
Some algorithmic improvements for the containment
problem of conjunctive queries with negation

Michel Leclère and Marie-Laure Mugnier

LIRMM, Université de Montpellier,
161, rue Ada, F-34392 Montpellier cedex - France

{leclere,mugnier}@lirmm.fr

Abstract. Query containment is a fundamental problem of databases. Given two
queries q1 and q2, it asks whether the set of answers to q1 is included in the set
of answers to q2 for any database. In this paper, we investigate this problem for
conjunctive queries with negated subgoals. We use graph homomorphism as the
core notion, which leads us to extend the results presented in [Ull97] and [WL03].
First, we exhibit sufficient (but not necessary) conditions for query containment
based on special subgraphs of q2, which generalize that proposed in [WL03]. As a
corollary, we obtain a case where the time complexity of the problem decreases.
From a practical viewpoint, these properties can be exploited in algorithms, as
shown in the paper. Second, we propose an algorithm based on the exploration of
a space of graphs, which improves existing algorithms.

1 Introduction

In this paper, we investigate the problem of deciding on query containment for con-
junctive queries with negated subgoals (but without inequalities). Query containment
checking is one of the fundamental problems of databases. A query q1 is said to be con-
tained in a query q2 (notation q1 v q2) if for any database instance the set of answers to
q1 is included in the set of answers to q2. Algorithms based on query containment can
be used to solve various problems, such as query evaluation and optimization [CM77]
[ASU79], rewriting queries using views [Hal01], detecting independance of queries
from database updates [LS93], etc. However, the problem is undecidable for general
queries expressed as Datalog programs.

Positive conjunctive queries are a class of frequently used queries which have been
investigated since the early days of databases [CM77,Ull89]. Their expressive power
is equivalent to the select-join-project queries of relational algebra. Checking contain-
ment of positive conjunctive queries is an NP-complete problem. It can be solved by
testing the existence of a query homomorphism from q2 to q1, which maps q2 to q1 by
substituting its variables by terms (constants or variables) in q2.

Example 1. Let q1 = ans(x, y) ← r(x, y), r(y, x), p(x, x), s(y) and q2 = ans(u, v) ←
r(u, v), r(v, w), p(u,w) be two conjunctive queries. There is one query homomorphism
from q2 to q1, which is h = {u → x, v → y, w → x}. Check that h(q2) has the same
head as q1 and its body is a part of q1’s body. This proves that q1 v q2.

This problem can also be recast as a query evaluation problem by considering the
canonical database associated with a query. Roughly, this database Dq is obtained from
a query q by “freezing” its variables, that is considering them as new elements of the
schema domain. Then query containment can be reformulated as evaluating q2 on Dq1

and checking that the set of answers contains the head of q1 [CM77].
When conjunctive queries are extended to negated subgoals, query containment be-

comes Π2
P -complete (Π2

P is the class (co-NP)NP). To our best knowledge, only two
proposals about algorithms deciding on query containment for this class of queries can
be found in the literature. We outline the main points of these proposals here, and
will go into further detail later. In [Ull97], Ullman gives the scheme of an algorithm
(adapted from a uniform equivalence checking method for Datalog programs [LS93]).
This scheme involves generating an exponential number (in the size of q1) of databases
representative of q1 and evaluating q2 on these databases. This set of databases can be
seen as a generalization of the canonical database of the positive case. A database that
does not yield the head of q1 as an answer to q2 is a counter-example to the containment.

Example 2. Let q1 = ans() ← r(x, y), s(y, z), p(t), p(z),¬r(z, t) and q2 = ans() ←
r(u, v), p(w),¬r(v, w). As ans() has no argument, these queries represent boolean
queries. It holds that q1 v q2, as will be shown later. In a first step, Ullman’s scheme
builds the 15 partitions on {x, y, z, t}, which can be seen as all ways of mapping the
variables in q1 to database values. Each partition yields a database by substituting in q1

the same value to each set of variables and taking the positive part of the query obtained.
For instance, the partition {{x, y}, {z, t}} yields the database {r(0, 0), s(0, 1), p(1)}. If
a database does not make the body of q1 true, as the database obtained from the partition
{{x, z}, {y, t}}, it is eliminated. In a second step, for each database D, all its extensions
obtained by adding tuples using the values and the relation symbols in D, and that still
make the body of q1 true, are considered and it is checked that they yield the substi-
tuted head of q1 as an answer to q2. For instance, for D = {r(0, 0), s(0, 1), p(1)}, all
extensions with tuples r(0, 1), r(1, 0), s(0, 0), s(1, 0), s(1, 1) and p(0) are considered.

In the general case, if v is the number of variables in q1, a number of databases
exponential in v are generated in the first step, then, for each generated database Di,
2((
P

r∈R n
arity(r)
i)−t) representative databases have to be checked, where R is the set of

relation symbols appearing in q1, ni is the number of terms in Di and t is the number
of tuples in q1.

