = {p(x, y) → p(y, z)} is wg (because the rule is g) but it is not wa neither aGRD
(this rule depends on itself);
S3 = {p(x, y)∧ q(y) → p(y, z)∧ s(z)} is aGRD and wg (because the rule is g) but it
is not wa;
S4 = {q(x) ∧ p(x, y) → q(y) ∧ r(y, z)} is wa and wg (because the rule is g) but it is
not aGRD (this rule depends on itself).

6We use here the terminology of [29], developed in [30].
7Unfortunately, the term “acyclic” is ambiguous when used on directed graphs. In this paper, by acyclic

we mean without any undirected cycle (i.e., the underlying undirected graph is a forest). We keep the
expressions “acyclic GRD” and “weakly acyclic” that come from other papers, but precise that they refer to
circuits.
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Note that these sets show that wg, wa and aGRD are pairwise incomparable.

5.2. Generalizations of bts Concrete Classes
Definition 19 ((Weakly) frontier-guarded rules). Given a set of variables S, a rule
is S-guarded if an atom of its hypothesis contains (at least) all variables in S. A
rule is frontier-guarded (fg) if it is S-guarded with S being its frontier. A set of rules is
weakly frontier-guarded (wfg) if each rule is S-guarded with S being the set of affected
variables in its frontier.

The class of frontier-guarded rules includes g-rules, fr1-rules and disc-rules. The
class of weakly frontier-guarded rules generalizes it as well as the class of weakly
guarded rules, which itself generalizes range-restricted rules. In particular, it covers all
known concrete decidable classes (to the best of our knowledge) having the bounded
treewidth set property and based on individual criteria.

Example 7 (bts concrete classes (continued)).
R5 = r(x, y) ∧ r(y, z) → s(x, u) ∧ s(y, u) is not g nor fr1 but it is fg;
R6 = r(x,w) ∧ s(y, z) → r(u, x) ∧ s(y, u) is not fg; {R6} is not wg either (the
affected variables in H are x, w and z), but it is wfg (since r(x,w) guards x, which is
the only variable both affected and in the frontier).

Rules allow us to express some description logic statements, especially those form-
ing the kernel of recent DLs directed towards efficient query answering, typically: in-
clusions between concepts built with conjunction (u) and full existential restriction
(∃r.C), as well as role inclusions, domain and range restrictions, reflexivity and tran-
sitivity role properties etc... The first-order translation of these statements yields rules
that, besides the fact that they have an “acyclic” hypothesis and conclusion, are special
cases of previous concrete classes. For instance, [13] shows that the major members of
the DL-Lite family [18] are covered by guarded rules (plus specific equality rules and
negative constraints, which do not interfere with query answering, see Section 9). An-
other example of DL covered by a decidable concrete class of ∀∃-rules is ELHdr

⊥ [33]
(which can be seen as the core of the EL profile in the Semantic Web ontological lan-
guage OWL2): it can be easily checked that all inclusions8 in this DL are fr1-rules or
ID, thus they are fg-rules. E.g., the following ELHdr

⊥ inclusion: ∃r.C u ∃r.D v ∃s.E
can be translated into the rule r(x, y) ∧ C(y) ∧ r(x, z) ∧ D(z) → s(x, u) ∧ E(u),
which is fr1, hence fg. Rules expressing transitivity are not fg, but rr, thus both wg
and wfg. The weakly frontier-guarded class thus seems particularly appropriate for
studying these new DLs as rules.

In the following, we prove that (weakly) frontier-guarded rule sets are bounded
treewidth sets. For that, we introduce the notion of a derivation graph. This graph is of
interest in itself because it allows to explain properties of rules by structural properties
of the facts they produce. We call frontier atom in a rule R an atom in the hypothesis
of R that contains at least one frontier variable. Frontier atoms play an important role
in the next definitions.

8We assume that⊥ is processed by a negative constraint, which does not interfere with query answering.
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Definition 20 (Derivation Graph). Let D = (F = F0, F1, . . . , Fn = F ′) be a deriva-
tion sequence. The Derivation Graph assigned to D is the directed graph GD =
(X , E, newAtoms, label), whereX is the set of nodes, E is the set of arcs, and newAtoms
and label are functions respectively labeling nodes and arcs, such that:

• X = {X0, . . . , Xn};

• newAtoms assigns to each Xi ∈ X the set of atoms created at step i, i.e.,
newAtoms(X0) = F and for 1 ≤ i ≤ n, newAtoms(Xi) = Fi \ Fi−1. Fur-
thermore, we note term(Xi) = term(newAtoms(Xi)) (and we will often write
“Xi contains t” instead of “ t ∈ term(Xi)”);

• there is an arc (Xi, Xj) in E if: let Fj = α(Fj−1, R, π); there are a ∈
newAtoms(Xi) and b a frontier atom in R with π(b) = a; label(Xi, Xj) =
{e ∈ term(Xi)|∃a ∈ newAtoms(Xi) such that e ∈ term(a), ∃b frontier atom in
R with x ∈ term(b) ∩ fr(R), π(b) = a and π(x) = e}.

Roughly speaking, nodes and their labeling encode atoms created at each derivation
step; each arc (Xi, Xj) expresses that the homomorphism π from a rule hypothesis H
to Fj−1, that has led to Fj , has mapped at least one frontier atom in H to an atom
(in Fj−1) created in Fi; the label of (Xi, Xj) indicates the terms in Fi that are used
to produce the new atoms in Fj . By definition, a derivation graph has no circuit, but
it is generally not acyclic (i.e., it is not a tree, or a forest if not connected). Every
application of a disconnected rule leads to a node initially isolated, thus the graph may
be not connected.

Example 8 (Derivation graph). Let R be the set of rules composed of the four fol-
lowing rules:

R1 = q(x, y) → p(y, z), R2 = p(x, y) ∧ p(y, z) → q(y, w) ∧ q(z, w) ∧ p(w, C),

R3 = p(x, y) ∧ q(y, z) → q(x, A) ∧ p(A, z), R4 = q(x, x) ∧ p(x, y) → q(y, y)

and let F = {q(x1, x1), q(x1, C)} be a fact. Figure 4 shows the derivation graph
associated with the derivation sequence F = F0, F1, F2, F3, F4, F5 = F ′, where
each Fi (0 < i ≤ 5) is obtained from Fi−1 by the following rule applications:

F1 = α(F0, R1, {(x, x1), (y, x1)}) = F0 ∪ {p(x1, x2)}
F2 = α(F1, R4, {(x, x1), (y, x2)}) = F1 ∪ {q(x2, x2)}
F3 = α(F2, R1, {(x, x2), (y, x2)}) = F2 ∪ {p(x2, x3)}
F4 = α(F3, R2, {(x, x1), (y, x2), (z, x3)}) = F3∪{q(x2, x4), q(x3, x4), p(x4, C)}
F5 = α(F4, R3, {(x, x1), (y, x2), (z, x2)}) = F4 ∪ {q(x1, A), p(A, x2)}

Each node Xi is labeled with newAtoms(Xi). An arc (Xi, Xj) indicates that the
rule application leading to Xj has mapped a frontier atom to an atom in Xi. For
instance, the application of R3 leading to X5 has mapped the frontier atoms p(x, y)
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(with frontier variable x) and q(y, z) (with frontier variable z) respectively to p(x1, x2)
in X1 and q(x2, x2) in X2, hence the arcs (X1, X5) and (X2, X5). Since x is mapped
to x1, (X1, X5) is labeled by x1. Since z is mapped to x2, (X2, X5) is labeled by x2.
Note that x2 is shared by the labels of X1 and X5 but it is not the image of a frontier
variable when p(x, y) is mapped, thus it is not considered as coming from X1.

{x2}

0

X1

X2 q(x2,x2)

X5
q(x1,A)

p(A,x2)

X4
q(x2,x4)
q(x3,x4)
p(x4,C)

X3

q(x1,C)

p(x1,x2)

{x1}

q(x1,x1)

p(x2,x3)

{x1}
{x2} {x2}

{x2}
{x2,x3}

X

Figure 4: Derivation graph of Example 8

Property 7 (Decomposition properties). Let (F,R) be a KB such that no rule in R
has a constant in its conclusion. Then, for any R-derivation D from F = F0 to
Fn = F ′, GD satisfies the following properties, called the decomposition properties
w.r.t. F ′:

1.
⋃

i term(Xi) = term(F ′);

2. For each atom a in F ′, there is Xi ∈ X such that a ∈ newAtoms(Xi);

3. For each term e in F ′, the subgraph of GD induced by the nodes Xi such that
e ∈ term(Xi) is connected.

4. For each Xi ∈ X , the size of term(Xi) is bounded by an integer that depends
only on the size of the KB (more precisely: max(|term(F )|, |term(Ci)|Ri∈R).

Proof: The proof of conditions 1), 2) and 4) being immediate, we focus on condition 3).
Every arc labeled e (i.e., such that e belongs to its label) links two nodes containing e.
For each term e in F ′, there exists Xe a node corresponding to Fe, the first derived fact
in which e appears (if e has been generated by a rule application then Xe identifies that
rule application, otherwise e belongs to F and Xe = X0). Moreover, if Xi contains a
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term e then Fe (the fact associated to Xe) has been generated before Fi in the derivation
sequence. We can thus establish the following property: “for each node Xi such that
e ∈ term(Xi), there exists a path from Xe to Xi in which all nodes contain e and all
arc labels contain e”, which can be proven by induction on the length of the derivation
from Fe to Fi. ¤

Note that the third decomposition property is not true for constants occurring in
a rule conclusion. We will process these constants in a special way together with the
notion of affected variable.

Property 7 expresses that DG satisfies the properties of a tree decomposition of F ′

(seen as a graph) except that it is not —yet— acyclic. We now introduce operations
that allow to build an acyclic graph from DG for some classes of rules, while keeping
these properties.

Definition 21 (Reduction operations on derivation graphs).

• Redundant arc removal. Let (Xi, Xk) and (Xj , Xk) be two arcs with the same
endpoint. If a term e appears in label((Xi, Xk)) and label((Xj , Xk)), then e
can be removed from one of the label sets. If the label of an arc becomes empty,
then the arc is removed.

• Arc contraction. Let (Xi, Xj) be an arc. If term(Xj) ⊆ term(Xi) then Xi and
Xj can be merged into a node X such that newAtoms(X) = newAtoms(Xi) ∪
newAtoms(Xj). This merging involves the removal of (Xi, Xj) and, in all other
arcs incidental to Xi or Xj , Xi and Xj are replaced by X , with multiarcs being
replaced by a single arc labeled by the union of their labels.

Example 8 (Continued). In the derivation graph of Figure 8, one can remove the arc
(X1, X4), which is redundant with the arc (X3, X4), and contract the arc (X1, X2).

Property 8. The above operations preserve the decomposition properties w.r.t. F ′.

Proof: Conditions 1), 2) and 4) are trivially respected by both operations. No atom (and
thus no term) disappears in the derivation graph and no node receives any additional
atom (since the only merging of nodes happens when a set is included in the other).

Condition 3) is satisfied by arc contraction, which does not change the connectivity
of the graph. Let us consider redundant arc removal. For each node X that contains a
term e there exists a path from Xe to X (see proof of Property 7) in which all nodes
and arcs are labeled e. Moreover, the extremities of an arc labeled e also contain e,
thus if (Xi, Xk) and (Xj , Xk) are labeled e, both Xi and Xj contain e, hence there is
a second path from Xe to Xk. By removing one of these arcs, one does not disconnect
the set of nodes containing e. ¤

Theorem 6. Let R be a set of rules without constant in the conclusion. If for all R-
derivation D, GD can be reduced to an acyclic graph then R is a bounded treewidth
set.

