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Abstract. Polarized conceptual graphs (PGs) are simple conceptual
graphs added with a restricted form of negation, namely negation on re-
lations. Classical deduction with PGs (in short PG-Deduction) is highly
intractable; it is indeed Π2

P complete. In [LM06] a brute-force algorithm
for solving PG-Deduction was outlined. In the present paper, we ex-
tend previous work with two kinds of results. First, we exhibit particular
cases of PGs for which the complexity of PG-Deduction decreases and
becomes not more difficult than in simple conceptual graphs. Secondly,
we improve the brute-force algorithm with several kinds of techniques
based on properties concerning the graph structure and the labels.

1 Introduction

Simple conceptual graphs (SGs) [CM92] constitute the kernel of conceptual
graphs (CGs) [Sow84]. They can be used as such, to represent facts or queries.
They are also basic bricks for more complex constructs, corresponding to more
expressive conceptual graphs, for instance rules or constraints [BM02]. Full
conceptual graphs are obtained when negation is added to SGs without re-
striction. Several works inspired from Peirce’s existential graphs, a diagram-
matical system for logics, have studied full conceptual graphs, in particular
[Sow84,WL94,Dau03]. Full conceptual graphs have the expressive power of FOL.
We think that they are too complicated at the end-user level, for building
knowledge-based systems and understanding how they work. They are also too
complex from a computational viewpoint since deduction becomes non decid-
able. We thus prefer to add a limited form of negation to SGs, namely atomic
negation. Atomic negation allows us to express knowledge of form “this kind of
relation does not hold between these entities”, “this entity does not have that
property” or “this entity is not of that type”.

Polarized Graphs. SGs plus atomic negation yield polarized graphs (PGs), which
are equivalent to the FOL fragment of existentially closed conjunctions of posi-
tive and negative literals. Several works have pointed out difficulties introduced
by atomic negation (and, similarly, inequality) in classical FOL [Mug00] [Ker01]
[Kli05]. In [LM06] [ML07], we discussed several semantics of negation in relation
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with deduction checking but also with querying PGs: negation with closed-world
assumption, negation in classical FOL, and negation in intuitionistic logic. In the
first and in the third case, negation can be processed without complexity over-
head. In the classical case, deduction checking in PGs (PG-Deduction) becomes
highly intractable: indeed, it can be shown that it is Π2

P -complete (Π2
p is co-

NPNP ), whereas deduction in SGs is NP-complete (see f.i. [Mug07] for a proof
of Π2

P -completeness).

Contribution. In [LM06] [ML07], we proposed a brute-force algorithm for (clas-
sical) PG-Deduction. In the present paper, we extend this previous work with
two kinds of results. First, we exhibit particular cases of PGs for which the com-
plexity of PG-Deduction decreases and becomes not more difficult than in SGs.
These particular cases rely on the notion of pair of exchangeable relation nodes
(that appear in the graph to be deduced). Secondly, we improve the brute-force
algorithm with several kinds of techniques based on properties concerning the
graph structure and the labels. Finally, let us mention that this paper extends
another work of ours on the containment problem of conjunctive queries with
negation, in the context of databases [LM07]. Indeed, this problem can be seen
as a particular case of PG-Deduction, where relation types are not partially or-
dered. Furthermore, the notion of exchangeable relations defined here generalizes
that of opposite literals in [LM07].

The sequel of this paper is organized as follows. Section 2 is devoted to prelim-
inary definitions and results. Exchangeable pairs of relations and related special
cases are studied in section 3 and algorithmic improvments in section 4. These
improvements are based first on a limitation of the “completion vocabulary”,
and secondly on a specific exploration of the search space.

2 Polarized Graphs

In this section, we define notations and recall some definitions and results of
[LM06] about polarized conceptual graphs. We assume that the reader is familiar
with the basics of conceptual graphs (cf. for instance [ML07] for definitions
consistent with the present paper).