In [WL03], Wei and Lausen exhibit a necessary but not sufficient condition for
containment of safe queries (which are queries in which all variables appear in positive
subgoals): if q1 is contained in q2 then there must be a query homomorphism (say h)
from the positive part of q2 (say q+

2) to the positive part of q1 (say q+
1), that does not

“contradict” the negative subgoals of q2 (i.e. for all negative subgoals ¬p(u) in q2, q1

does not contain the positive subgoal p(h(u))). This property is central to the proposed
algorithm. It yields a heuristic for the generation of representative databases, with the
aim of concluding sooner from partial representative databases. To check that q1 v q2,
the algorithm tries to find a query homomorphism (without contradiction) h from q+

2 to
q+
1 , such that for each negative literal ¬p(u) in q2, either ¬p(h(u)) is in q1 or the query

q′1 built from q1 by adding p(h(u)) is such that q′1 v q2.

2

Let us outline this algorithm in example 2. There are 2 homomorphisms from q+
2 =

ans() ← r(u, v), p(w) to q+
1 : h1 = {u → x, v → y, w → z} and h2 = {u → x, v →

y, w → t}. Both homomorphisms do not contradict any negative subgoal in q2. Let
us consider h1 and the negative literal ¬r(v, w) in q2. The idea is that any database
answering q1 that does not contain r(y, z) also answers q2, thus databases containing
r(y, z) have to be checked. r(y, z) is added to q1, yielding q′1. There are four query
homomorphisms from q+

2 to q′+1 . If it can be concluded that q′1 v q2, then q1 v q2.
Otherwise, the homomorphism h2 has to be considered.

Example 3. (ex. 1.2 in [WL03]) Let q1 = ans(x, y) ← r(x, y), r(y, z),¬r(x, z) and
q2 = ans(u,w) ← r(u, v), r(v, w),¬s(w,w). There is one query homomorphism,
h = {u → x, v → y, w → z}, from q+

2 = ans(u,w) ← r(u, v), r(v, w) to q+
1 . h

does not contradict the negative subgoal of q2. Then, q′1 is generated from q1 by adding
s(z, z). Again h is the sole homomorphism from q+

2 to q′+1 but it contradicts ¬s(w,w).
Thus, q′1 6v q2 and as there is no other homomorphism from q+

2 to q+
1 it is concluded

that q1 6v q2.

Contribution. In this paper, we consider homomorphism as a core notion, where a ho-
momorphism is not restricted to the positive parts of queries as in previous proposals,
but extended to whole queries. For this, we propose to view the queries as labeled
graphs, called polarized graphs. More specifically, a query is represented as a bipar-
tite graph, with two kinds of nodes: relation nodes and terms nodes1. Each term of the
query becomes a term node, labeled by ? if it is a variable (it can be seen as a “blank
node”) otherwise by the constant itself. A positive (resp. negative) literal with relation
symbol r becomes a relation node labeled by +r (resp.−r) and it is linked to the nodes
assigned to its terms. The numbers on edges correspond to the position of each term in
the literal. See Figure 1, which displays the queries in example 2.

Basically, a homomorphism from an algebraic structure to another maps the ele-
ments of the first structure to elements of the second structure while preserving the
relations between elements. A homomorphism h from a graph G2 to a graph G1 is a
mapping from the nodes of G2 to the nodes of G1, which preserves edges, that is if xy
is an edge of G2 then h(x)h(y) is an edge of G1. Since our graphs are labeled, there
are additional conditions on labels: a relation node is mapped to a node with the same
label; a term node can be mapped to any term node if it is labeled by a ?, otherwise it is
mapped to a node with the same constant. Numbers on edges are preserved.

Graph homomorphism yields another perspective on queries, as it naturally con-
siders positive and negative occurrences of relations in the same way; moreover, it is
defined on subgraphs that do not necessarily correspond to a query, which is convenient
for our study. However, let us point out that all definitions and results in this paper can
be expressed using the classical vocabulary on queries. In what follows, the term homo-
morphism can be understood as “query homomorphism extended to negative subgoals”
or “graph homomorphism”.

A first property, extending the central property in [WL03], is that the existence of a
homomorphism from q2 to q1 is a sufficient condition for containment.

1 Queries have often been considered as hypergraphs. The graphs we consider can be seen as
the incidence bipartite graphs of these hypergraphs.

3

*

2Q

* *

1Q

* ***

+p

+r
21

−r
1 2

+p+p

+r
21 21

−r+s
21

q1 = ans() ← r(x, y), s(y, z), p(t), p(z),¬r(z, t)
q2 = ans() ← r(u, v), p(w),¬r(v, w)

Fig. 1. Queries as graphs

Example 4. Let q1 = ans(y, z) ← r(x, z), r(y, z),¬r(x, y) and q2 = ans(u, v) ←
r(u, v), r(w, e)¬r(w, u). There is a homomorphism, say h, from q2 to q1, thus q1 v q2.
h = {w → x, u → y, v → z, e → z}.

Q’’1Q’1

* ** *** *

*

Q2

* *

zz yy

* +r
21

1

+s
1

+r +p +p2

21
−r

2

+p +p

+r
1 2

+p

+r
1 2

−r
1 2

1

+s
1

−r
2

21
−r

2

Fig. 2. Graph homomorphisms from Q2 to Q′1 and Q′′1

The existence of a homomorphism is not a necessary condition, as can be seen in
example 2 (pictured in Figure 1): q1 v q2 but there is no homomorphism from q2 to q1.
However, q1 can be equivalently rewritten as the union of two queries: one obtained by
adding ¬r(y, z), the other by adding r(y, z). These queries are shown in Figure 2. As
there is a homomorphism from q2 to both queries, we conclude that q1 v q2.