Proof: Follows from Property 7 and 8. ¤
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Property 9. If all rules are range-restricted and without constant in their conclusion,
then any derivation graph with these rules can be reduced to a single node by a se-
quence of arc contractions.

Proof: If all rules are rr, all terms in generated atoms are contained in the root of the
derivation graph. We can thus iteratively contract all arcs of the derivation graph into
the root. ¤

Property 10. If all rules are frontier-guarded and without constant in their conclusion,
then any derivation graph with these rules can be reduced to an acyclic graph.

Proof: We show that if a node X of the derivation graph is the destination of n ≥ 2
distinct arcs, then n − 1 of them can be suppressed by redundant arc removal. We
begin by pointing out that, to be the destination of an arc, X must have been obtained
by applying some rule R that contains at least one frontier variable (i.e., R is not disc).
Moreover, by definition of a derivation graph, these arc labels are necessarily a subset
of the terms that were images of the frontier of R. In frontier-guarded rules, a guard
g of R (i.e., one of the atoms containing the frontier) generates an arc (Xg, X) in the
derivation graph, where Xg contains the image of g. This arc is labeled by all terms of
the frontier of R, thus the label of any other arc (Xi, X) is included in that of (Xg, X)
and (Xi, X) can be removed. ¤

Property 11. Frontier-guarded rules without constant in their conclusion are bts.

Proof: Immediate consequence of Property 10 and Theorem 6. ¤
To cover rules that introduce constants, as well as weakly frontier-guarded rules,

we extend the notion of derivation graph.

Definition 22 (Extended derivation graph). Given a set of terms T and a derivation
graph GD, the extension of GD with T , notation GD[T ], is obtained from GD with the
following sequence of operations:

1. the mapping term is modified: for each Xi, term(Xi) = term(newAtoms(Xi))∪
T (i.e., the terms of T are added everywhere);

2. all terms occurring in T are removed from the labels in arcs; if a label becomes
empty, then the arc is removed;

3. for each connected component (of the obtained graph) that does not include X0,
a node Xi without incoming arc is chosen and the arc (X0, Xi) is added with
label T .

Example 8 (Final). Figure 5 presents the extended derivation graph with T = {A,C}
(the constants occurring in F and R) of the derivation graph given in Figure 8 af-
ter performing the two above reduction operations. The right part of each Xi shows
term(Xi). The obtained graph is acyclic and satisfies the decomposition properties.
The maximal number of terms in an Xi is 5, thus the treewidth of F ′ is less or equal to
5.
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Figure 5: Extended derivation graph of Example 8

Property 12. GD[T ] satisfies the decomposition properties, with the bound on |term(Xi)|
being increased by |T |; furthermore GD[T ] does not contain new cycles w.r.t. GD.

Proof: There is no suppression of atoms so the terms and atoms of F ′ remain covered.
We add at most |T | terms to each node thus the width of the decomposition associated
with the derivation graph (and consequently the treewidth of the derived fact) is at most
increased by |T |. Global connectivity is ensured since T is added to all nodes of the
derivation graph. Since arcs are added only to reconnect disconnected components, no
circuit is created. ¤

Theorem 6 and Property 9, 10, 11 can be extended to rules with constants in their
conclusion by considering the extended derivation graph with T being the set of con-
stants occurring in rule conclusions. In particular, this allows to ensure the third de-
composition property. Property 10 is extended as follows:

Property 13. Let R be a set of rules and let C be the set of constants occurring in the
rule conclusions. IfR isfrontier-guarded, then, for anyR-derivation D, GD[C] can be
reduced to a tree.

To extend the previous property to weakly frontier-guarded rules, we add the terms
of the initial fact F to T . Indeed, a non-affected variable in a rule hypothesis is neces-
sarily mapped to a term of F by an application of this rule.

Property 14. Let R be a set of rules and let C be the set of constants occurring in
the rule conclusions. If R is weakly frontier-guarded, then, for any R-derivation D,
GD[C ∪ term(F )] can be reduced to a tree.
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Proof: The proof is similar to the proof of Property 10. We show that if a node X in
GD[C ∪ term(F )] is the destination of n ≥ 2 distinct arcs, then n − 1 of them can
be suppressed by redundant arc removal. X must have been obtained by applying a
rule R that contains at least one frontier variable (i.e., R is not disc). By definition of
a derivation graph, the labels of these arcs to X are necessarily subsets of the terms
that were images of the frontier variables in R; furthermore, by definition of GD[C ∪
term(F )], they do not contain terms in C ∪ term(F ). If R is weakly-guarded, a weak
guard g of R (i.e., one of the atoms containing the affected variables in the frontier)
generates an arc (Xg, X) in the derivation graph, where Xg contains the image of g.
This arc is labeled by all terms that were images of the affected variables in the frontier
of R. Since non-affected variables in a rule hypothesis are necessarily mapped to a
term in F by an application of this rule, the arc (Xg, X) is labeled by all terms that
were images of the frontier of R (except for terms in C ∪ term(F )). Thus the label of
any other arc (Xi, X) is included in that of (Xg, X) and (Xi, X) can be removed. ¤

Theorem 7. Weakly frontier-guarded rule sets are bts.

Proof: Follows from Property 14 and the extension of Theorem 6. ¤

5.3. Fus Concrete Classes
We provide two concrete cases of fus rules hereafter (first introduced in [6]).

Definition 23 (Atomic-hypothesis rule). A rule R = (H,C) is called an atomic-
hypothesis rule (ah) if H contains a single atom.

Since ah-rules are special guarded rules, they form a decidable class. They are also
a concrete case of fus, which yields another and simple decidability proof.

Property 15. A set of ah-rules is a fus.

Proof: Let Q be any fact. Let R = (H,C) be an ah-rule, and µ = (TQ, Q′, σQ, σC)
be a unifier of Q with R. We have |Q| ≥ |β(Q,R, µ)| (since the rewriting removes
Q′, which is non-empty, and adds a specialization of the unique atom in H). Up to
isomorphism, there is a bounded N number of facts of size (i.e., number of atoms)
less or equal to |Q| built from the bounded number of facts of constants and predicates
appearing in the KB. Thus if R contains only ah-rules, the number of R-rewritings of
Q is bounded by N . ¤

Atomic-hypothesis rules are particularly well adapted to express necessary prop-
erties of concepts or relations in ontological languages, without any restriction on the
form of the conclusion i.e., rules of form C(x) → P or r(x1, . . . , xk) → P , where C
is a concept, r a k-ary relation and P any set of atoms.

The second kind of rules does not put any restriction on the form of the hypothesis
but constrains the form of the conclusion:

Definition 24 (Domain-restricted rule). A rule R = (H, C) is called a domain-restricted
rule (dr) if each atom of C contains all or none of the variables in H .

Property 16. A set of dr rules is a fus.
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Proof: Let us call k-limited fact, a fact Q such that each piece P of Q according
to const(Q) fulfills |var(P )| ≤ k. There is a finite number N of facts with at most
k variables (up to isomorphism), and a bounded number of constants and predicates.
Thus, a k-limited fact containing more than N pieces contains equivalent pieces, which
can be removed to obtain a fact with at most N pieces. We observe that if a rewriting
according to a dr-rule produces a new variable, then it also produces a new piece which
is the only piece containing this variable. Indeed, either the unifier concerns an atom
that contains all variables of H and it does not generate new variables, or it creates a
new piece. Thus, ifR contains only dr-rules, the number ofR-rewritings of Q without
duplicate pieces is bounded (a rough upper bound is 2N ). ¤

E.g., the rule R = Human(x) → Parent(y, x) ∧ Human(y) is both ah and dr.

5.4. Synthetic map
It can be immediately checked that fes/bts and fus are incomparable sets w.r.t. to in-

clusion. E.g., the set {R} with R = Ancestor(x, y)∧Ancestor(y, z) → Ancestor(x, z)
is a fes (R is rr) but it is not a fus. The set {t(x) → s(x, y) ∧ t(y) ; t(x) ∧ t(y) →
r(x, y)} is a fus (it is a set of dr rules), but it is not a bts (it generates an infinite fact
that is not redundant and contains a complete graph). Figure 6 synthesizes inclusions
between decidable cases9. All inclusions are strict and no inclusion is omitted (i.e.,
classes not related in the schema are indeed incomparable). The preceding examples
allow to check most cases and it is easy to build other examples for the missing cases.

6. Study of the Union of Decidable Classes

Before studying the decidability of the union of decidable cases, we prove a pre-
liminary result: a single rule can make ENTAILMENT undecidable.

6.1. Undecidability with a Single rule
Theorem 8. ENTAILMENT remains undecidable when the set of rules is restricted to a
single rule.

Proof: Let I = (F,R, Q) be an instance of ENTAILMENT. By a transformation τ , we
build another instance τ(I) = (τ(F ), τ(R), τ(Q)) with |τ(R)| = 1, such that I is a
positive instance if and only if τ(I) is. τ is defined as follows:

• Let V be the vocabulary composed of the constants and the predicates occurring
in I . We consider a vocabulary Vτ obtained from V by replacing each predicate
of arity k by a predicate (of same name) of arity k + 1 and by adding two new
constants f and g (f for “fact” and g for “garbage”). Given any fact F ′ on V ,
we denote by τ(F ′, t) the translation that translates each atom p(t1, . . . , tk) ∈
F ′ into p(t1, . . . , tk, t). In the following, t is either f (stating that this atom
corresponds to an atom in F or entailed by F ), or g.

9Let us mention that another concrete fus class has been exhibited very recently: sticky rules [15], which
are incomparable with ah-rules and dr-rules.
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Figure 6: Inclusions between decidable cases

• τ(F ) is the disjoint union of two sets: a set Cf = τ(F, f) (the “fact component”)
and a set Cg = τ(U, g) (the “garbage component”) where U is the all-true fact
on V (since any fact on V is entailed by U , this latter fact encodes that everything
is true, but it is garbage).

• τ(Q) = τ(Q, f) (we want to obtain it from the part of τ(F ) that corresponds to
F ).

• Let R = {R1, . . . , Rp}. W.l.o.g., assume that the sets of variables occurring
in each rule are pairwise disjoint. Let x1, . . . , xp be new variables, i.e., not
occurring in R. Then τ(Ri) = (τ(Hi, xi), τ(Ci, xi)).

τ(R) = {R = (∪iτ(Hi, xi),∪iτ(Ci, xi))} is composed of a single rule that
encodes all the previous ones.

Let us outline the main ideas of this transformation. Every rule inR is applicable to
the garbage component Cg, thus R is applicable to Cg, with variables x1, . . . , xp being
mapped to the constant g. When a rule Ri is applicable to F by a homomorphism π,
then R is applicable to τ(F ) with τ(Hi, xi) being mapped to Cf by π ∪ {(xi, f)},
and the remaining Hj in H being mapped either to Cf or Cg . Conversely, assume
that R is applicable to τ(F ): each τ(Hi, xi) is necessarily mapped to Cf or to Cg;
if τ(Hi, xi) is mapped to Cf , this corresponds to an application of Ri to F . If all
τ(Hi, xi) are mapped to Cg then the corresponding application of R is redundant (by
definition of the all-true fact). It follows that every derivation from F with the rules
in R can be translated into a derivation from τ(F ) with R (with a natural extension
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of the homomorphisms involved in the first derivation) and reciprocally (with a natural
decomposition of the homomorphisms involved in the second derivation). Finally, π
is a homomorphism from Q to a fact F ′ defined on V iff it is a homomorphism from
τ(Q) to τ(F ′) (and we have π(τ(Q)) ⊆ C ′f with C ′f = τ(F ′, f)).