Basic notations and results. A conceptual graph vocabulary contains at least
a poset (partially ordered set) of concept types, a poset of relation types and a set
of individual markers. We denote by V a vocabulary, and by TR its set of relation
types. Φ is the classical translation from conceptual graphs (and vocabularies)
to first-order logic (FOL). Φ(G) denotes the logical formula assigned by Φ to
a graph G, and Φ(V) denotes the set of formulas translating the concept and
relation type posets. We use the symbol ² to denote both the logical entailment
and the deduction (as both notions are equivalent in FOL). Projection is the
fundamental mechanism to reason with simple conceptual graphs (SGs). Since
it is indeed a graph homomorphism, and the term “projection” can be misleading
because of the operation with the same name in databases, we prefer to call it SG
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homomorphism, or simply homomorphism if there is no ambiguity. If there is a
homomorphism from G to H, we say that G can be mapped to H. A SG is normal
if it does not possess two concept nodes with the same individual marker. Under
natural assumptions every SG has a unique normal form. SG homomorphism is
sound and complete with respect to Φ, i.e.: for all SGs G and H on a vocabulary
V, if there is a homomorphism from G to H then Φ(V), Φ(H) |= Φ(G) (soundness,
[Sow84]) and if Φ(V), Φ(H) |= Φ(G) then there is a homomorphism from G to
the normal form of H (completeness, [CM92]).

Polarized conceptual Graphs (PGs). PGs are built from SGs by “polariz-
ing” their relation nodes. Beside positive relation nodes, there are now negative
relation nodes.

Definition 1 (Polarized Graph (PG)). A polarized graph (PG) is defined
similarly to a SG except that relation nodes are labeled not only by a type but
also by a polarity (denoted + or −). A positive (resp. negative) relation node is
labeled by (+r) (resp. (−r)), where r is a relation type. (+r) can also be noted
(r).

A negative relation node with label (−r) and arguments (c1...ck) expresses
that “there is no relation of type r between c1...ck” (or if k = 1, “c1 does not
possess the property r”); it is logically translated by Φ into the literal ¬r(e1...ek),
where ei is the term assigned to ci. PGs are equivalent to the FOL fragment
composed of existentially closed conjunctions of (positive and negative) literals
(without functions). In the following, we note +r(c1...ck) (resp. −r(c1...ck)), a
relation node with label +r (resp. −r) and neighbor list c1...ck, where the c1...ck

are not necessarily distinct nodes.

Definition 2 (inconsistent PG). A PG is said to be inconsistent if its normal
form contains two relation nodes +r(c1...ck) and −s(c1...ck) with contradictory
labels, i.e. with r ≤ s. Otherwise it is said to be consistent.

The following property is immediate:

Property 1. For any PG G on a vocabulary V, G is inconsistent iff Φ(V)∪{Φ(G)}
is inconsistent.

The order on relation labels is extended as follows: we set −r1 ≤ −r2 if
r2 ≤ r1.

Definition 3 (Extended order on relation labels). Given two relation la-
bels l1 and l2, l1 ≤ l2 if, either l1 and l2 are both positive labels, say l1 = (r1)
and l2 = (r2), and r1 ≤ r2, or l1 and l2 are both negative labels, say l1 = (−r1)
and l2 = (−r2), and r2 ≤ r1.

Given this extended order on relation labels, homomorphism can be used
without changing its definition. Recall that homomorphism is sound and com-
plete w.r.t. logical deduction for SGs. For PGs, one part of the property still
holds:



4

Property 2. Given two PGs G and H on a vocabulary V, if there is a homomor-
phism from G to H then Φ(V), Φ(H) |= Φ(G).