More generally, instead of considering representative databases, we rewrite q1 into
more and more specific queries. We are lead to consider a space of graphs (or queries)
partially ordered by inclusion, with greatest element q1 and least elements the “com-
plete” graphs, obtained from q1 by adding as many literals as possible. A brute-force
algorithm generates all complete graphs and check that there is a homomorphism from
q2 to each of them.

Roughly, Ullman’s scheme can be seen as generating all complete graphs from q1.
We should point out, however, that the first step in computing all partitions on q1 terms is
not necessary, i.e. the discrete partition is sufficient. The set of representative databases
generated from the discrete partition is the set of complete graphs. Although it is not
claimed in [Ull97], Ullman’s algorithm is in fact able to process queries with inequali-
ties (see section 2.4).

This framework being settled, we focus on two points. First, we search for cases
where the problem is simpler. We study special subgraphs of q2 that necessarily map to
q1 (theorem 2 and 3); q+

2 is a specific case. As a corollary, when the whole q2 satisfies

4

one of these conditions, the containment problem becomes equivalent to homomor-
phism checking, thus its time complexity falls into NP (property 8). From a practical
viewpoint, these properties can be exploited in algorithms, including Wei and Lausen’s
algorithm. They can be used in a preprocessing phase (to limit the number of repre-
sentative databases or to conclude before entering the generation phase) or to guide the
construction of representative databases. Second, we propose an algorithm based on
exploration of the graph space. This algorithm is simple to describe and implement. Its
correctness is directly given by the exhibited properties (theorem 4) and its complexity
is analyzed (property 10). We compare this algorithm to Wei and Lausen’s algorithm,
which can be seen as exploring the same space of graphs but in a radically different
way. In particular, our algorithm requires a space polynomial in the size of the initial
queries (provided that the maximal arity of a relation is bounded by a constant), which
is not the case for Wei and Lausen’s algorithm.

The paper is organized as follows. The next section introduces the graph framework
and reformulates the query containment problem in terms of graph homomorphism. It
ends with a brute-force algorithm, whose complexity is compared to that of Ullman’s
scheme. Section 3 is devoted to necessary or sufficient conditions for containment. Sec-
tion 4 presents our algorithm based on space exploration and compares it to Wei and
Lausen’s algorithm.

2 Preliminary considerations

We first recall basic definitions and results on databases. Then we introduce the graph
framework, which leads us to recast CQC as a conjunction of homomorphism tests. We
end with a brute-force algorithm, that we compare with Ullman’s scheme.

2.1 Basic database notions

A database schema S = (R, dom) includes a finite set of relations R and a countably
infinite set of constants dom. Each relation has an arity (not equal to zero) defining the
number of its arguments. A database instance D (or simply a database) over S maps
each k-ary relation ri of R to a finite subset of domk (denoted D(ri)). A conjunctive
query (with negation) is of form:

q = ans(u) ← r1(u1), ... rn(un),¬s1(v1), ... ¬sm(vm) n ≥ 0, m ≥ 0, n + m ≥ 1

where r1 ... rn, s1 ... sm are relations, ans is a special relation not belonging to R, u
and u1 ... un, v1 ... vm are tuples of terms (variables or constants of dom), and each
variable of u occurs at least once in the body of the rule. Without loss of generality, we
assume that the same literal does not appear twice in the body of the rule. A positive
query is a query without negative literals (m = 0, thus n ≥ 1). A query is safe if
each variable occurring in a negative literal also occurs in a positive one. A query is
inconsistent if it contains two opposite literals (i.e. ∃ i, j 1 ≤ i ≤ n, 1 ≤ j ≤ m such
that ri(ui) = sj(vj)), otherwise it is consistent.

Given a query q = ans(u) ← r1(u1), ... rn(un), ¬s1(v1), ... ¬sm(vm) and a
database D on S, q(D) denotes the set of answers to q in D; q(D) is the set of tuples

5

µ(u) where µ is a substitution of the variables in q by constants in dom such that for
any i in {1, ..., n}, µ(ui) ∈ D(ri) and for any j in {1, ..., m}, µ(vj) 6∈ D(sj). We also
call µ a substitution from q to D. When the arity of ans is 0, q(D) is the set {()} if there
is such a substitution µ, otherwise it is ∅. If q(D) is not empty, D is said to answer the
query.

A query q1 is said to be contained in a query q2, noted q1 v q2, if for any database
D, q1(D) ⊆ q2(D). The conjunctive query containment problem (CQC) takes as in-
put two conjunctive queries q1 and q2 and asks whether q1 v q2. When q1 and q2

are positive, it can be reformulated as a query homomorphism problem, where a ho-
momorphism is defined as follows: a query homomorphism from q = ans(u) ←
r1(u1), ... rn(un) to q′ = ans(u′) ← r′1(u

′
1), ... r′n′(u

′
n′) is a substitution θ of the

variables in q by terms (variables or constants) in q′ such that θ(u) = u′ (thus u and
u′ have the same size) and for any i in {1, ..., n}, there is j in {1, ..., n′} such that
θ(ri(ui)) = r′j(u

′
j). The query homomorphism theorem proves that, given two positive

queries q1 and q2, q1 v q2 iff there is a query homomorphism from q2 to q1.