Note that k + 1-ary predicates are not required to obtain the result: the same result
can be obtained by decomposing k-ary predicates with k ≥ 2 into binary predicates. ¤

Let us say that two classes are compatible if the union of any two sets respectively
belonging to these classes is decidable. Otherwise, they are said to be incompatible.

6.2. Universal Compatibility of Disconnected Rules
We first prove that disconnected rules are compatible with any decidable set of

rules.

Theorem 9. Let R1 = R0 ∪ Rdisc be a set of rules, where Rdisc is a set of discon-
nected rules. If R0 is decidable, then R1 also is.

Proof: Let us recall that a disconnected rule needs to be applied only once. Assume we
have an algorithm for ENTAILMENT, say Ded(F,R, Q), that decides in finite time for
R = R0 if F,R0 |= Q. We extend this algorithm to an algorithm that decides in finite
time if F,R1 |= Q, as follows:

Data: (F,R1 = R0 ∪Rdisc, Q)
Result: YES iff F,R1 |= Q, NO otherwise.
F ′ ← F ;
repeat

forall RD = (HD, CD) ∈ Rdisc do
if Ded(F ′,R0,HD) then

F ′ ← F ′ ∪ {CD} (with a renaming substitution);
Remove RD from Rdisc;

until stability of Rdisc ;
return Ded(F ′,R0, Q);

¤

6.3. Incompatibility Results
We say that two sets of rules R1 and R2 are equivalent w.r.t. a vocabulary V if,

for any fact F built on V , the sets of facts on V entailed respectively by knowledge
bases (F,R1) and (F,R2) are equals. F.i. the transformation mentioned in Section
3.2 (Example 3) transforms a set of rules into an equivalent set of rules with atomic
conclusions. We consider here two other simple transformations from a rule into an
equivalent pair of rules:

• τ1 rewrites a rule R = (H,C) into two rules:
Rh = H → R(x1 . . . xp) and
Rc = R(x1 . . . xp) → C, where {x1, . . . , xp} = var(H) and R is a new predi-
cate (i.e., not belonging to the vocabulary) assigned to the rule. Note that Rh is
both range-restricted and domain-restricted, and Rc is atomic-hypothesis.
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• τ2 is similar to τ1, except that the atom R(...) contains all variables in the rule:
Rh = H → R(y1, . . . , yk) and
R(y1, . . . , yk) → C, where {y1, . . . , yk} = var(R). Note that, among other
properties, Rh is domain-restricted, while Rc is range-restricted.

Property 17. Any set of rules can be split into an equivalent set of rules by τ1 or τ2.

Proof: For τ1 (and similarly for τ2), we prove that, given a set of rules R and a fact F ,
both on a vocabulary V , there is anR-derivation F ′ of F iff there is a τ1(R)-derivation
F ′′ of F such that the restriction of F ′′ to V is isomorphic to F ′. For each part of the
equivalence, the proof can be done by induction on the length of a derivation sequence.
In the ⇒ direction, it suffices to decompose each step of the R-derivation sequence
according to τ1. In the ⇐ direction, we show that any τ1(R)-derivation sequence can
be reordered so that the rule applications corresponding to the application of a rule
in R are consecutive. The reason is that the atom R(. . .) added by a rule application
according to a given homomorphism keeps (at least) all information needed to apply R
according to this homomorphism and cannot be used to apply another rule. ¤

Theorem 10. Any instance of ENTAILMENT can be reduced to an instance of EN-
TAILMENT with a set of rules restricted to two rules, such that each rule belongs to a
decidable class.

Proof: From Theorem 8, any instance of ENTAILMENT can be encoded by an instance
with a single rule, say R. By splitting R with τ1 or τ2, we obtain the wanted pair of
rules. ¤

If we furthermore consider the concrete classes of the rules obtained by both trans-
formations, we obtain the following result:

Theorem 11. ENTAILMENT remains undecidable if R is composed of

• a range-restricted rule and an atomic-hypothesis rule

• a range-restricted rule and a domain-restricted rule

• an atomic-hypothesis rule and a domain-restricted rule.

Since ah-rules are also g-rules, this implies that g-rules are incompatible with rr-
rules and dr-rules. The case of fr1 is more tricky. We did not find any transformation
from general rules into fr1 rules (and other rules belonging to compatible decidable
classes). To prove the incompatibility of fr1 and rr (Theorem 12), we use a reduction
from the halting problem of a Turing Machine. This reduction transforms an instance
of the halting problem into an instance of ENTAILMENT in which all rules are either
fr1 or rr. The compatibility of fr1 and dr is an open question.

Theorem 12. ENTAILMENT remains undecidable if R is composed of fr1-rules and
rr-rules.
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Proof: See Appendix C. ¤
The following table synthesizes decidability results for the union of decidable classes

based on individual criteria; ND means “not preserving decidability”.
rr fes (wa)
ID/ah fg ND
g fg ND g
fr1 fg ND fg fg
fg fg ND fg fg fg
dr dr ND ND ND Open ND

disc rr id/ah g fr1 fg

We can also conclude for concrete classes based on global criteria, i.e., wg, wfg,
wa and aGRD: all of them are incompatible, which includes the incompatibility of
each class with itself (indeed, the union of two sets satisfying a global property does
generally not satisfy this property; a single added rule may lead to violate any of the
above global properties).

Theorem 13. The union of two sets belonging to classes wg, wfg, wa and aGRD does
not preserve decidability.

Proof: See that the transformation τ1 decomposes a rule into two rules Rh and Rc such
that {Rh} and {Rc} are each wa, aGRD and wg. Let I be any instance of ENTAIL-
MENT. I is transformed into an instance containing a single rule by the reduction in the
proof of Theorem 8. Let I ′ be the instance obtained by applying τ1 to this rule. The set
of rules in I ′ is the union of two (singleton) sets both wa, aGRD and wg. Since I ′ is
a positive instance iff I is, we have the result. ¤

It follows from previous results that abstract classes are incompatible:

Theorem 14. The union of two sets belonging to classes fes, bts or fus does not pre-
serve decidability.

Proof: Follows from Theorem 11 (for all possible pairs except fes/fes) and 13 (for the
pair fes/fes). ¤

To conclude, the rough union of two sets of rules belonging to different decidable
classes almost always leads to undecidability. The next question is whether they can be
combined under some constraints. This issue is studied in the following section. We
introduce the graph of rule dependencies and define conditions on the structure of this
graph which constrain the interactions between rules so that decidability is preserved.

7. Combining Decidable Cases with Rule Dependencies

Generally speaking, compiling a knowledge base involves preprocessing it off-line,
so that the compiled form obtained can be used on-line to accelerate reasoning tasks
(e.g., query answering). Concerning rules, a classical compilation technique consists of
precomputing a graph encoding dependencies between rules. In this paper, we will not
detail how this technique allows one to improve the efficiency of forward and backward
chaining mechanisms (as done for example in [4]), but rather use it to extend decidable
classes of rules.
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7.1. The Graph of Rules Dependencies (GRD)

A rule R′ is said to depend on a rule R if the application of R on a fact may trigger
a new application of R′.

Definition 25 (Dependency). Let R = (H, C) be a rule and Q be a fact. We say that
Q depends on R if there is a fact F , a homomorphism π : H → F and a homomor-
phism π′ : Q → α(F,R, π), such that π′ is not a homomorphism to F . By extension,
we say that a rule R′ depends on R if hyp(R′) —seen as a fact— depends on R.

The following graph encodes dependencies on a set of rules:

Definition 26 (Graph of Rule Dependencies). Let R be a set of rules. The graph of
rule dependencies (GRD) of R (notation GRD(R)) is a directed graph (R, E), where
R is the set of nodes and E is the set of arcs, such that (R, R′) is an arc of E if and
only if R′ depends on R.

The facts of the knowledge base (i.e., F in the ENTAILMENT problem) can be added
to the GRD as rules with an empty hypothesis and are thus sources in the GRD (i.e.,
nodes without incoming arcs). Similarly, a query (i.e., Q in the ENTAILMENT problem)
can be added to the GRD as if it was a rule with an empty conclusion and is thus a sink
in the GRD (i.e., a node without outgoing arc).

It is easy to define necessary conditions for a rule to depend on another: e.g., if
R′ depends on R then there is an atom in hyp(R′) that can be unified (in the classical
meaning) with an atom in conc(R). Characterizing dependency by actually computable
necessary and sufficient conditions is less obvious. Next Theorem 15 shows that piece-
unifiers allow to capture the dependency notion: a rule R′ depends on a rule R if
and only if there is a piece-unifier of hyp(R′) with R, that satisfies a simple syntactic
condition. This syntactic condition is not needed in the following examples and will be
specified later.

Example 9 (Dependency). Let R0 = p(x, y) ∧ p(y, x) → p(x, z) ∧ p(z, t) ∧ p(t, x).
According to the weak “atomic unification” criterion, R0 could depend on itself. The
piece-unifier criterion allows to see that it is not the case: C0 is a single piece and,
since R0 has only one cutpoint (x), there should be a homomorphism from H0 to C0

(which would map x to x). Note that if z was replaced by y in C0, the rule obtained
would have 2 cutpoints and 2 pieces, and would depend on itself.

Example 10 (GRD). Cf. Figure 7. Let R = {R0, R1, R2, R3}, where:
R0 = p(x, y) ∧ p(y, x) → p(x, z) ∧ p(z, t) ∧ p(t, x) (see Example 9)
R1 = q(x) ∧ p(x, y) → q(y)
R2 = p(x, y) → r(x, y, z) ∧ p(z, w)
R3 = s(x) ∧ t(x, y) → p(x, y)
GRD(R) has two loops (R1, R1) and (R2, R2) plus the arcs (R0, R1), (R0, R2),
(R3, R0), (R3, R1) and (R3, R2).
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R1

R3

R0

R2

Figure 7: GRD

Let us point out that decomposing rule conclusions into single atoms (see Section
3.2) would weaken the GRD notion. Indeed, “fake” dependencies could be introduced.
For instance, in Example 3 and inserting Q (as if it was a rule with an empty conclu-
sion): there are arcs from RA

1 to RA
2 , RA

3 and RA
4 as well as arcs from RA

2 , RA
3 and RA

4

to Q (which is the bad point), whereas there would be no arc from R to Q. Thus, even
if the GRD obtained encodes exactly the dependencies within {RA

1 , . . . , RA
4 , Q}, it is

not optimal w.r.t. {R,Q}.
We now precise the relation between dependency and piece-unifier.

Property 18. If a fact Q depends on a rule R, then there is a piece-unifier of Q with
R.

Proof: See Appendix D. ¤
For the converse direction, one has to be more careful. Let us first consider the

rule R = p(x) → p(x) and the fact Q = p(x). There is a unifier of Q with R, but
no application of R to a fact F can create any new atom, thus every homomorphism
from Q to an α(F, R, π) is already a homomorphism from Q to F . One could remove
these “obviously redundant rules”, but that would not be enough. Indeed, let us now
consider the rule R = p(x)∧ r(A,B) → r(x,B) and the fact Q = p(A)∧ r(A, B). R
may produce new information (for instance r(C, B) when applied to the fact p(C) ∧
r(A, B)). There exists a unifier of Q with R, but no application of R to any fact F can
create a new homomorphism from Q to α(F, R, π). This time, the redundancy is not
in the rule itself; it is in the interaction between the rule and the unifier. This is that
kind of redundancy we capture with the notion of atom-erasing unifier.