Thus, homomorphism remains sound. But it is no longer complete. Indeed,
we might have Φ(V), Φ(H) |= Φ(G) and no homomorphism from G to H, as
illustrated by Figure 1. The formulas assigned to G and H by Φ (here we ignore
the atoms associated with concept nodes) are respectively Φ(G) = ∃x∃yp(x) ∧
¬p(y)∧ r(x, y) and Φ(H) = p(a)∧ r(a, b)∧ r(b, c)∧¬p(c). Φ(G) can be deduced
from Φ(H) using the tautology p(b)∨¬p(b) (indeed, every model of Φ(H) satisfies
either p(b) or ¬p(b); if it satisfies p(b), then x and y are interpreted as b and c; in
the opposite case, x and y are interpreted as a and b; thus every model of Φ(H)
is a model of Φ(G)).
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Fig. 1. Atomic negation and homomorphism

More generally, negation introduces disguised disjunctive information that
cannot be taken into account by homomorphism. This disjunctive information is
related to the law of the excluded-middle which holds in classical logic: given a
proposition P , either P is true, or ¬P is true. This leads to reasoning by cases:
if a relation is not asserted in a fact, either it is true or its negation is true. We
thus have to consider all ways of completing the knowledge asserted by a PG.
Let us look again at the example in Fig. 1. H does not say whether the unary
relation p holds for b. We thus have to consider two cases : either a relation node
with label (+p) or a relation node with label (−p) can be attached to b. Let
H1 and H2 be the graphs respectively obtained from H (see Fig. 2). There is a
homomorphism from G to H1 and there is a homomorphism from G to H2. From
the soundness of homomorphism, we conclude that G can be logically deduced
from H.

The next definition specifies the notion of completion of a PG relative to a
vocabulary V.

Definition 4 (Complete PG). A complete PG on a vocabulary V with rela-
tion type set TR is a consistent (normal) PG satisfying the following completion
condition: for each relation type r of arity k in TR, for each k-tuple of concept
nodes (c1, . . . , ck), where c1, . . . , ck are not necessarily distinct nodes, there is a
relation +s(c1, . . . , ck) with s ≤ r or (exclusive) there is a relation −s(c1, . . . , ck)



5

H1

G
d1c1c1 d1

H2

1 2 1 2
T:cT:a T:b

+p +p

−p+p

TT r1 2

−p

rr1 2 1 2
T:cT:a T:b

+p −p

y

r r

−p

x

c1 d1

Fig. 2. When the law of the excluded-middle intervenes

with r ≤ s. A PG is complete w.r.t. a subset of relation types T ⊆ TR if the
completion condition considers only elements of T . If a PG Gc that is complete
w.r.t. T is obtained by adding relations to a graph G, it is called a T -completion
of G (or simply a completion of G if T is implicit).

Property 3. If a relation node is added to a complete PG, either this relation
node is redundant (there is already a relation node with the same argument list
and a label less or equal to it) or it makes the PG inconsistent.

A complete PG is obtained from a consistent PG G by repeatedly adding
positive and negative relations as long as adding a relation brings new informa-
tion and does not yield an inconsistency. Since a PG is a finite graph defined over
a finite vocabulary, the number of different complete PGs that can be obtained
from it is finite.

We can now define deduction on PGs.

Definition 5 (PG-Deduction problem). The PG-Deduction problem takes
two PGs G and H as input, with H being consistent, and asks whether G can
be PG-deduced from H, i.e. whether for each complete PG Hc obtained from H,
there is a homomorphism from G to Hc.

Theorem 1. Let G and H be two PGs defined on a vocabulary V. H is a
consistent PG. Then G can be PG-deduced from normal(H) if and only if
Φ(V), Φ(H) ² Φ(G).

From now on, we will confuse PG-deduction and logical deduction on the
associated formulas, and simply say “deduction”. Algorithm 1 is a brute-force
algorithmic schema for checking deduction (algorithmic improvements are stud-
ied in Section 4). An immediate observation for generating the completions Hc

is that we do not need to consider all relation types but only those appearing
in G. The algorithm generates all complete PGs relative to this set of types and
for each of them checks whether G can be mapped to it. A complete graph to
which G cannot be mapped can be seen as a counter-example to the assertion
that G is deducible from H.
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Algorithm 1: PG-eduction
Data: PGs G and H, s.t. H is consistent
Result: true if G can be deduced from H, false otherwise
begin

Compute H the set of complete PG obtained from H w.r.t. relation types in
G;
forall Hc ∈ H do

if there is no homomorphism from G to Hc then
return false ; // Hc is a counter-example

return true;
end

3 Special Cases with Lower Complexity for PG-Deduction

The existence of a PG homomorphism from G to H is a sufficient condition for G
to be deducible from H. However it is not a necessary condition, as we have seen
before. In this section we study the question “when is a homomorphism from
G to H a necessary condition for G to be deducible from H?”. Answers to this
question yield particular cases where the theoretical complexity of PG-Deduction
decreases. We shall also identify special subgraphs of G for which there must be
a homomorphism to H when G is deducible from H. These subgraphs can be
used as filters or guides during the completion algorithm.