2.2 CQC and homomorphism

As explained in the introduction, it is convenient to see a query as a bipartite labeled
graph, that we call a polarized graph (PG)2. The mappings between graph and database
notions used in this paper are immediate. To represent heads of queries, we use spe-
cial relations ansi for each possible arity i, possibly 0 (which corresponds to boolean
queries). Then the head of a query (say ans(t1...tk)) is mapped to a positive relation
node with label ansk and with i-th neighbor the node assigned to ti. We usually omit
ans0 in drawings (f.i. Figure 1: there is an implicit isolated relation node labeled ans0

in each graph). It is easily checked that a graph homomorphism from a graph repre-
senting a query to another is equivalent to a query homomorphism extended to negative
subgoals from the first query to the second (the above definition of a query homomor-
phism can be used without change if we consider that ri and r′j represent possibly
negated relation). That is why we use the same term homomorphism for both notions.
If there is a homomorphism from q2 to q1, we say that q2 can be mapped to q1. We will
keep the term literal and its notation p(u) or ¬p(u), where u is a sequence of terms, to
denote a subgraph induced by a relation node and its neighbors.

For positive conjunctive queries q1 and q2, q1 v q2 iff there is a homomorphism
from q2 to q1. For conjunctive queries with negation, one part of this property still
holds:

Property 1. Given conjunctive queries q1 and q2, if there is a homomorphism from q2

to q1 then q1 v q2.

For the other direction, we assume that q1 and q2 are consistent. This assumption
will be made in the sequel of the paper. Even if q1 and q2 are consistent, we might have
q1 v q2 and no homomorphism from q2 to q1, as illustrated by Figures 1 and 2.

2 For space limitation reasons, we do not provide here precise definitions concerning PGs.
These graphs are a simplification of graphs used in a knowledge representation context, see
[Ker01,ML06].

6

Definition 1. A consistent query (or a PG) q is complete w.r.t. a set of relations R, if
for each relation r in R with arity k, for each k-tuple of terms u in q, not necessarily
distinct, q contains r(u) or ¬r(u).

A complete query is obtained from a query q by repeatedly adding positive and neg-
ative literals (on terms already present in q), as long as it does not yield a redundancy or
an inconsistency. CQC can be expressed as the conjunction of homomorphism checking
problems: one for each complete query generated from q1.

Property 2. Given two conjunctive queries q1 and q2 (with q1 being consistent), q1 v q2

iff for each complete query qc
1 generated from q1, there is a homomorphism from q2 to

qc
1.

Note that q2 can be considered as a connected graph: indeed, if q2 is not connected, a
homomorphism from q2 to q1 is given by a set of homomorphisms from each connected
component of q2 to q1, and reciprocally.

2.3 A brute force algorithm for CQC

Property 2 yields a brute force algorithm (cf. algorithm 1) for CQC.

Algorithm 1: Brute force CQC Check
Data: consistent queries q1 and q2

Result: true if q1 v q2, false otherwise
begin

Let B be the set of complete queries obtained from q1 w.r.t. R;
forall qc

1 ∈ B do
if there is no homomorphism from q2 to qc

1 then
// qc

1 is a counter-example
return false;

return true;
end

Property 3. The time complexity of Algorithm 1 is in O(2(n1)
k×|R| × hom(q2, q

c
1)),

where n1 is the number of terms in q1, k is the maximum arity of a relation, R is the
set of considered relations and hom(q2, q

c
1) is the complexity of checking the existence

of a homomorphism from q2 to qc
1.

Its space complexity is in O(max(size(q2), size(q1), (n1)k × |R|)).
Homomorphism checking is NP-complete (but polynomial as soon as q2 has a tree-

like structure). A brute force algorithm solving this problem for q2 and qc
1 has a time

complexity in O(min(nv2
1 , rr2

1)), where n1 is the number of term nodes in qc
1, v2 is the

number of variable nodes in q2, r1 and r2 are the number of literals in qc
1 and q2 resp.

For comparison with other algorithms, it should be noted that the space complexity of

7

Algorithm 1 is not exponential in the size of q1 or q2 but only in the maximum arity of a
relation inR. Indeed, as completions can be generated one by one, the space complexity
corresponds to the size of one qc

1.

2.4 Relationships with Ullman’s scheme

Ullman’s scheme involves the two following steps:

1. Consider all partitions of the variables in q1. Build a canonical database from each
partition as follows: first assign a distinct constant to each set of the partition, then
substitute in q1 each variable by the constant assigned to its set; let q′1 be the substi-
tuted query; the canonical database is composed of the positive literals of q′1 body.
We obtain D1 ... Dk canonical databases if k is the number of partitions. Eliminate
the Di which do not make the body of q1 true, (i.e. the body of q′1 is inconsistent).

2. For each remaining Di, test whether for each database D′i obtained from Di by
adding tuples on the same symbol set as Di, and without contradicting negative
subgoals of q1, it holds that q2(D′

i) includes the head of q′1. If all Di satisfy the test,
then q1 v q2, otherwise not.