Definition 27 (Atom erasing unifier). Let R be a rule and Q be a fact. We say that a
unifier µ = (TQ, Q′, σR, πQ) of Q with R is atom-erasing if there is an atom a in Q′

such that πQ(a) is not an atom of β(Q,R, µ).

Theorem 15. A fact Q depends on a rule R = (H,C) if and only if there exists an
atom-erasing unifier of Q with R.

Proof: See Appendix D. ¤
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7.2. Decidable Cases based on the GRD
In this section, we bring out decidable cases directly based on the structure of

the GRD. Let us consider the basic forward chaining mechanism, that proceeds in a
breadth-first way, i.e., at each step it computes all new rule applications w.r.t. the cur-
rent fact, then applies them to produce a new fact. If a subset of rules S ⊆ R has been
applied at step i, then the only rules that have to be checked for applicability at step
i + 1 are in the set {R′ ∈ R|∃R ∈ S, (R, R′) ∈ E}. Similar arguments apply for
backward chaining. The next theorem follows:

Theorem 16. Let R be a set of rules. If GRD(R) has no circuit, then R is both a fes
and a fus.

Note that a GRD restricted to a single node with a loop, i.e., a self-unifiable rule, is
sufficient to yield the undecidability of the ENTAILMENT problem (this a corollary of
Theorem 8). One can however accept some kinds of circuits, as stated in the next the-
orem. We consider here the strongly connected components of the GRD. Let us recall
that two nodes x and y in a directed graph are in the same strongly connected compo-
nent of this graph if there are directed paths from x to y and from y to x. Any isolated
node forms its own strongly connected component. A strongly connected component
in the GRD forms a maximal set of rules that mutually depend on each other.

Theorem 17. LetR be a set of rules. If all strongly connected components of GRD(R)
are fes (resp. fus), then R is a fes (resp. fus).

Proof: Let C1 . . . Cp be the strongly connected components of GRD(R). Assume there
are all fes. Consider the reduced graph, say G, corresponding to these components: G
has one node ci for each Ci and an arc cicj iff there is an arc from a rule in Ci to a rule
in Cj . By definition, G has no circuit. Associate with each ci the maximal length of a
path from a source in G to ci. Let us call it the level of ci and of the corresponding rule
subset. We adapt the forward chaining mechanism as follows: at step 1, it processes
all subsets of rules with level 0 (the sources). At step k, it processes all subsets of rules
with level k − 1 (i.e., it computes a full derivation of the current fact with these rules).
This process is finite because each subset of rules is a fes and the number of steps is the
maximal length of a path in G plus 1. It computes a full derivation because a rule of
level i depends only on rules of levels less or equal to i. We conclude that R is a fes.
Similar reasoning applies to the fus case: the rules are processed by decreasing level
instead of increasing level, and processing a subset of rules consists in updating the set
of the most general rewritings. ¤

Despite the combination of fes does generally not preserve decidability, the GRD
allows to exhibit conditions of safe combination. The same holds for fus. Now, what
about combining fes/bts and fus? This is the topic of the next section.

7.3. Combining Abstract Classes
In this section, we systematically explore decidable combinations of rule sets be-

longing to different abstract classes. Though the rough union of such sets generally
leads to undecidability, constraints on the interactions between rules (and more specif-
ically the following “directed cuts” in the GRD) provide us with halting algorithms for
more general classes of rules.
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fes fus
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Figure 8: Set of rules in the class fes. fus

Definition 28 (directed cut of a ruleset). A (directed) cut of a set of rules R is a par-
tition {R1,R2} of R such that no rule in R1 depends on a rule in R2. It is denoted
R1.R2 (“R1 precedes R2”).

Such partitions are interesting because they allow to reason successively and inde-
pendently with the two sets of rules, as shown by the following property.

Property 19. LetR be a set of rules admitting a cutR1.R2. Then, for any facts F and
Q, it holds that F,R |= Q iff there is a fact P such that F,R1 |= P and P,R2 |= Q.

Proof: (⇐) Immediate. (⇒) Suppose that R admits a cut R1.R2 and F,R |= Q.
Then there is a derivation sequence S = (F = F0, F1, . . . , Fk) such that Fk |= Q
and each Fi is generated from Fi−1 either by an application of a rule in R1 or by an
application of a rule inR2. Since no rule inR1 depends on a rule inR2, we can reorder
the rule applications such that all applications of rules in R1 precede all applications
of rules in R2. More precisely, let R = (H, C) and R′ = (H ′, C ′) be two rules s.t.
R′ does not depend on R; then for any fact F , for any homomorphism π from H to F
and for any homomorphism π′ from H ′ to α(F,R, π), π′ is a homomorphism from H ′

to F , thus α(α(F, R, π), R′, π′) = α(α(F, R′, π′), R, π) [up to isomorphism]; using
this property, from S we can build a derivation sequence (F = F ′0, F

′
1, . . . , F

′
q =

P, F ′q+1, F
′
k = Fk) where P is an R1-derivation of F and Fk is an R2-derivation of

P . ¤
We will now use this property to combine rules belonging to decidable classes. For

that, we define the following notations: given C1 and C2 two classes of sets of rules, a
cut (R1.R2) is said to be a C1.C2-cut if R1 belongs to the class C1 and R2 belongs
to the class C2. The class C1.C2 is the class of sets of rules that admit at least one
C1.C2-cut.
Example 10 (continued) Cf. Figure 8. Each rule forms its own strongly connected
component. {R1} is a fes since R1 is rr, but it is not a fus. {R2} is a fus since R2 is
ah (and dr), but it is not a fes. {R3} is a fes and a fus because R3 is rr and dr. R0 does
not belong to one of our concrete classes, but it is a fes and a fus since its GRD has no
arc. From Theorem 17, we conclude that {R0, R1, R3} is a fes and {R0, R2, R3} is a
fus. To show that R is a fes . fus, we have to find an appropriate cut. In such a cut,
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R3 and R0 are necessarily in the fes part because of their arcs to R1. Thus, the only
fes. fus-cut is {{R0, R1, R3}, {R2}}.

With previous notations, Theorem 17 can be expressed as: the class fes . fes is
included in the class fes, and the class fus . fus is included in the class fus. Theorem
12 shows that the rough union of a fr1 set and a rr set can lead to undecidability. With
a slight transformation of its proof (see the endnote in Appendix C), it can be shown
that a Turing machine can be encoded by a set of rules of form fr1. rr. Thus, the class
bts . fes (a fortiori bts . bts) is undecidable. The following theorem provides a way to
combine fes and bts.

Theorem 18 (fes.bts). The class fes.bts is a subclass of bts.

Proof: IfR is fes.bts, then it admits a (R1.R2)-cut whereR1 is a fes andR2 is a bts.
From property 19 and the definition of fes, it follows that F,R |= Q iff Fk,R2 |= Q,
where Fk is a full fact equivalent to α∞(F,R1). Then, since R2 is a bts, R is also a
bts. ¤

The variant proof of Theorem 12 (see the endnote in Appendix C) shows that an
ah.rr rule set can lead to undecidability. Thus, the class fus. fes (a fortiori fus.bts) is
undecidable. The following theorem provides a way to combine them.

Theorem 19 (bts. fus). ENTAILMENT is decidable when restricted to the bts. fus class
of rules.

Proof: If R is bts . fus, then it admits an (R1.R2)-cut where R1 is bts and R2 is fus.
From Property 19, it follows that F,R |= Q iff there is an R2-rewriting Q′ of Q s.t.
F,R1 |= Q′. Since R2 is fus, the set Q of all (most general) R2-rewritings of Q is
finite, and thus ENTAILMENT can be solved by a finite number of calls to an algorithm
solving F,R1 |= Qi (where Qi ∈ Q). Each of these calls can be performed in finite
time since R1 is bts. ¤

Note that in the specific case of a fes. fus set provided with an appropriate cut, say
(R1,R2), we have an effective sound and complete halting mechanism. Indeed, we
can on the one hand use forward chaining on R1 to compute a full derivation of the
facts, say F ′, on the other hand use backward chaining on R2 to compute the finite set
Q of most general rewritings of Q, then check if there is an element of Q that maps to
F ′.

Figure 9 summarizes decidable combinations of ∀∃-rule sets. An arrow from a
class A to a class B means “there can be dependency arcs from rules in A to rules in
B”, and no arrow from A to B means “no dependency arc can exist from a rule in A
to a rule in B”. We can recursively build a fes from a fes. fes, or a fus from a fus. fus
(Theorem 17): in the picture, (3) is built from (1) and (2), and (12) is built from (11)
and (10). This theorem does not hold for bts, but the union of two bts without any
dependency arc from one class to the other is still a bts: (7) is a bts obtained from (5)
and (6). The rough union with disconnected rules preserves fes, bts and fus (see the
proof of Theorem 9): the fes (4), the bts (8) and the fus (13) are built respectively from
(3), (7) and (12) by a rough union with disconnected rules. We can obtain a bts from
a fes.bts (Theorem 18): the bts (9) is obtained from (4) and (8). Finally, both fes. fus
and bts . fus are decidable (Theorem 19): the fes . fus (14) is obtained from (4) and
(13); and the bts. fus (15) is obtained from (9) and (13).

37



(15)

(14)

fus (13)

bts (9)
bts (8)

bts (5)

disc

fes (4)

fes (3)

fes (2)

bts (7)

fus (12)

fus (11)

fus (10)

bts (6)

fes (1)

Figure 9: Dependency-based decidable combinations of rules

8. Rules with Equality and Negative Constraints

In this section, we consider rules with equality as well as negative constraints and
integrate them into our framework.

8.1. Equality Rules

When it occurs in rule hypotheses, equality either makes these rules unapplicable
(case of an equality between distinct constants, which contradicts the unique name
assumption) or can be suppressed with a simple transformation of the knowledge base.
In a rule conclusion, an equality of the form x = t, where x is an existentially quantified
variable, can be equivalently replaced by substituting x by t. Hence, let us focus on
equality occurring in a rule conclusion and involving only variables shared with the
hypothesis or constants (i.e., cutpoints). Let R = (H,C) be such a rule, with C being
composed of a non-empty set of regular atoms, say C ′, and a set of equality atoms
e1 = e′1, . . . , en = e′n, where all ei and e′i are distinct cutpoints in R. R can be
equivalently rewritten as a rule (H,C ′) and one rule for each equality, i.e., n rules of
form (H, ei = e′i), 1 ≤ i ≤ n (note that each equality atom forms its own piece in
R). Moreover, due to the unique name assumption, an equality between two distinct
constants leads to the inconsistency of the fact to which the rule should be applied: the
rule then acts as a negative constraint, that we will consider in Section 8.2. For these
reasons, we focus our attention on the following rules, called equality rules:
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Definition 29 (Equality rule). An equality rule R = (H,x = t) is a formula of form
∀x1 . . . ∀xp(H → x = t), where x and t are distinct terms, x ∈ var(H) and t ∈
var(H) or is a constant. If t is a variable (resp. a constant): R is applicable to
a fact F if there is a homomorphism, say π, from H to F with π(x) 6= π(t) (resp.
π(x) 6= t). If π(x) and π(t) (resp. t) are distinct constants, then the application fails;
the application of R to F according to π is as follows: if π(x) is a variable, each
occurrence of π(x) in F is replaced by π(t) (resp. t); otherwise (π(x) is a constant
and t and π(t) are variables), each occurrence of π(t) is replaced in F by π(x).