Let us first identify relation nodes in G which might play a role in the problem
complexity, in the sense that they may lead to use the law of the excluded-middle.

Definition 6 (Opposite relation labels and nodes). Two relation labels
are said to be opposite if they have opposite polarities and if the type r of the
positive label is more general than the type s of the negative label (i.e. r ≥ s).
By extension, two relations nodes are said to be opposite if they have opposite
labels (+r) and (−s).

Let us say that two opposite relation nodes of G are “exchangeable” if they
can have the same list of images for their arguments by homomorphisms to
(necessarily distinct) completions of H.

Definition 7 (Exchangeable relations). Two relation nodes +r(c1...ck) and
−s(d1...dk) in G are exchangeable with respect to H if (1) they are opposite, (2)
there are two completions of H, say H1 and H2, and two homomorphisms h1

and h2, respectively from G to H1 and from G to H2, such that for all i : 1...k,
h1(ci) = h2(di).

See, for instance, the PG G in Fig. 1. Let us consider the opposite relation
nodes r1 = p(c1) and r2 = −p(d1). These nodes are exchangeable, as can be seen
in Fig. 2: there is a homomorphism h1 from G to a completion H1 of H and
there is a homomorphism h2 from G to another completion H2 of H, such that
h1(c1) = h2(d1) (and is the concept node in H with marker b).
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Fig. 3. Exchangeable and opposite relation nodes

The definition of exchangeable relations is strictly more restrictive than the
definition of opposite relations. See Figure 3 for instance (from [Tho07], where
x and y are opposite nodes, as well as x and z. x and y are exchangeable, which
can be seen with the following two completions of H: in one completion, say
H1 , −p(B) is added (and a homomorphism from G to H1 maps the neighbor
of y to B); in another completion, say H2, p(B) and −p(D) are added (and a
homomorphism from G to H2 maps the neighbor of x to B). It can be checked
that x and z are not exchangeable: there are no two completions such that their
argument can be mapped to the same node.

Property 4. Let G and H be two PGs, with G having no pair of exchangeable
relations w.r.t. H. If G is deducible from H, then there is a homomorphism from
G to H.

Proof. Let Hc+ be a completion of H with solely positive relations, and further-
more with all possible positive relations: for all n-ary type p and for all n-tuple
u of concept nodes in H, if there no relation −q(u) with q ≥ p, then +p(u) is
added if it is not already present in H. We call it the maximal positive comple-
tion of H. If there is no homomorphism from G to H but G is deducible from
H, then for each homomorphism from G to Hc+, there is at least one added
relation in Hc+, say p(u), such that a relation p′(v) (p′ ≥ p) in G is mapped to
p(u). Let us replace all such p(u) by −p(u). Note that it remains a completion
and it does not lead to an inconsistency: indeed, for all +p′(u) with p′ ≤ p, p′(u)
is also inversed. Let Hc′ be this completion. Let h be a homomorphism from G
to Hc′ (there is such a homomorphism since G is deducible from H). h maps a
relation −p′′(w) in G to a relation −p(u) (p′′ ≤ p), otherwise there would be a
homomorphism from G to H. By construction, there is a relation p′(v) mapped
to p(u) by a homomorphism from G to Hc+, thus p′(v) and −p′′(w) (one has
p′ ≥ p′′) are exchangeable relations, which contradicts the hypothesis on G. ut

We thus obtain a case for which PG-Deduction has the same complexity as
homomorphism checking (and is thus NP-complete):

Property 5. Let G and H be two PGs, with G having no pair of exchangeable
relations w.r.t. H. G is deducible from H if and only if there is a homomorphism
from G to H.