This scheme can be reformulated as follows in our framework:

1. Build all consistent queries Di obtainable from q1 by merging some variables.
2. The test is satisfied iff q2 can be mapped to all complete queries obtainable from

these Di.

From property 2, it is clear that step 1 is useless. Indeed, there is a homomorphism
from q1 to each Di, 1 ≤ i ≤ k, q1 being identical to the Di obtained with the discrete
partition, say D1. For a given D′

i there is a D′
1 with a homomorphism from D′

1 to D′
i

induced by the partition on the variables in q1 yielding Di. It is thus sufficient to test all
D′

1, i.e. all complete queries obtainable from q1. This observation leads to an important
reduction in the number of tested databases/queries: if v is the number of variables in
q1, step 1 builds a number of databases Di exponential in v (from which only consistent
ones are kept) and each remaining Di leads in turn to an exponential test (see Algorithm
1).

Step 1 would be necessary if the queries would contain inequalities as in [LS93].
However in [Ull97] and further papers dealing with queries without inequalities, it
seems that the uselessness of step 1 had not be noticed.

3 Necessary / sufficient conditions for containment

This section studies conditions that are necessary or sufficient for containment. These
properties can be used as filtering properties leading to conclude before entering the
generation phase. They can also be used to reduce the number of graphs generated
either because they eliminate relations that are not needed in the completion or because
they guide the incremental generation of complete graphs (see the next section). Besides
their practical algorithmic interest, they also yield particular cases where the theoretical
complexity of CQC decreases.

8

3.1 Immediate properties on labels

Let us begin by considering the node labels. An immediate observation is that if a
constant or a relation label (that is a relation with a given polarity) in q2 does not appear
in q1, then q1 6v q2. A second observation is that relations that do not appear in both q1

and q2 are not needed in the completion of q1. The next property takes the polarity of
their occurrences into account.

Property 4. If r is a relation that does not have both positive and negative occurrences
in q2, then r is not needed in the completion of q1 (i.e. q1 v q2 iff q2 can be mapped to
each completion of q1 built without considering r).

Proof. (⇐) If q2 can be mapped to each complete query without considering r then
q1 v q2. Indeed, let qc

1 be any complete query built from q1. Let q
c−{r}
1 be obtained

from qc
1 by removing all literals, occurrences of r, that do not belong to q1. There is a

natural homomorphism, say h1 from q
c−{r}
1 to qc

1. By hypothesis there is a homomor-
phism, say h, from q2 to q

c−{r}
1 . The composition of these homomorphisms h1 ◦ h is a

homomorphism from q2 to qc
1.

(⇒) Let q1 v q2. Assume that q
c−{r}
1 is a completion (without considering r) of q1

such that there is no homomorphism from q2 to q
c−{r}
1 . We show that this assumption

leads to contradict q1 v q2. If all the occurrences of r in q2 are positive (resp. negative),
let qc−

1 (resp. qc+
1) be the complete query obtained from q

c−{r}
1 by adding solely neg-

ative (resp. positive) literals with relation r. Since q1 v q2 there is a homomorphism
from q2 to qc−

1 (resp. qc+
1). This homomorphism necessarily maps all occurrences of

r in q2 into q1; more generally, no literal of q2 can be mapped to the added negative
(resp. positive) occurrences of r. h is thus a homomorphism from q2 to q

c−{r}
1 , which

contradicts the hypothesis. ut
As a corollary to the previous properties, we obtain:

Theorem 1. q1 v q2 iff q2 can be mapped to each completion of q1 w.r.t. relations
occurring in both positive and negative forms in q1 and q2.

Let us consider the queries in example 3: as ¬s does not appear in q1, it can be im-
mediately concluded that q1 6v q2. Would ¬s(w, w) not exist in q2, as r does not appear
positively and negatively both in q1 and q2, no relation can be used for completion, thus
there is also immediate failure.

3.2 Special subgraphs

As we have seen, a homomorphism from q2 to q1 is a sufficient but not necessary
condition for containment. The objective here is to identify parts - or subgraphs - of
q2 (i.e. conjunctions of literals appearing in q2) for which there must be a homomor-
phism to q1. Moreover, such a homomorphism from a subgraph of q2 to q1 has to be
potentially extensible to a homomorphism from the entire q2 to a completion of q1.
We call it a compatible homomorphism. See Figure 3: there are three homomorphisms
from q−2 to q1: h1 = {x → t, y → u, z → w}, h2 = {x → t, y → w, z → v},

9

Q2

*

* *

−
x z

y

*

2Q2Q

*

*

Q1

*

*

*

*

t

u v

w

* *

x z

y

2
+Q

x z

y

2

**

Q

**

x z

y

Q2
M

−r

2

2

1

1

−r

−r

−r

2

1

+s
2

1

−r

−r

1

2

+s

1

2

−r

−r
2

1

+r

2

1

2

1

21
+r

+s

1

2

−r

21
+r

1

1

2

2

+s

1

2

−r

1

1

2

2

+s

1

2

q2 = ans() ← s(y, x) ∧ r(x, z) ∧ ¬r(x, y) ∧ ¬r(y, z)
q1 = ans() ← s(u, t) ∧ r(t, v) ∧ s(w, u) ∧ ¬r(u, w) ∧ ¬r(t, u) ∧ ¬r(w, v) ∧ ¬r(t, w)

Fig. 3. Pure subgraphs of q2 (q1 v q2)

h3 = {x → u, y → w, z → v}. To check the compatibility, we have to consider s(y, x)
and r(x, z). h1 is not compatible because it leads to map r(x, z) to ¬r(t, w).