Note that when an application fails, the knowledge base is logically inconsistent
(due to the unique name assumption, see Definition 1), and reciprocally. Indeed, the
application of (H, x = y) fails if and only if there are two distinct constants a and b
such that σ(H) is entailed by the KB, where σ = {(x, a), (y, b)}. A similar construc-
tion can be done for equality rules with a constant in the conclusion. It is immediate to
check that ENTAILMENT and consistency checking are reducible to each other for KB
containing both ∀∃-rules and equality rules.

Equality rules generalize functional dependencies, which are widely used in data
modeling and ontologies. A functional dependency expresses that, for a given relation
(i.e., predicate), for a given sublist l of its arguments, each value for l uniquely de-
fines the value of a given argument outside l. For instance, a functional dependency
expressing that, for a ternary relation r, the value of the two first arguments deter-
mines the value of the third, is translated by the equality rule ∀x∀y∀z1∀z2(r(x, y, z1)∧
r(x, y, z2) → z1 = z2).

The bad news is that almost all rules depend on a rule with equality. It is easy to
check that a rule whose hypothesis does not contain two occurrences of the same term
does not depend on an equality rule of form x = y, where y is a variable, and it does
not depend on an equality rule of form x = c, where c is a constant, if moreover its
hypothesis does not contain c. Otherwise, the rule potentially depends on any equality
rule.

How do equality rules fit in our decidability map? Equality rules are fes rules. Note
however that adding an equality rule to a fes does not guarantee that this set remains a
fes, as shown in the next example. It even leads to undecidability, as shown in Theorem
20.

Example 11 (fes and equality rules). Let R = {r(x, x) → s(x, y) ∧ r(y, z)}. Let
Re = s(x, y) ∧ r(y, z) → y = z. R is a fes but R∪ {Re} is not a fes.

Equality rules satisfy the range-restricted property, i.e., var(C) ⊆ var(H). They
can thus be safely added to rr-rules. Furthermore, from the algorithm in the proof of
Theorem 9 (“universal compatibility” of disconnected rules) it follows that the prop-
erty of being a fes is kept when disconnected rules are added. Hence, the following
property:

Property 20. The union of sets of rr-rules, disc-rules and equality rules is a fes.

The previous property cannot be generalized to any set of ∀∃-rules belonging to the
fes class, as shown by the next theorem.
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Figure 10: Dependency-based decidable combinations of rules and equality rules

Theorem 20. The addition of one equality rule to a fes (a fortiori a bts) or a fus does
not preserve the decidability.

Proof: We transform any ∀∃-rule into an equivalent set of three rules, such that the first
two rules form a fes and a fus and the third one is an equality rule. We conclude with
Theorem 8, which states that ENTAILMENT remains undecidable with a single rule.
The transformation is as follows. Let R = (H,C) be any ∀∃-rule, and let R1, R2 and
R3 be the obtained rules. Similar to the transformations in Section 6.3, we assign to R
a new predicate, say R, with arity |var(H)|+ 2.
R1 = H → R(x1, . . . , xp, x, y), where {x1, . . . , xp} = var(H), and x, y are variables
not occurring in H .
R2 = R(x1, . . . , xp, x, x) → C, where x is a variable not occurring elsewhere in R2.
R3 = R(x1, . . . , xp, x, y) → x = y. Note that R2 cannot be applied directly after
R1; an application of R3 is needed first. The proof of the equivalence of {R} and
{R1, R2, R3} is similar to the proof of Property 17. To see that {R1, R2} is a fes and a
fus, we build the associated GRD: the only possible arc in this GRD is from R2 to R1

(R1 depends on R2 if R depends on itself); the GRD has no circuit, thus {R1, R2} is a
fes and a fus (Theorem 16). ¤

In Figure 10, we complete the picture of decidable combinations of rules provided
in Figure 9 by introducing equality rules. Note that fes (4), bts (6) and fus (8) can be
built as described in Figure 9. In this drawing, the assumption is that all rule compo-
nents depend on the eq set of rules (1) (these dependencies are represented by dashed
arrows). As stated by Property 20, the rough union of disconnected rules (disc), equal-
ity rules (1) and range-restricted rules (2) is a fes (3 in the drawing). This fes can then
be combined with another fes to form a fes: (5) = (3).(4). Finally, the obtained set
can be combined as in Figure 9 with bts and fus to yield larger decidable classes.

8.2. Negative Constraints
A negative constraint expresses that a specific fact, say C, should not be entailed

by the knowledge base. It is often defined as a rule of form (C,⊥), where ⊥ denotes
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the absurd symbol (i.e., a propositional atom whose value is false). Equivalently, it
can be defined as ¬C as in [8]. It is satisfied by a fact F if F 6|= C. It is satisfied
by a knowledge base K = (F,R) if K 6|= C, i.e., no fact to which C maps can be
R-derived from F . A typical use of negative constraints is to express disjointness of
concepts/classes or incompatibility of relations.

Negative constraints can be integrated in the previous framework without any diffi-
culty. Let us consider knowledge bases of form (F,R, C), where F is a fact, R is a set
of ∀∃-rules and C is a set of negative constraints. Such a knowledge base is consistent
if (F,R) satisfies each constraint in C. A fact Q is entailed by K = (F,R, C) if and
only if either K is inconsistent (and then it entails everything) or (F,R) |= Q. Check-
ing the entailment of Q can thus be solved by |C|+ 1 calls to an algorithm solving the
ENTAILMENT problem on KBs without constraints. Now, if a set of equality rules, say
E , is also considered, another source of inconsistency is added and one has furthermore
that check that (F,R∪ E) is consistent.

9. Related Work

The framework studied in this paper is closely related to research works on tuple-
generating dependencies in databases and on conceptual graph rules. This section is
devoted to these connections.

Tuple- and Equality-generating dependencies. Tuple-generating dependencies (TGDs)
and equality-generating dependencies (EGDs), introduced in [11], generalize the main
classes of dependencies that were previously studied in database systems. A TGD has
the same form as a ∀∃-rule. It is considered as a constraint to be satisfied by database
instances. When a TGD is not satisfied by a database instance, say D, it is possible to
repair D by extending it with new atoms. The procedure that enforces the validity of a
set of TGDs is called the chase: it is equivalent to forward chaining. The chase was first
introduced for the TGD implication problem: given a set of TGDs T and a TGD t, is t
implied by T ? This problem is the same as our RULE ENTAILMENT problem (Section
2.4). A related problem is the query containment problem under a set of TGDs: given
a set of TGDs T and two conjunctive queries q1 and q2, is the the set of answers to q1

included in the set of answers to q2 for any database satisfying T (i.e., satisfying each
TGD in T )? This problem is the same as our FACT ENTAILMENT problem (Section
2.4), with the KB (q1, T ) and the query q2. A problem introduced more recently is
query answering on incomplete data [17]: given a set of TGDs T , a database instance
D, that may not satisfy T , a conjunctive query q and a tuple of values t, is t an answer
to q in a database instance obtained from D by enforcing T ? This problem is the same
as our QUERY EVALUATION problem (Section 2.4).

All decidable cases exhibited for TGDs are based on the chase procedure. Until
recently, all these cases were based on the finiteness of the chase (thus belong to the
fes abstract class), with the exception of the pioneer paper of [32] that showed that
query containment on inclusion dependencies (ID) is decidable even if the chase may
not halt.

[12] generalized previous classes with a decidability condition based on the finite
treewidth model property, which we use to define the bts abstract class, and introduced
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the guarded and weakly-guarded classes, which are concrete bts classes. In this paper,
we enrich the picture by generalizing these classes and defining decidable cases based
on the finiteness of backward chaining (which yields the fus abstract class).

[26] studies “sets of TGDs with universal models”, which are exactly fes. The
“chase graph” is equivalent to our GRD, but no constructive characterization of this
graph is provided in [26]. The main decidable case is the “stratified chase graph”,
which can be seen as an instantiation of the fes part of Theorem 17 with weakly acyclic
TGDs: if all strongly connected components of the GRD are weakly acyclic, then the
problem is decidable.

EGDs can be seen as equality rules without constant in the conclusion. It has
long been shown that the interaction between EGDs and simple cases of TGDs leads
to undecidability of ENTAILMENT. This has been shown for functional dependencies
(which are specific EGDs) and inclusion dependencies (which are specific TGDs) [21]
; the result still holds if functional dependencies are further restricted to key dependen-
cies [17]. In [13] an abstract condition called separability (generalizing the non-key-
conflicting notions introduced in [17] and [12]) is defined on the set T ∪E, where T is
a set of TGDs and E is a set of EGDs. This condition allows to process E separately
from T : briefly, E can then be considered as a set of constraints to be satisfied by the
initial database instance and the entailment (or query answering) considers T only. A
syntactic condition sufficient to ensure separability for EGDs representing functional
dependencies is also given (note however that it ensures separability only if the con-
clusions of TGDs are restricted to a single atom). Our results (Property 20 and Figure
10) provide some cases where the chase can process EGDs triggered by TGDs.

Query answering over ontologies. Guarded rules, and their generalization to frontier-
guarded rules, allow to encode some recent DLs tailored for query answering, as we
pointed it out in Section 5.2. A general framework dedicated to conjunctive query an-
swering with ontologies is proposed in [13]. This Datalog-based framework is called
Datalog±. On one hand, this framework extends Datalog with TGDs, EGDs and neg-
ative constraints, on the other hand it restricts TGDs and EGDs to achieve decidability
and tractability. Our decidable classes can be seen as defining new members of this
family.

Conceptual Graph rules. Conceptual graphs [36] are a family of graphical languages
with a FOL semantics. The kernel formalism, called basic conceptual graphs, is equiv-
alent to the existential positive conjunctive fragment of FOL, thus corresponds to facts
and conjunctive queries. Its extension to graph rules is equivalent to the ∀∃-rule frag-
ment [23]. Basic conceptual graphs are defined on a lightweight ontology essentially
composed of partially ordered sets of concepts (unary predicates) and relations (n-ary
predicates). This ontology could be encoded by simple range-restricted rules (with
t1 ≤ t2 being translated into ∀x1 . . . ∀xk(t1(x1, . . . , xk) → t2(x1, . . . , xk)), where
k = 1 if t1 and t2 are concepts, otherwise k is the arity of the relations t1 and t2).
However, concept and relation comparisons are integrated into the conceptual graph
homomorphism and unifier notions, which allows for algorithmic optimizations based
on the compilation of the partial orders. All results in this paper can be applied to
conceptual graph rules, whatever the way of taking the partial orders into account is.
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An interesting issue would be to study how the integration of specific rules encoding
partial orders in the reasoning mechanisms could be used to extend our decidability
results.

In turn, present results find their roots in early work of the authors on conceptual
graphs. The forward chaining and the backward chaining mechanisms were essentially
introduced in [35] for conceptual graph rules; their soundness and completeness were
proven with different proofs. Note that an adaptation of this backward chaining to
TGDs has been proposed in [24] as an alternative to the chase. A precursor of the
GRD is introduced in [4]: this paper defines a criterion of dependency for CG rules,
which, translated into ∀∃-rules, is optimal for rules without constants. Instead, we rely
on unification, which has the additional advantage of relating the notion of dependency
to backward chaining. Fes are introduced in [8] and a result equivalent to the fes part
in Theorem 17 is proven in [4]. The decidability and complexity of reasoning with
conceptual graph rules and constraints, in particular negative constraints, is studied in
[8].