8

Note also that G is deducible from H if and only if each connected component
of G is deducible from H. Thus in previous property, the condition on G can
be replaced by “each connected component of G has no pair of exchangeable
relations”.

If G is acyclic (and more generally has bounded treewidth, or bounded hy-
pertreewidth when seen as a hypergraph) then homomorphism checking is poly-
nomial ([MC92] for acyclicity, and f.i. [GLS01] for more general notions), hence
PG-Deduction.

A desirable property is that recognizing exchangeable relations is not difficult
compared to checking PG-deduction. It is indeed the case: checking whether G
has exchangeable relations, or checking whether a pair of relations in G is ex-
changeable, is NP-complete [Tho07]. More precisely, it has the same complexity
as homomorphism checking (from G to H), and is polynomial when G is acyclic.

The following property will be used to prove other properties:

Property 6. Let G and H be two PGs, where H is consistent and G is deducible
from H. Let G′ be a subgraph of G without a pair of exchangeable relation
nodes. Then there is a completion Hc of H and a homomorphism from G to Hc

that maps G′ entirely to H.

Proof. Consider any Hc maximal completion of H (for each n-ary type p and
each n-tuple u of concept nodes in H, either one has +p(u) or one has −p(u)).
Assume that there is no homomorphism from G to Hc that maps G′ to H. For
each homomorphism from G to Hc, there is at least one added relation ∼p(u) in
Hc which is image of a relation in G′ and such that H does not contain a node
∼q(u) with ∼p ≥∼q. Let R be the set of all such relation nodes in Hc \H for
all homomorphisms from G to Hc. Let us inverse the polarity of the nodes in R.
The graph obtained cannot be inconsistent1 and it is of max size: thus it is again
a maximal completion of H. Let Hc′ be this maximal completion. As G′ does
not possess exchangeable relations, there is no homomorphism from G to Hc′

that maps a relation node in G′ to a node in R. If there is no homomorphism
from G to Hc′ that maps G′ entirely to H, let R′ be the set of all relation nodes
∼p(u) in Hc′ \H which are images of a node in G′ and such that H does not
contain a node ∼q(u) with ∼p ≥∼q. As previously, reverse the polarity of all
nodes in R′, which yields the graph Hc′′ . Add the nodes of R′ to R. We thus
build a sequence of maximal completions of H and a set R of relation nodes of
these completions not belonging to H (nor redundant with nodes of H). As R
grows strictly from one completion to another, this sequence is finite. The last
graph of this sequence is a completion satisfying the property. ut
1 Indeed, assume we obtain two contradictory relation nodes −q(u) and p(u), with

q ≥ p. One of these nodes does not belong to R, otherwise G would have exchangeable
nodes. Let x be this node and y be the node that belongs to R. The label of x in
Hc is necessarily more general than the label of y in Hc (note that both nodes were
comparable and had the same polarity in Hc). Thus, by inverting the label of y, it
is impossible to obtain an inconsistency.
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If G is deducible from H, for each subgraph of G without exchangeable re-
lations, there must be a homomorphism from this subgraph to H. Moreover,
there must be such a homomorphism that is potentially extensible to a ho-
momorphism from the entire G to a completion of H. We call it a compatible
homomorphism. See Figure 4: all concept nodes are assumed to have the same la-
bel (>, ∗) and relation types are incomparable. There are three homomorphisms
from G− to H: h1 = {x → t, y → u, z → w}, h2 = {x → t, y → w, z → v},
h3 = {x → u, y → w, z → v}. To check the compatibility, we have to consider
s(y, x) and r(x, z). h1 is not compatible because it cannot be extended to r(x, z)
due to the presence of −r(t, w) in H.
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H = s(u, t) ∧ r(t, v) ∧ s(w, u) ∧ ¬r(u, w) ∧ ¬r(t, u) ∧ ¬r(w, v) ∧ ¬r(t, w)

Fig. 4. Special subgraphs of G (G is deducible from H)

Definition 8 (compatible homomorphism). Given two PGs G and H, and
G′ any subgraph of G, a homomorphism h from G′ to H is said to be compatible
(w.r.t. G) if for each relation node x of G that does not belong to G′ but has all
its neighbors in G′, say c1...ck, there is no relation y on h(c1)...h(ck) in H with
a label contradictory to that of x (i.e. with label −r if the label of x is +s, or
with label +s if the label of x is −r, s.t. s ≤ r).