Definition 2 (compatible homomorphism). Given two queries q2 and q1, and q′2 any
subgraph of q2 defining a well-formed PG (i.e. q′2 is any conjunction of literals appear-
ing in q2), a homomorphism h from q′2 to q1 is said to be compatible (w.r.t. q2) if for
each literal of q2 that does not appear in q′2 but has all its terms in q′2, say t1...tk,
there is no literal with the same relation and the opposite polarity on h(t1)...h(tk) in
q1.

Given a query q, the positive subgraph of q, denoted by q+ is the subgraph obtained
from q by selecting only the positive literals of q. The negative subgraph q− of q is the
dual notion, that is the subgraph obtained from q by selecting only the negative literals
of q. See q+

2 and q−2 in Figure 3. The next property is the same as theorem 1 in [WL03]
reformulated and proven in the graph framework, except that we extend the definition
of q+ to non-safe queries. Note that, when q is a safe query, q+ contains all term nodes
of q.

Property 5. [WL03] If there is no compatible homomorphism from q+
2 to q1 (or equiv-

alently to q+
1), then q1 6v q2.

Proof. Let qc−
1 be the negative completion of q1. If q1 v q2 then there is a homomor-

phism h from q2 to qc−
1 , which necessarily maps q+

2 to q+
1 . Let li = ¬r(t1...tk) be any

negative literal of q2. Since h is a homomorphism, qc−
1 contains a literal¬r(h(t1)...h(tk)).

As q1 is consistent, it cannot contain a literal r(h(t1)...h(tk)). We conclude that h with
domain restricted to q+

2 is a compatible homomorphism to q1. ut
A similar property is obtained by considering q−2 instead of q+

2 .

10

Property 6. If there is no compatible homomorphism from q−2 to q1 (or equivalently to
q−1), then q1 6v q2.

Proof. Consider qc+
1 the positive completion of q1 instead of qc−

1 . ut
Both q+

2 and q−2 notions can be generalized in the following way.

Definition 3 (qmax
2 pure subgraph). A pure subgraph of q2 is a subgraph that does

not contain opposite occurrences of the same relation. We note qmax
2 a pure subgraph

of q2 that is maximal for inclusion.

Observe that a qmax
2 is obtained from q2 by selecting, for each relation appearing in

q2, either all its positive occurrences or all its negative occurrences. See Figure 3: q2 has
two pure subgraphs maximal for inclusion; q+

2 and qM
2 . q+

2 (resp. q−2) is the particular
case where positive (resp. negative) occurrences are chosen for all relations; but it is
not necessarily maximal for inclusion as a relation may appear only negatively (res.
positively). The ansi relation is a particular case of such relation.

Theorem 2. If there is a qmax
2 that cannot be mapped by a compatible homomorphism

to q1, then q1 6v q2.

Proof. Consider q−max
1 as the completion of q1 built as follows: for each relation r,

if r occurs positively (resp. negatively) in qmax
2 then complete q1 with negative (resp.

positive) occurrences of r. If qmax
2 cannot be mapped to q1 by a compatible homomor-

phism, then it cannot be mapped by a compatible homomorphism to q−max
1 (since by

construction no literal of qmax
2 can be mapped to an added literal). Since q2 cannot be

mapped to q−max
1 , q−max

1 is a counter-example to the property q1 v q2. ut
This theorem can be slightly extended by taking into account the occurrences of

terms in the literals.

Definition 4. Two literals are said to be dependant if (1) they have an opposite polarity,
(2) they have the same relation and (3) their atoms are unifiable after a renaming of
their common variables. Otherwise they are said to be independant.

Two atoms are not unifiable after a renaming of their common variables if their
unification would lead to unify different constants. For instance, let a and b be distinct
constants; r(x, a) and ¬r(y, b) are independant literals; p(x, x, a) and ¬p(b, y, y) are
independant literals as well, whereas r(x, a) and ¬r(b, y) are dependant literals.

Definition 5. An independant subgraph of a query q2 is a subgraph of q2 composed of
pairwise independant literals.

More generally, let us say that two literals are “exchangeable” if they can have
the same list of images for their arguments by homomorphisms to (necessarily dis-
tinct) completions of q1. F.i. given the distinct constants a and b, the literals r(x, a) and
¬r(b, y) are dependant but, if q1 contains r(a, b), they are not exchangeable. Indepen-
dant subgraphs, and a fortiori pure subgraphs, are only particular cases of subgraphs
without exchangeable literals; the general notion of “exchangeability” remains to be
studied. Exchangeable literals are responsible for the problem complexity, as shown by
the next property.

11

Property 7. If q1 v q2, then there is a compatible homomorphism from every subgraph
of q2 composed of pairwise non-exchangeable literals to q1.