10. Conclusion

In this paper, we have “walked the decidability line” for the ontological conjunc-
tive query answering problem based on ∀∃-rules: on the one hand we have extended the
map of known decidable cases, and on the other hand we have brought out some nega-
tive results, in particular that the rough union of decidable classes of rules is generally
not decidable. We have also shown that the graph of rule dependencies is a powerful
tool for combining decidable paradigms while keeping decidability. More specifically,
the main contributions of this paper are the following:

• the classification of known decidable classes, guided by three abstract classes
(fes, bts and fus), as well as an extension of several concrete decidable classes,
relying upon the notion of the frontier of a rule;

• a precise study of safe interactions between decidable classes and new decid-
ability results based on the graph of rule dependencies, especially allowing to
combine both forward and backward chaining mechanisms.

This paper focuses on decidability issues. Contrarily to fes and fus abstract classes,
the bts abstract class is not provided with an effective decision procedure. More-
over, halting algorithms are known for some concrete bts classes, namely guarded and
weakly-guarded classes [12], but it is not the case for the newly exhibited bts classes.
Besides their intrinsic interest, such algorithms could then be used to generate halting
algorithms for wider classes obtained with our combination results based on the graph
of rule dependencies.

Regarding the complexity of ENTAILMENT, previously known concrete decidable
classes have been classified. ENTAILMENT with range-restricted and/or disconnected
rules is NP-complete if the arity of the predicates is bounded [8], otherwise the range-
restricted case becomes EXPTIME-complete (from results on Datalog, e.g., [19]). EN-
TAILMENT with guarded rules is EXPTIME-complete with bounded predicate arity,
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otherwise it is 2EXPTIME-complete, and the same complexities hold for the general-
ization to the weakly-guarded class [12]. ENTAILMENT with atomic-hypothesis rules is
PSPACE-complete [14]. Two complexity measures are classically considered for query
problems: the usual complexity, called combined complexity, and data complexity.
With combined complexity, all components of the problem instance, here K = (F,R)
and Q, are considered as input. With data complexity, only the data, here F , are con-
sidered as part of the input, with R and Q being considered as fixed. For instance,
checking homomorphism from a query to a fact is NP-complete in combined complex-
ity and polynomial in data complexity. The latter complexity is relevant when the data
size is much larger than the size of the rules and the query. For the classes rr+disc
and g, ENTAILMENT has polynomial data complexity, but is still EXPTIME-complete
for wg [14]. The complexity study for fr1, fg and wfg is ongoing work. In particular,
the question is how they behave w.r.t. to g and wg (note that the arguments used in the
complexity proofs for the latter rule classes need to be generalized in a non-trivial way
for fr1 and fg). By definition, ENTAILMENT has polynomial data complexity with any
fus class.

Further work also includes algorithmic optimizations exploiting the graph of rule
dependencies. The first, obvious, point is that when computing the saturation at rank k,
we only need to test rules that depend on rules applied at rank k − 1; the same kind of
improvement can be applied to backward chaining. However, unifiers can be used more
efficiently, as shown in [9] for forward chaining. Basically, arcs (Ri, Rj) in the GRD
can be labeled by all unifiers µk of Rj with Ri. Then, when Ri is applied to a fact F
according to a homomorphism π, we can compose π with unifiers µk to obtain, in linear
time, partial homomorphisms πk of hyp(Rj) to F = α(F,Ri, π); any homomorphism
from hyp(Rj) to F is an extension of one of these πk. The GRD thus provides us with
a partial compilation of the forward chaining mechanism. Transposition of this idea to
backward chaining would require to compute partial unifiers from the composition of
two unifiers, and this notion remains to studied more precisely.

Another research direction is the further extension of decidable classes. We have
pointed out the interest of precisely studying interactions between rules to extend de-
cidable cases. Two techniques for encoding these interactions can be found in the
literature and have been mentioned above: one relies on the graph of rule dependencies
and the other on a graph of position dependencies. Both graphs encode different kinds
of interactions between rules. The generalization of both techniques is ongoing work.

Acknowledgements. We thank Georg Gottlob for the reference to [37], Michaël Thomazo
for his careful reading of a previous version of this paper, as well as the anonymous
reviewers for their relevant and constructive comments.
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A. Soundness and Completeness of Homomorphism-based Mechanisms

This section is devoted to the semantics of facts and rules and proves the logi-
cal soundness and completeness of the homomorphism-based mechanisms defined for
facts and rules. We first give some properties related to semantic interpretations of
facts.

Definition 30. [Witness of a fact in an interpretation] Let F be a (possibly infinite)
fact on V and I = (∆, .I) be an interpretation of V . A witness of F in I is a mapping
π : term(F ) → ∆ such that:

• for every constant c ∈ const(F ), π(c) = cI ;

• for every atom p(t1, . . . , tk) ∈ F , (π(t1), . . . , π(tk)) ∈ pI .

Property 21. [Model of a fact] Let F be a (possibly infinite) fact on V and I be an
interpretation of V . Then I is a model of F if and only if there exists a witness of F in
I .

Proof: If I is a model of F , let v be a valuation of the existential variables that makes
F true for I . Then a witness π is obtained as follows: for all e ∈ term(F ), π(e) =
eI if e is a constant, otherwise π(e) = v(e). Reciprocally, given a witness π, any
interpretation I of V such that for all c ∈ const(F ), cI = π(c) and for all p ∈ pred(F ),
{(π(e1), . . . , π(ek))|p(e1, . . . , ek) ∈ F} ⊆ pI is a model of F . ¤

Definition 31 (Encoding interpretations as facts). Let I = (∆, .I) be an interpreta-
tion of a vocabulary V = (P, C). We encode I as a (possibly infinite) fact φ(I) as
follows:

• Let φ be a bijective mapping from ∆ to C∪X , where X is a set of variables, such
that for all δ ∈ ∆, if δ is the interpretation of a (unique, thanks to the unique
name assumption) constant c ∈ C (i.e., cI = δ), then φ(δ) = c.

• Let C be the conjunct obtained as follows: for every predicate p ∈ V and for
every tuple (δ1, . . . , δk) ∈ pI , p(φ(δ1), . . . , φ(δk)) is an atom in C;

• φ(I) is the existential closure of C.

Given a fact F and an interpretation I , I is a model of F if and only if there is a
homomorphism from F to φ(I). The next lemma shows how to build a witness of F
in I from a homomorphism from F to φ(I), and conversely.

Lemma 3. Let F be a fact, I = (∆, .I) be an interpretation and φ(I) be an encoding
of I .

1. Let π be a mapping from term(F ) to ∆. Then π is a witness of F in I if and only
if φ ◦ π is a homomorphism from F to φ(I).

2. Let π be a mapping from term(F ) to term(φ(I)). Then π is a homomorphism
from F to φ(I) if and only if φ−1 ◦ π is a witness of F in I .
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Proof: Follows immediately from the definitions. ¤

Lemma 4 (Isomorphic model). For every (possibly infinite) fact F , there exists (at
least one) interpretation I such that F is an encoding of I (notation I ∈ φ−1(F )).
Furthermore, I is a model of F . It is called an isomorphic model of F .

Proof: Let us build I . The domain of I is ∆ = term(F ). For each c ∈ const(F ), we
define cI = c. For each p ∈ pred(F ), pI = {(t1, . . . , tk)|p(t1, . . . , tk) ∈ F}. It can
be immediately checked that F is an encoding of I . Since F ∈ φ(I), there is a witness
of F in I (Lemma 3. 2), thus I is a model of F . ¤

We can now prove the soundness and completeness of homomorphism in the logical
fragment of facts:

Theorem 1. Let F and F ′ be two facts. F ′ |= F if and only if there is a homomorphism
from F to F ′.
Proof: (⇐) Assume there is a homomorphism, say π from F to F ′. Let us prove that
any model of F ′ is also a model of F . Consider I a model of F ′. Then there is a
witness π′ from F ′ to I . Thus φ ◦ π′ is a homomorphism from F ′ to an encoding φ(I)
of I (Lemma 3. 1). Since π ◦ φ ◦ π′ is a homomorphism from F to φ(I), there exists
a witness of F in I (Lemma 3. 2). (⇒) Assume F ′ |= F , i.e., every model of F ′ is
a model of F . In particular, consider an isomorphic model I of F ′ (from Lemma 4 it
exists). I is also a model of F . Since F ′ is an encoding of I , there is a homomorphism
from F to F ′ (Lemma 3. 1). ¤

We now focus on the semantics of rules and prove that the saturation scheme is
sound and complete in the fragment of facts and rules.

Property 22 (Models of a ∀∃-rule). Let R = (H, C) be a ∀∃-rule on V , and I =
(∆, .I) be an interpretation of V . Then I is a model of R if and only if, for every
witness π of H in I , there exists a witness π′ of C in I such that, for all t ∈ fr(R),
π(t) = π′(t) (equivalently: π can be extended to a witness of C).

Proof: Follows from the definition of a ∀∃-rule. ¤

Lemma 5. Let I be a model of F and of all rules in a set R. Then, for any integer k,
I is a model of αk(F,R).

Proof: We prove inductively that, for any integer k, there is a witness of αk(F,R) in
any such model I . There is a witness π0 of F in I . We prove by induction that if
there is a witness πi of F i = αi(F,R) in I , then there is a witness πi+1 of F i+1 in
I . The induction hypothesis is satisfied at rank 0 since F = F 0. We have F i+1 =
F i ∪(R=(H,C),π)∈Π(R,F i) C ′, where C ′ = πsafe(C). See that for every C ′, there exists
a witness π′ of C ′ in I such that, for all x ∈ var(C ′) ∩ var(F i), π′(x) = πi(x)
(from Property 22). Since none of the C ′ share any new variable (thanks to the safe
substitution), the mapping obtained from πi and all π′ is a witness from F i+1 to I . ¤

Lemma 6. Let F be a fact and R be a set of ∀∃-rules. Then an isomorphic model I of
α∞(F,R) is a model of F and of all rules in R.
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Proof: Since F ⊆ F ∗ = α∞(F,R), there is a homomorphism from F to F ∗ and thus
F ∗ |= F (Theorem 1). Consider now any rule R = (H,C) inR and any witness πH of
H in I (if there is none, I is a model of R). From Lemma 3.1, there is a homomorphism
π = σ ◦ πH , with σ(I) = F ∗ from H to F ∗ = α∞(F,R). >From Property 1, there
exists k such that π is a homomorphism from H to F k = αk(F,R). By definition of a
rule application, there is a homomorphism π′ from C to F k+1 = αk+1(F,R), thus to
F ∗. From Lemma 2, this homomorphism yields a witness of C in I . ¤

Theorem 2. Let F and F ′ be two facts, and R be a set of ∀∃-rules. Then F,R |= F ′

if and only if there is a homomorphism from F ′ to α∞(F,R).
Proof: Let us consider F , F ′ and R. Let F ∗ = α∞(F,R).

(⇐) Assume there is a homomorphism, say π, from F ′ to F ∗. Then there is an
integer k such that π is a homomorphism from F ′ to F k = αk(F,R) ⊆ F ∗.
Let us prove that any model I of F and of all rules in R is also a model of F ′.
I is a model of F k (Lemma 5) and there is a homomorphism π′ from F k to an
encoding φ(I) of I (Lemma 3.1). Since π′ ◦ π is a homomorphism from F ′ to
φ(I), there is a witness of F ′ in I (Lemma 3.2), thus I is a model of F ′ (Property
21).

(⇒) Assume F,R |= F ′. In particular, consider an isomorphic model I of F ∗. From
Lemma 6, it is a model of F and of all rules inR. It is thus a model of F ′. Since
F ∗ is an encoding of I , there is a homomorphism from F ′ to F ∗ (Lemma 3.1).