Property 7. If G is deducible from H, then there is a compatible homomorphism
from every subgraph of G without exchangeable relations to H.

Proof. Let G′ be any subgraph of G without exchangeable relations. From prop-
erty 6, there is a homomorphism from G to a completion of H which maps G′

entirely to H. By restricting the domain of this homomorphism to G′, we have
a homomorphism from G′ to H which is compatible w.r.t. G. ut
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One can remark some easily identifiable subgraphs without exchangeable re-
lations: the positive subgraph of G, denoted G+, is the subgraph obtained from
G by selecting all concept nodes and only the positive relation nodes. The neg-
ative subgraph G− of G is the dual notion, i.e. the subgraph obtained from G
by selecting all concept nodes in G and only the negative relation nodes. Nega-
tive and positive subgraphs are particular cases of subgraphs without opposite
relation labels. A subgraph of G without opposite relations and maximal for
the inclusion is easily built by selecting for each relation type appearing in G,
either all its positive occurrences or all its negative occurrences, while satisfying
the following constraint: if one selects the positive (resp. negative) occurrences
of a relation type r, then the same choice must be done for all subtypes (resp.
supertypes) of r.

Example. In Fig. 4, several subgraphs without opposite relations of G are pic-
tured. G+ and G− are respectively the positive and negative subgraphs of G. G
has two subgraphs without opposite nodes maximal for inclusion: G+ and GM .

4 Algorithmic Improvements

Let us say that a concept or relation label lx occurring in G has a support in
H if there is a label ly in H with ly ≤ lx (and ly is said to support lx). A first
observation is that if a node in G has no support in H then G is not deducible
from H. This is trivial for concept nodes. For relation nodes, if this node is
negative (resp. positive), consider the positive (resp. negative) completion of H.
There is no homomorphism from G to this completion.

4.1 Limitation of the Completion Vocabulary

Let us call “completion vocabulary” the set of relation types used to build com-
pletions of G. The size of the completion vocabulary determines the number of
completions of G. The number of completions of G is itself a key element in
the complexity of deduction checking. It is thus essential to decrease as much as
possible the number of relation types involved in completion. One can observe
that the completion vocabulary can be restricted to the relation types occurring
in G, and furthermore to the relation types occurring in opposite relations:

Property 8. G is deducible from H iff G can be mapped to each completion of
H w.r.t. relation types occurring in opposite relations of G (i.e. r and s such
that there are nodes in G with labels +r and −s and s ≤ r).

Proof. Let TR be the set of relation types in the vocabulary, and let T be the
set of relation types occurring in opposite relations in G. (⇐) We prove that if
G can be mapped to each T -completion of H then it can be mapped to each
TR-completion of H. Indeed, let Hc be any TR-completion of H. Let Hc′ be the
graph obtained from Hc by replacing all relations with types outside T with
a set of relations built as follows: let r be a node labeled by (+t) (resp. (−t))
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such that t 6∈ T . Let {t1...tn} be the types in T greater than t (resp. less than
t). If r is positive, consider the minimal elements of this set, otherwise consider
the maximal elements of this set. Let S be the obtained set. Replace r with
|S| relation nodes, each labeled by a type in S, with the same polarity and the
same arguments as r. Hc′ is a T -completion of H. By construction, there is a
homomorphism, say h1, from Hc′ to Hc (which is the identity on concept nodes).
By hypothesis, there is a homomorphism, say h, from G to Hc′ . The composition
of these homomorphisms h1 ◦ h is a homomorphism from G to Hc.