Sketch of proof. Consider such a subgraph q′ of q2. Let qc+
1 be the completion of q1

with solely positive literals. If there is no homomorphism from q′ to q1, then for each
homomorphism from q′ to qc+

1 , there is at least one added literal, say p(u), such that a
literal p(v) in q′ is mapped to p(u). Let us replace all such p(u) by ¬p(u). Let qc′

1 be the
graph obtained. Let h be a homomorphism from q′ to qc′

1 (there is such a homomorphism
since q1 v q2). h maps a literal ¬p(w) in q′ to a literal ¬p(u), otherwise there would be
a homomorphism from q′ to q1. By construction, there is a literal p(v) mapped to p(u)
by a homomorphism from q′ to qc+

1 , thus p(v) and ¬p(w) are exchangeable literals. ut
The following extension to the theorem 2 is a corollary of property 7.

Theorem 3. [Extension to the theorem 2] If there is an independant subgraph of q2

that cannot be mapped by a compatible homomorphism to q1, then q1 6v q2.

We thus obtain a case for which CQC has the same complexity as homomorphism
checking:

Property 8. If q2 is an independant subgraph, then q1 v q2 iff there is a homomorphism
from q2 to q1.

3.3 Filtering implementation

Let us end this section with an implementation of some filtering properties (algorithm
2 that will be used next section).

Algorithm 2: Filtering
Data: consistent queries q1 and q2

Result: true, false or undetermined; if true then q1 v q2; if false then q1 6v q2

begin
Test 1 if there is a label (r) or (¬r) or a constant occurring in q2 but not in q1 then

return false
Test 2 if there is a homomorphism from q2 to q1 then

return true
Test 3 Let qMax

2 be an independant subgraph of q2 with maximum cardinality;
if there is no compatible homomorphism from qMax

2 to q1 then
return false

return undetermined;
end

Roughly, Test 1 is in O(rlog2(r)) where r is the maximum number of relations in
q1 or q2. Test 2 and Test 3 perform a homomorphism check. For Test 3, choosing a
subgraph with maximum size is an obvious choice but there may be other criteria f.i.
based on the structure of the obtained subgraph. Alternatively, one can choose to check
several or all independant subgraphs instead of one.

12

4 Space exploration algorithm

The space of queries “leading” from q1 to its completions is structured in a sup-semi-
lattice by graph inclusion (given two queries q1 and q2 in this space, q1 ≤ q2 if q2 is a
subgraph of q1). The question “is there a homomorphism from q2 to each qc

1 (comple-
tion of q1)” can be reformulated as follows “is there a covering set, that is a subset of
incomparable queries of this space {q1, ..., qk} such that (1) there is a homomorphism
from q2 to each qi ; (2) for each qc

1 there is a qi with qc
1 ≤ qi.

The brute-force algorithm (Algorithm 1) takes the set of all completions of q1

as covering set. The next algorithm (Algorithm 3 and recursive search Algorithm 4)
searches the space in a top-down way starting from q1 and tries to build a covering set
with partial completions of q1. Case-based reasoning is applied at each step: for a given
relation r with arity k and a tuple (t1...tk) such that neither r(t1...tk) nor ¬r(t1...tk) is
present in the current partial completion, two queries are generated according to each
case. The algorithm is justified by the following property:

Theorem 4. q1 v q2 if and only if:
1. There is a homomorphism h from q2 to q1 or
2. q′ v q2 and q′′ v q2 where q′ (resp. q′′) is obtained from q1 by adding the positive
literal r(t1...tk) (resp. the negative literal ¬r(t1...tk)) where r is a relation of arity k
occurring in q2 (both in positive and negative forms) and t1...tk are terms of q1 such
that neither the literal r(t1...tk) nor the literal ¬r(t1...tk) is already present in q1.

Proof (sketch). (⇒) By recurrence on the number of literals to add to q1 to obtain
a complete query. (⇐) Condition 1 corresponds to property 1. For condition 2, see that
{q′, q′′} is a covering set. ut

Subalgorithm 4 is supposed to have direct access to data available in the main al-
gorithm 3. The choice of r and t1...tk, in Algorithm 4, can be guided by a compatible
homomorphism from an independant graph.

Algorithm 3: Check by space exploration
Data: Consistent queries q1 and q2

Result: true if q1 v q2, false otherwise
begin

Result ← Filtering(); // See Algorithm 2
if (Result 6= undetermined) then

return Result
Let R+− be the set of relation names occurring in both negative and positive forms in
q2;
return RecCheck(q1); // See Algorithm 4

end

The following property ensures that Algorithm 4 does not generate the same query
several times, which is a crucial point for complexity. Otherwise the algorithm could be
worse than the brute-force algorithm in the worse-case.