¤

B. Proof of Theorem 3

Notation. Let σ : X → T and σ′ : X ′ → T ′ be two substitutions such that, ∀t ∈
X ∩ X ′, σ(t) = σ′(t). Then we note σ + σ′ : X ∪ X ′ → T ∪ T ′ the substitution
defined by: if t ∈ X, (σ + σ′)(t) = σ(t), otherwise (σ + σ′)(t) = σ′(t).

The following property, which will be used in the next lemmas, illustrates the “in-
dependence” between pieces.

Property 23. Let F and Q be two facts, X ⊆ var(Q), Q1, . . . , Qk be a partition of
the atoms of Q such that each Qi is the union of one or more pieces of Q according to
X , and π1, . . . , πk are homomorphisms from the Qi to F such that, ∀t ∈ X , ∀1 ≤ i ≤
j ≤ k, πi(t) = πj(t); then the substitution π1 + . . . + πk is a homomorphism from Q
to F .

Proof: We prove the property for k = 2, then apply this result k− 1 times to prove the
general result. If π1 and π2 are homomorphisms respectively from Q1 and Q2 to F ,
then π1 + π2 is a substitution (since the only shared variables are in X , π1 + π2 is a
mapping), and it is immediate to check that it is a homomorphism. ¤

In the following, when several safe substitutions according to a substitution σ are
involved, we denote them by σsafe.1, . . . , σsafe.k.
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Lemma 7. Let µ = (TQ, Q′, σR, πQ) be a unifier of a fact Q with a rule R = (H, C).
Consider F = β(Q,R, µ) = σR

safe.1(H) ∪ πQ(Q \ Q′). We note αβ(Q,R, µ) =
α(F, R, σR

safe.1). Then there is a homomorphism from Q to αβ(Q,R, µ).

Proof: We build a particular homomorphism π from Q to F ′ = αβ(Q,R, µ), that
we will later call the natural homomorphism from Q to αβ(Q,R, µ). We have F ′ =
σR

safe.1(H) ∪ πQ(Q\Q′)∪σR
safe.2(C). Let us consider the two following substitutions:

• π1 : var(Q\Q′) → terms(F ′) such that π1(x) = πQ(x) if x ∈ TQ and π1(x) =
x otherwise;

• π2 =: var(Q′) → terms(F ′) such that π2(x) = σR
safe.2(πQ(x)).

Both π1 and π2 are homomorphisms and, since they verify the conditions of Prop-
erty 23 (with TQ = X), π = π1 + π2 is a homomorphism from Q to F ′. ¤
Lemma 8. Let F be a fact, R = (H, C) be a rule and π be a homomorphism from
H to F such that F ′ = α(F,R, π) = F ∪ πsafe.1(C) contains an atom that is not
in F . Then there is a unifier µ = (TF ′ , π

safe.1(C), π, id) of F ′ with R defined by:
TF ′ = πsafe.1(fr(R)), and id is the identity. We note βα(F, R, π) = β(F ′, R, µ). Then
there is a homomorphism from βα(F, R, π) to F .

Proof: First check that µ is a unifier (πsafe.1(C) is not empty). Then we build a par-
ticular homomorphism π′ from F ′′ = βα(F, R, π) to F , that we will later call the
natural homomorphism from βα(F, R, π) to F . We have F ′′ = πsafe.2(H) ∪ πQ((F ∪
πsafe.1(C)) \ πsafe.1(C)) = πsafe.2(H) ∪ G, where G ⊆ F . Let us now consider the
following substitutions:

• π1 : var(πsafe.2(H)) → terms(F ) such that ∀t ∈ H , π1(πsafe.2(H)) = π(H);

• π2 : var(G) → terms(F ) such that ∀t ∈ var(G), π2(t) = t.

Both π1 and π2 are homomorphisms and, since they verify the conditions of Prop-
erty 23, then π′ = π1 + π2 is a homomorphism from F ′′ to F . ¤

The following property (as well as its corollary) will also be used in the main the-
orem proof.

Property 24. If Q′ = α(Q,R, πα) and there is a homomorphism π from Q to F , then
there is a homomorphism π′ from Q′ to F ′ = α(F, R, π ◦ πα).

Proof: With R = (H, C), we have Q′ = Q∪πα
safe.1(C) and F ′ = F∪(π ◦ πα)safe.2(C).

Let us build the homomorphism π′ from Q′ to F ′. We first consider the homomorphism
πC from πα

safe.1(C) to (π ◦ πα)safe.2(C) defined by:

• if t ∈ πα(cutp(R)), then πC(t) = π(t).

• otherwise πC(t) = (π ◦ πα)safe.2((πα
safe.1)−1(t)).

Since π and πC satisfy the condition of property 23 (with X = πα(cutp(R))), then
π′ = π + πC is a homomorphism from Q′ to F ′. ¤

With an immediate recursion on the previous property, we obtain:

Corollary 1. If Q′ is an R-derivation of Q and Q maps to F , then there exists an
R-derivation F ′ of F such that Q′ maps to F ′.
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Theorem 3. Let K = (F,R) be a KB and Q be a fact. Then F,R |= Q if and only if
there is an R-rewriting of Q that maps to F .

Proof:

(⇒) The first direction is proven by induction on the length of the derivation se-
quence (i.e. the number of rule applications used in the derivation), and relies upon
Lemma 8. The induction property is trivially true at rank 0. Let us assume it is
true at rank n. Suppose that Fn+1 is obtained from F by an R-derivation sequence
F = F0, F1 = α(F0, R, πα), . . . , Fn+1 of length n + 1, and Q maps to Fn+1, where
Fn+1 is obtained from F1 by a derivation sequence of length n. By induction hypoth-
esis, there exists an R-rewriting Q1 of Q such that there exists a homomorphism π1

from Q1 to F1. It remains now to prove that there exists an R-rewriting Q0 of Q1 that
maps to F0. Either π1 maps all atoms of Q1 to F0, and in that case Q0 = Q1 proves
the property, or there is at least one atom a of Q1 such that π1(a) 6∈ F0.

Since F1 = α(F0, R, πα), according to Lemma 8, there exists a unifier µ =
(TF1 , π

safe.1
α (C), πα, id) of F1 with R = (H,C) such that β(F1, R, µ) maps to F0.

Let us now build a unifier µ1 of Q1 with R, based upon µ and π1, such that Q0 =
β(Q1, R, µ1) maps to F0. This unifier µ1 = (TQ1 , Q

′
1, πα, π′1) is built as follows:

• TQ1 is the subset of variables t ∈ var(Q) such that ∃t′ ∈ cutp(R) with πα(t′) =
π1(t);

• Q′1 is the subset of atoms from Q1 such that π1(Q′
1) ⊆ πα

safe.1(C). Note that Q′
1

is a set of pieces according to TQ1 , and that Q′1 is not empty (there is an atom a
such that π1(a) 6∈ F0);

• π′1 is the restriction of π1 to TQ1 .

Let us now prove that there exists a homomorphism π0 from Q0 = β(Q1, R, µ1)
to F0. By definition, Q0 = πα

safe.2(H)∪π′1(Q1 \Q′1). That homomorphism π0 is built
from the two following ones:

• the identity id is a homomorphism from π′1(Q1 \Q′1) to F0;

• π′α maps πsafe.2
α (H) to F0 and is defined as follows: ∀t ∈ TQ1 , π

′
α(t) = t,

otherwise π′α(t) = πα((πα
safe.2)−1(t)).

Since id and π′α satisfy the condition of Property 23 (with X = TQ1), π0 = id+π′α
is a homomorphism from Q0 to F0.

(⇐) The second direction is proven by induction on the length of the rewriting
sequence, and relies upon Lemma 7. The induction property is trivially true at rank
0. Let us assume it is true at rank n. Suppose that Qn+1 is obtained from Q by an
R-rewriting sequence Q = Q0, . . . , Qn+1 = β(Qn, R, µβ) of length n + 1, and that
there is a homomorphism π from Qn+1 to F . Since Qn is obtained from Q by an
R-rewriting sequence of length n, and that Qn obviously maps to itself, we know (by
induction hypothesis) that there is an R-derivation Q′n of Qn such that Q maps to Q′

n.
According to Lemma 7, the fact αβ(Qn, R, µβ) has two properties: (i) it is obtained by
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applying R on Qn+1, and (ii) Qn maps to αβ(Qn, R, µβ). From (i) and our knowledge
that Qn+1 maps to F , we can conclude, thanks to Property 24, that there exists a fact
F ′ obtained by the application of R to F such that αβ(Qn, R, µβ) (and thus Qn, by
composing homomorphisms) maps to F ′. Since Q′n is an R-rewriting of Qn, we can
build, thanks to Corollary 1, a R-rewriting F ′′ of F ′ such that Q′

n (and thus Q, by
composition of homomorphisms), maps to F ′′. It remains now to point out that F ′′ is
an R-rewriting of F . ¤

C. Proof of Theorem 12

Theorem 12. ENTAILMENT remains undecidable if R is composed of fr1-rules and
rr-rules.
Proof: We consider the halting problem of a Turing machine: given a deterministic
Turing machine M (with an infinite tape and a single final state) and a word m, such
that the head of M initially points to the first symbol of m, does M accept m, i.e.,
is there a sequence of transitions leading M to the final state? We build a reduction
from this problem to ENTAILMENT, such that each rule obtained is fr1 or rr. Let us
call configuration a global state of the Turing machine, i.e., its current control state,
the content of the tape and the position of the head. The basic idea of the translation is
that each transition is translated into a logical rule. However, whereas transitions can
be seen as rewriting rules, logical rules are only able to add atoms. To simulate the
rewriting of a configuration, we add a library of eight rules, called hereafter the copy
rules. The rule assigned to a transition creates three new cells (a copy of the current
cell, that contains the new symbol, and neighboring cells with the new position of the
head), and the copy rules build the other relevant cells at the right and at the left of
these new cells.

Let (M,m) be an instance of the halting problem. We build an instance (F,R, Q)
of ENTAILMENT as follows.

The vocabulary is composed of:

• binary predicates: Succ to encode the succession of cells (Succ(x, y) means that
the cell x is followed by the cell y); Value to indicate the content of a given cell
(Value(x, y) means that the cell x contains the symbol y); Head to indicate the
current position of the head and the current control state (Head(x, y) means that
the head points to cell x and the current state is y); Next to encode the rewriting
of a cell (Next(x, y) means that cell x is rewritten as cell y); Copyr (resp. Copyl)
to rebuild the right (resp. the left) part of the word after a transition: Copyr(x, y)
and Copyl(x, y) both mean that cell y is a copy of cell x in the next configuration;

• constants: each state and each symbol are translated into constants with the same
name. Furthermore, there are three special constants, denoted ¤ (the value of an
empty cell), B (for Begin) and E (for End).

Let m = m1 ˙. . .mk and let T0 be the initial state. F is obtained from this initial con-
figuration. m is translated into a path of atoms with predicate Succ (a “Succ-path”) on
variables x1, . . . , xk, as well as atoms with predicate Value that relate each xi with the
symbol mi; for the needs of the copy mechanism, we actually translate the following
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word: “¤ m1 . . . mk ¤”, and add special markers B and E at the extremities of this
word. More precisely:
F = {Succ(B, x0),
Succ(x0, x1), . . . , Succ(xk, xk+1),
Succ(xk+1, E),
Value(x0,¤), Value(xk+1, ¤),
Value(x1,m1), . . . , Value(xk,mk),
Head(x1, T0)}.