(⇒) Let G be deducible from H and assume that Hc is a T -completion of H
such that there is no homomorphism from G to Hc. We show that this assump-
tion leads to a contradiction. From Hc, we build the following TR-completion of
H, say Hc′ . For all type t in TR \ T , let us add only (+t) nodes if (+t) does not
support any node in G; otherwise, add only (−t) nodes if (−t) does not support
any node in G (if neither (+t) nor (−t) support nodes in G, relation nodes typed
t can be added with any polarity); if both (+t) and (−t) support nodes in G,
there are opposite nodes in G with label (+r) and (−s) and r ≥ t ≥ s, thus r
and s belong to T , and nodes labeled T would be redundant in Hc′ thus are not
needed to obtain a completion. In all cases, nodes are added only if they do not
lead to an inconsistency. Since G is deducible from H, there is a homomorphism
from G to Hc′ . By construction, no node in G can be mapped to an added node.
Thus this homomorphism is a homomorphism from G to Hc, which contradicts
the hypothesis on Hc. ut

We can even restrict the vocabulary completion to the relation types of exchange-
able relations in G.

Theorem 2. G is deducible from H iff G can be mapped to each completion of
H w.r.t. relation types occurring in exchangeable relations of G w.r.t. H (i.e.
relation types r such that there is a pair of exchangeable relations in G with one
of the two labeled +r or −r).

Proof. Let exchangeable(G) denote the types occurring in exchangeable rela-
tions in G. (⇐) Same as in the proof of Property 8, where T is replaced by
exchangeable(G).

(⇒) Let Hc be a completion of H w.r.t. exchangeable(G) such that there
is no homomorphism from G to it. As in the proof of Property 8, we build a
completion of H, say Hc′ , as follows: for any type t occurring in G but not in
exchangeable(G), let us add only (−t) nodes if t supports only positive nodes,
(+t) nodes if t supports only negative nodes. Let us add it positively if it supports
both forms. A homomorphism from G to Hc′ is a homomorphism to Hc plus the
nodes added positively for types supporting both forms. Let us now inverse the
polarity of these latter nodes if they are images of nodes in G. No node in G can
be mapped to these nodes, otherwise their type would be in exchangeable(G).
Thus, we have a homomorphism from G to Hc, which contradicts the hypothesis
on Hc. ut
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4.2 Space Algorithm

Consider the space of graphs leading from H to its completions. All graphs in
this space have the same set of concept nodes. The space is ordered as follows:
given two graphs H1 and H2 in this space, H2 ≤ H1 if for each relation x in
H1, there is a relation with the same list of neighbors in H2 and a label less
or equal to the label of x. The question “is there a homomorphism from G to
each completion Hc” can be reformulated as follows “is there a covering set of
completions, that is a subset of incomparable graphs of this space {H1, ..., Hk}
such that (1) there is a homomorphism from G to each Hi ; (2) for each Hc

there is a Hi with Hc ≤ Hi”.
The brute-force algorithm (Algorithm 1) takes the set of all completions of

H as covering set.
The next algorithm (Algorithm 2 and recursive search Algorithm 3) searches

the space in a top-down way starting from H and tries to build a covering set
with partial completions of H. Reasoning by cases is applied at each step: for
a given relation type r with arity k and a tuple (t1...tk) of concept nodes such
that neither +r nor −r is supported by a relation node on (t1...tk) in the current
partial completion, two graphs are generated according to each case. Note that if
r or −r is supported by a ∼ s in the current completion, then adding +r(t1...tk)
or −r(t1...tk) to it would lead to a redundancy or inconsistency.

The algorithm is justified by the following property:

Theorem 3. G is deducible from H if and only if:
1. There is a homomorphism h from G to H or
2. G is deducible from H ′ and H ′′ where H ′ (resp. H ′′) is obtained from H
by adding the positive relation r(t1...tk) (resp. the negative relation −r(t1...tk))
where r is a relation type of arity k occurring in G (and more specifically r
belongs to the completion vocabulary) and t1...tk are concept nodes of H such
that neither +r nor −r is supported by a relation node on (t1...tk) in H.