13

Algorithm 4: RecCheck(q)
Data: Consistent query q Access: q2, R+−

Result: true if q v q2, false otherwise
begin

if there is a homomorphism from q2 to q then
return true

if q is complete w.r.t. R+− then
return false

/* Test 3 of filtering can be reused in each call */
(r, t1...tk) ← ChooseLiteralsToAdd(q);
/* r is a relation of R+− and t1...tk are terms of q */
Let q′ be obtained from q by adding the literal r(t1...tk);
Let q′′ be obtained from q by adding the literal ¬r(t1...tk);
return (RecCheck(q′) AND RecCheck(q′′))

end

Property 9. The subspace explored by Algorithm 4 is a (binary) tree.
Indeed, at each recursive call, {q′, q′′} is a covering set inducing a bipartition of the

covered space: each query in this space is below exactly one of these two queries.

Property 10. Algorithm 3 has the same time and space complexity as Algorithm 1.
Proof. Property 9 ensures that the number of queries generated is at most twice the

number of completions of q1 (in the worse case, the complete queries are the leaves of
the generated tree of queries). Checking whether a query is complete can be done in
constant time if the number of literals in the query is incrementally maintained. Thus
time complexity is the same as Algorithm 1. For space complexity, see that the tree is
explored in a depth-first way. ut

Wei and Lausen’s algorithm is based on the following theorem (theorem 2 of their
paper reformulated in graph terms; moreover, in (1) “compatible” has been added, as
well as step (2.1) to prevent inconsistent queries to be built3). This theorem considers
safe queries (otherwise h could be undefined on some variables in q2).

Theorem 5. [WL03] With q1 and q2 being safe queries, q1 v q2 if and only if:
1. There is a compatible homomorphism h from q+

2 to q+
1 , such that:

2. for each negative literal li = ¬r(t1...tk) in q2, (2.1) either h can be extended to
include li or (2.2) q′i v q2 holds, where q′i is obtained from q1 by adding the positive
literal r(h(t1) ... h(tk)).

Note that if each negative literal li can be included in h then h is a homomorphism
from q2 in q1. An important point is that this theorem induces a radically different way
of searching the space than that of Algorithm 3. Indeed, whereas Algorithm 3 develops
a tree, condition (2) leads to build a covering set that does not partition the space. An
algorithm applying this property directly is thus likely to explore the same subspaces
several times.

3 Indeed, the theorem does not apply to inconsistent queries. If q1 is inconsistent, it is by defini-
tion included in any q2, but there might be no homomorphism from q+

2 to q+
1 .

14

The algorithm proposed by Wei and Lausen (in the appendix of their paper) sketchily
proceeds as follows. First, all homomorphisms from q+

2 to q+
1 are generated. Then for

each compatible homomorphism, say h, and for each negative literal that cannot be
mapped by extending h, a new query to test is generated from q1 by adding a positive
literal according to the previous theorem. This algorithm can be seen as developing a
and/or tree: a homomorphism h leads to success if all queries q′i directly generated from
it lead to containment; a query q′i leads to containment if there is a homomorphism from
q′+i leading to success. The and/or tree is traversed in a breadth-first manner.

This algorithm has a space complexity exponential in the size of the initial queries,
at least because all homomorphisms from q+

2 to q+
1 are first generated and the and/or tree

is traversed in a breadth-first manner. Concerning time complexity, the key question is
whether the same query can be generated several times. The notion of “new” mapping is
mentioned in the algorithm (when the homomorphisms from q+

2 to q+
1 are enumerated,

only new mappings are retained) but without detail about how a “new” mapping is
recognized. A priori one has to store all already generated mappings to recognize a new
one. If so, the space complexity would be exponential in the size of q2 even with the
assumption that homomorphisms are generated one by one and the tree is traversed in a
depth-first way. To summarize, the algorithm we propose in this paper (see Algorithms
3 and 4) has the following qualities compared to Wei and Lausen’s algorithm:

– it is not restricted to safe queries;
– the space exploration is based on special subgraphs, which generalize the q+

2 notion
(and could be used instead of it in condition 1 of Wei and Lausen’s theorem);

– it is polynomial in space (if the arity of relations is bound by a constant);
– it is simple to describe and implement.

Acknowledgments. We specially thank a referee for his/her valuable comments.

References
[ASU79] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalences among relational expressions.

SIAM J. Comput., 8(2):218–246, 1979.
[CM77] A.K. Chandra and P.M. Merlin. Optimal implementation of conjunctive queries in rela-

tional databases. In 9th ACM Symposium on Theory of Computing, pages 77–90, 1977.
[Hal01] A. Y. Halevy. Answering queries using views: A survey. VLDB Journal: Very Large

Data Bases, 10(4):270–294, 2001.
[Ker01] G. Kerdiles. Saying it with Pictures: a Logical Landscape of Conceptual Graphs. PhD

thesis, Univ. Montpellier II / Amsterdam, Nov. 2001.
[LS93] A. Y. Levy and Y. Sagiv. Queries independent of updates. In VLDB, pages 171–181,

1993.
[ML06] M.L. Mugnier and M. Leclère. On querying simple conceptual graphs

with negation. Data and Knowledge Engineering (DKE), 2006. In press,
doi:10.1016/j.datak.2006.03.008.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volume II. Com-
puter Science Press, 1989.

[Ull97] J. D. Ullman. Information Integration using Logical Views. In International Conference
on Database Theory (ICDT), 1997.

[WL03] F. Wei and G. Lausen. Containment of Conjunctive Queries with Safe Negation. In
International Conference on Database Theory (ICDT), 2003.

15