Note that there are no atoms of form Value(B, . . .) nor Value(E, . . .).
Let δ = (Ti, vp) → (Tj , vq, d) be a transition, with d ∈ {r, l} indicating a move to

the right (r) or to the left (l): δ can be read as “if the current state is Ti and the head
points to the symbol vp, then take state Tj , replace vp by vq and move to the right/left”.
Let R(δ) be the logical rule assigned to δ. If d = r, we have:

R(δ) = Head(x, Ti) ∧ Value(x, vp) → Next(x, y) ∧ Succ(z, y) ∧ Succ(y, t) ∧
Value(y, vq) ∧ Head(t, Tj). This rule is fr1. The case d = l is symmetrical: the head
moves to the left.

To implement the copy mechanism, we have four rules to copy the right part of the
word, and four symmetrical rules to copy its left part. Here are the four “right-copy”
rules:
Rr1 = Succ(x, y)∧Next(x, z)∧Succ(z, u)∧Value(y, v) → Copyr(y, u)∧Value(u, v)
Rr2 = Copyr(x, y) → Succ(y, z)
Rr3 = Succ(x, y)∧Copyr(x, z)∧Succ(z, u)∧Value(y, v) → Copyr(y, u)∧Value(u, v)
Rr4 = Succ(x,E) ∧ Copyr(x, y) ∧ Succ(y, z) → Value(z, ¤) ∧ Succ(z, E).

Rr2 is fr1 and the other rules are rr (with Rr4 begin also fr1). In the “left-copy"
rules, say Rl1 . . . Rl4, Copyl is used in an obvious way instead of Copyr, with B replac-
ing E. R contains these eight copy rules and one rule R(δ) per transition δ. Finally, Q
encodes the fact that the head is in the final state: Q = {Head(x, Tf )}, where Tf is the
final state.

The proof relies on the following equivalence: there is a derivation of F that con-
tains a “Succ-path” from B to E encoding a word ¤∗m′¤∗, with Head(x, T ) and
V alue(x,m′

i), where x is a variable at a “position” k (with 0 being the position of the
variable containing the beginning of m′) iff there is a sequence of transitions of M
from the initial configuration to a configuration with m′ on the tape, the head pointing
to a cell containing m′

i at a position k (with 0 being the position of the cell containing
the beginning of m′) and with control state T . The ⇒ direction of this equivalence is
proven by induction on the length of a derivation sequence. The ⇐ direction is proven
by induction on the number of transition applications.

¤

Note (for Section 7.3). A similar encoding of the Turing Machine can be obtained
in the following way. The initial word is encoded as before, but we add the atom
Next1(x, x1); note that x0 and xk+1 are actually not needed, but we keep them to
minimize the changes w.r.t. the previous encoding.

We consider two sets of rules. The first set is used to generate all the cells that could
be needed by the Turing Machine (i.e., an infinite number of infinite tapes). These rules
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are:

(R1
1) Next1(x, y) → Next1(y, z) ∧ Succ(z′, z)

(R2
1) Succ(x, y) → Succ(x′, x)

(R3
1) Succ(x, y) → Succ(y, y′)

Note that these rules are both fr1 and ah.
Intuitively, Next1(x, x1) in F is used by rule (R1

1) as a starting point to generate an
infinite number of tapes, while rules (R2

1) and (R3
1) generate an infinite number of cells

for each tape. The second set of rules uses these cells to simulate a Turing Machine,
without generating any new variable (these rules are rr). Note that cells B and E in the
initial tape may be each linked by the Next predicate to an infinite path of empty cells
(i.e., with value ¤) in the second tape; for the following tapes, Next defines a bijection
between cells of successive tapes.

(R1
2) Next1(x, y) → Next(x, y)

(Rr2
2 ) Next(x, y) ∧ Succ(x, x′) ∧ Succ(y, y′) → Next(x′, y′)

(Rl2
2 ) Next(x, y) ∧ Succ(x′, x) ∧ Succ(y′, y) → Next(x′, y′)

(Rr3
2 ) Next(E, x) ∧ Succ(x, y) → Next(E, y)

(Rl3
2 ) Next(B, x) ∧ Succ(y, x) → Next(B, y)

(Rr4
2 ) Next(E, x) → Value(x, ¤)

(Rl4
2 ) Next(B, x) → Value(x, ¤)

R(δ) [for the case d = r; replace Head(y′′, Tj) by Head(y′, Tj) for d = l]
Head(x, Ti), V alue(x, vp), Next(x, y), Succ(x′, x), Succ(x, x′′), Succ(y′, y), Succ(y, y′′)
→ Head(y′′, Tj), Value(y, vq), Copyl(x

′, y′), Copyr(x
′′, y′′)

(Rr5
2 ) Copyr(x, y), Value(x, v), Succ(x, x′), Succ(y, y′) → Copyr(x

′, y′), Value(y, v)

(Rl5
2 ) Copyl(x, y), Value(x, v), Succ(x′, x), Succ(y′, y) → Copyl(x

′, y′), Value(y, v)

The rules in the first set do not depend on the rules in the second set. This encoding
of a Turing Machine can be seen either as an ah.rr or as a fr1.rr set of rules.

D. Proofs of Property 18 and Theorem 15

Property 18. If a fact Q depends on a rule R, then there is a piece-unifier of Q with
R.

The proof of this property relies on the following definition and lemma, which
states that the co-domain restriction on the substitution σR in the definition of a piece-
unifier is only relevant for an algorithmic efficiency purpose.

We call pre-unifier of a fact Q with a rule R = (H,C) a tuple µ = (TQ, Q′, σR, πQ)
where TQ, Q′ and πQ are defined as in Definition 12, and σR is a substitution of fr(R)
by any set of terms (without any restriction on its co-domain).
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Lemma 9. [Pre-Unifier] Let Q be a fact and R be a rule. There exists a pre-unifier of
Q with R if and only if there exists a piece-unifier of Q with R.

Proof: Since every piece-unifier is a pre-unifier, we only have to prove the (⇒) part
of this equivalence. Let us consider a pre-unifier µ = (TQ, Q′, σR, πQ) of Q with
R = (H,C). We define µ′ = (TQ, Q′, σ′R, π′Q) as follows:

• Let us first build the substitution σ′R. To any term t ∈ σR(fr(R)) we associate
a term s(t) ∈ cutp(R) ∪ const(Q′), where s is an injective mapping obtained as
follows:

– if t ∈ cutp(R) ∪ const(Q′), then s(t) = t;

– otherwise, s(t) is an element of fr(R) (it is immediate to see that there will
be enough such elements for s to be injective).

Then we define σ′R = s ◦ σR.

• Now consider the substitution π′Q = s ◦ πQ. It is effectively a homomorphism
from Q′ to σ′R(C) such that, for all t ∈ TQ, there is a t′ ∈ cutp(R) with π′Q(t) =
s(πQ(t)) = s(σR(t′)) = σ′R(t′).

Thus µ′ is a piece-unifier of Q with R. ¤
Proof: (of Property 18) If Q depends on R = (H,C), then there is a fact F and a
homomorphism π from H to F such that there exists a homomorphism π′ from Q
to F ′ = α(F, R, π) that is not a homomorphism from Q to F (by Definition 25).
In particular, it means that there is an atom a of Q such that π′(a) is not in F . We
consider TQ = {x ∈ Q|π′(x) ∈ π(cutp(R))}. Consider now the non-empty subset
Q′ (it contains at least a) of atoms of Q that are not mapped to F by π′, i.e., Q′ =
{a ∈ Q|π′(a) 6∈ F}. Check that Q′ is a non-empty set of pieces of Q according to
TQ that contains a. Then the restriction π′′ of π′ to Q′ is a homomorphism from Q′

to πsafe.1(C) such as, for every t ∈ TQ, there is t′ ∈ cutp(R) with π′′(t) = π(t′) (it
immediately follows from the definition of TQ). Thus µ = (TQ, Q′, σR, π′′), where
σR is the restriction of πsafe.1 to fr(R), is a pre-unifier (not necessarily a unifier since
π can map elements of fr(R) to any term in F ) of Q with R. >From Lemma 9 and its
proof, it follows that µs = (TQ, Q′, s ◦ σR, s ◦ π′′) is a unifier of Q with R. ¤

Theorem 15. A fact Q depends on a rule R = (H,C) if and only if there exists an
atom-erasing unifier of Q with R.

The following lemma will be used in the proof of the theorem.

Lemma 10. Let µ = (TQ, Q′, σR, πQ) be a unifier of Q with R. If there is a variable
x of Q′ such that πQ(x) 6∈ σR(cutp(R)), then πQ(x) is not a variable of β(Q,R, µ).

Proof: First see that x is not a variable of TQ (or πQ(x) would be in σR(cutp(R))), and
thus that x is not a variable of Q\Q′ (otherwise the atom containing x would have been
in a piece of Q′). Thus πQ(x) is not a variable of πQ(Q \ Q′) (πQ can only replace
variables of TQ by constants or by variables of σR(cutp(R)) that do not contain πQ(x),
by hypothesis). Moreover, the terms of σR

safe(H) only contain constants, variables of
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σR(fr(R)), or safely substituted variables. Thus πQ(x) is not a variable of β(Q,R, µ).
¤
Proof: (of Theorem 15)

(⇒) If Q depends on R = (H, C), then consider the piece-unifier µs = (TQ, Q′, σs =
s ◦ σR, πs = s ◦ π′′) of Q with R built in the proof of Property 18. The rewrit-
ing of Q according to R is thus the fact Qs = Q1

s ∪ Q2
s where Q1

s = σs
safe(H)

and Q2
s = πs(Q \ Q′). Consider now the atom a of Q′, such that π′(a) 6∈ F as

pointed out in the proof of Property 18. Either there is a variable x of a such that
πs(x) 6∈ σs(cutp(R)), or there is none.

• in the first case, πs(x) is not a variable of Qs (see Lemma 10) and thus πs(a) is
not an atom of Qs;

• in the second case, we will show that πs(a) is neither an atom of Q1
s, nor an atom

of Q2
s. Let us first suppose that πs(a) is in Q1

s. That would mean that π′′(a) is
an atom of F , and thus that π′(a) is also an atom of F , which is absurd, due
to our definition of a. Now suppose that πs(a) is in Q2

s. It means that there is
an atom a′ ∈ Q \ Q′ such that πs(a) = πs(a′). Then, by construction of πs,
π′(a) = π′(a′). The atom π′(a) is either in F or in πsafe(C). The first case is
absurd, according to our choice of a. The second is also absurd, since we would
have chosen a′ as an atom of Q′.

Since πs(a) is not an atom of Qs, the unifier µs is atom-erasing.
(⇐) If there is an atom-erasing unifier µ = (TQ, Q′, σR, πQ) of Q with R, then

consider the atom a in Q′ such that πQ(a) 6∈ F = β(Q,R, µ). Consider the natural
homomorphism π1+π2 from Q to αβ(Q,R, µ) = α(F, R, σR

safe.1) = F ∪σR
safe.2(C)

(see the proof of Lemma 7). It remains to prove that (π1 + π2)(a) 6∈ F . Only one of
the following cases can arise:

• there is a variable x appearing in a such that πQ(x) 6∈ σR(cutp(R)). In that
case, (π1 + π2)(x) = π2(x) = σR

safe.2(πQ(x)) is a safely rewritten variable of
σR

safe.2(C) and cannot be in F , thus (π1 + π2)(a) 6∈ F .

• for every variable xi ∈ a, πQ(xi) ∈ σR(cutp(R)). Then (π1 + π2)(a) =
π2(a) = πQ(a) 6∈ F since a is the erased atom.

¤
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