Proof. (sketch) (⇒) Any completion of H ′ or H ′′ is a completion of H. (⇐)
Condition 1 corresponds to property 2. For condition 2, check that {H ′,H ′′} is
a covering set (of completions of H). ut
Subalgorithm 3 is supposed to have direct access to data available in the main
algorithm 2. The choice of r and t1...tk, in Algorithm 3, can be guided by a
compatible homomorphism from a special subgraph of G.

The Filtering subalgorithm performs “simple” tests corresponding to neces-
sary or sufficient conditions of deduction that would allow us to conclude without
entering the completion steps:

1. If a concept or relation node of G has no support in H, then return false.
2. If there is a homomorphism from G to H, then return true.
3. Compute some subgraphs of G without exchangeable relations (for instance

a subgraph without opposite relations maximal for the inclusion). If one of
these subgraphs does not map to H by a compatible homomorphism then
return false.
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Algorithm 2: Check by space exploration
Data: Consistent graphs H and G
Result: true if G is deducible from H, false otherwise
begin

Result ← Filtering();
if (Result 6= undetermined) then

return Result
Let R be the completion vocabulary;
return RecCheck(H); // See Algorithm 3

end

Algorithm 3: RecCheck(H)
Data: Consistent graph H Access: G, R
Result: true if G is deducible from H, false otherwise
begin

if there is a homomorphism from G to H then
return true

if H is complete w.r.t. R then
return false

(r, t1...tk) ← ChooseRelationTypeToAdd;
/* r is a relation type of R, t1...tk are concept nodes in H and

neither +r nor −r is supported by a relation on (t1...tk) in H
*/

Let H ′ be obtained from H by adding the relation node r(t1...tk);
Let H ′′ be obtained from H by adding the relation node −r(t1...tk);
return (RecCheck(H ′) and RecCheck(H ′′))

end

The following property ensures that Algorithm 3 does not generate the same
graph several times, which is a crucial point for complexity. Otherwise the algo-
rithm could be worse than the brute-force algorithm in the worst-case.

Property 9. The subspace explored by Algorithm 3 is a (binary) tree.

Indeed, at each recursive call, {H ′, H ′′} is a covering set inducing a bipartition
of the covered space: each graph in this space is below exactly one of these two
graphs.

Property 10. The time complexity of Algorithm 2 is inO(2(nG)k×|R|×hom(G,Hc)),
where nG is the number of concept nodes in G, k is the maximum arity of a re-
lation, R is the completion vocabulary and hom(G,Hc) is the complexity of
checking the existence of a homomorphism from G to Hc. Its space complexity
is in O(max(size(G), size(H), (nG)k × |R|)).

Proof. The size of a completion of H is bounded by 2(nG)k×|R|. Property 9
ensures that the number of graphs generated is at most twice the number of
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completions of H (in the worst case, all leaves of the generated tree of graphs
correspond to complete graphs). If the relation types are not ordered, all comple-
tions have the same size, which is

∑
r∈R(nG)arity(r) ; checking whether a graph

is complete can then be done in constant time if the number of relation nodes
in the graph is incrementally maintained. When relation types are ordered, the
size of completions vary according to the order in which relation types are con-
sidered. One solution is to count the addition of a relation node ∼r(t1...tk) not
for one, but for n, where n is the number of types s in R, such that ∼s is sup-
ported by the new node and was not before. Computing n at each node addition
can be roughly bound by |R|2, which can be reasonably considered as less than
hom(G,Hc). For space complexity, see that the tree is explored in depth-first
way. ut

To summarize, the proposed algorithm is simple to describe and to imple-
ment. Its theoretical worst-case complexity is not better than that of the brute-
force algorithm but, not surprisingly, first experiments show that its running time
is much better. Further work will involve an experimental comparison of several
heuristics. These heuristics concern in particular the choice of special subgraphs
without exchangeable relation nodes in the filtering phase and the choice of the
next relation to add in the completion phase (cf. the ChooseRelationTypeToAdd
subalgorithm).
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