Polytech' Montpellier
ERII 4

Design of Analog ICs
Chapitre IV
Advanced Analog Design Techniques
Pascal Nouet – March 2010
nouet@irmm.fr

Outline
- Analog IC Design Flow
- Advanced specifications
- Advanced design techniques

Outline
- Analog IC Design Flow
- Advanced specifications
- Advanced design techniques

Offset considerations
- Definition: "input offset" of a differential amplifier is the differential input voltage that leads to a zero output voltage

Symmetrical Power Supplies !!!
Offset considerations

- Offset is a random phenomenon due to:
 - Technology spreading → low “frequency” variations (die to die; wafer to wafer; run to run)
 - Mismatches → high “frequency” variations (device to device)
 - Variability → hot topic covering both previous origins
 - affecting technology parameters and dimensions
 - generally following a Gaussian distribution.

- Propagation to circuit behavior
 - Example: incertitude on saturation current
 - \(\mu_{C_{ov}}, W/L \) and \(V_t \) are affected
 - \(\sigma_{I_{sat}} = \frac{2}{W/L} \left(V_{t1} - V_{t2} \right) \)

- Gaussian distribution basics
 - For a large number of identical devices the distribution of actual \(V_t \) (\(\mu_{C_{ov}}, W/L \)) follows a Gaussian distribution
 - 0.5% of the values are more than ±3\(\sigma \) away from the average value
 - 6\(\sigma \) designs are then the standard in industry
 - Run to run \(\sigma \) (technology spreading) is much higher than device to device \(\sigma \) (mismatches)
 - MC simulations

- Random offset in a current mirror
 - \(I_s = I_{sat} = \frac{\mu_{C_{ov}}}{2} \left(\frac{W}{L} \right) \left(V_{t1} - V_{t2} \right) \)

- Design tips
 - Large area and \(V_{eff} \), long
 - \(W=100\mu m \); \(L=1\mu m \); \(V_{eff}=0,1V \)
 - \(W=10\mu m \); \(L=10\mu m \); \(V_{eff}=1V \)

\[\sigma_{V_t} = \frac{1.2mV}{600mV} = 0.2\% \quad \sigma_{\mu_{C_{ov}}} = 0.00056 = 0.056\% \quad \sigma_{W/L} = 2\% \]
- 50% more for a PMOS
- 10 times less for MOST on the same die (mismatches)
We've already studied...

Some variability parameters (wafer to wafer)

- Advanced specifications and variability
 - Uncertainties translate in a \(I_{\text{trans}} \) standard deviation
 \[
 \sigma_{I_{\text{trans}}} = \frac{I_{\text{trans}}}{V_L} \sigma_{V_L} + \frac{V_L}{I_{\text{trans}}} \sigma_{I_{\text{trans}}} + \ldots
 \]
 - Random offset in a simple current mirror...
 - Large transistors and large \(V_{\text{eff}} \)

Offset considerations

- Random offset in a differential pair with resistive load and symmetrical supply voltages
 \[
 V_{\text{off}} = \frac{R_1}{2} \frac{I_0}{V_{\text{eff}}} (\sigma_{V_{\text{trans}}} + \Delta V_{\text{sat}})
 \]
- Spreading in load resistors
 \[
 V_{\text{off}} = \frac{R_1}{2} \frac{I_0}{V_{\text{eff}}} \quad \Rightarrow \quad V_{\text{off}} = \frac{V_{\text{eff}}}{2} \frac{\Delta V_{\text{sat}}}{\mu C_{\text{ox}}} + \frac{\Delta W L}{W L}
 \]
- Other spreading
 \[
 V_{\text{off}} = R_1 \Delta I_{\text{sat}} + \frac{V_{\text{off}}}{2} \frac{\Delta V_{\text{sat}}}{\mu C_{\text{ox}}}
 \]

Common Mode Rejection Ratio, CMRR

- Definition: CMRR characterizes the ability of a differential amplifier to reject the common mode
 \[
 \text{CMRR} = \frac{A_{\text{MC}}}{A_{\text{MC,0}}} = A_{\text{MC,0}} - A_{\text{MC,0}} = 20 \log \left(\frac{A_{\text{MC}}}{A_{\text{MC,0}}} \right)
 \]

Offset considerations

- But offset can be also systematic
 - due to the chosen architecture, the bias point, a wrong layout (systematic mismatch)...
 - Must be fixed by designer !!!
- Examples
 - Related to design (layout)
 \[
 V_{\text{off}} = V_{\text{sat}} + R_{\text{L}} \Delta t
 \]
 - Related to usage
 - If \(V_{\text{off}} \) and \(V_{\text{eff}} \)
 \[
 \Delta t = \frac{V_{\text{off}}}{V_{\text{eff}}} \Delta t_{\text{sat}} - \Delta t_{\text{sat}}
 \]

Outline

- Analog IC Design Flow
- Advanced specifications
 - Offset considerations
 - Common Mode Rejection Ratio
 - Design for low mismatches
 - Noise fundamentals
 - Characterization
- Advanced design techniques
Common Mode Rejection Ratio, CMRR

- Without R_L spreading, $v_{inc}/(2R_B)$ in each load resistance
- Impact of spreading in MOST

$$v_{inc} = R_L \Delta (L_L) = R_L \frac{v_{inc}}{2R_B} \frac{\Delta W/L}{L/W}$$

$$\Rightarrow A_{inc} = \frac{v_{inc}}{v_{out}} = \frac{R_L}{2R_B} \left(\frac{2\Delta V}{V_{exp}} \frac{\Delta W/L}{L/W} \right)$$

Random CMRR and Offset trade-off

- Design of low offset and high CMRR differential pair

$$v_{inc} = \Delta V + \frac{V_{exp}}{2} \left(\frac{\Delta R}{R} \frac{\Delta W/L}{L/W} \right) \quad CMRR = \frac{2\Delta V}{V_{exp}} \frac{R}{\Delta W/L} \frac{\Delta W/L}{L/W}$$

- The lower the offset, the higher the CMRR
 1. Optimize for low offset
 - Low V_{eff} (0.1V), large transistors, matched resistors
 - reduce V_t spreading and current mismatch
 2. Optimize for large CMRR

Systematic CMRR

- Current source output resistance: R_S
- Common Mode V_{inc} change bias current V_{inc}/R_B
- V_{inc}/R_B equally shares between T_1 and T_2
- Small-signal analysis to calculate induced output voltage

$$CMRR = 2 \frac{R_{m1} R_{m2}}{R_{ds1} R_{ds2}}$$

Outline

- Analog IC Design Flow
 - Advanced specifications
 - Offset considerations
 - Common Mode Rejection Ratio
 - Design for low mismatches
 - Noise fundamentals
 - Characterization
 - Advanced design techniques

Design for low mismatches

Mismatch vs size for capacitors

- Wet etched
- Dry etched

- $2 : 1 : 2$
- $1 : 4$
Noise considerations

- Noise is any unwanted signal that interferes with a desired signal.
 - It can be deterministic or random.
 - It can be inherent to the circuit itself or coming from interferences with the outside world.
- Interference noise is caused by an identifiable external source. It can be deterministic or random.
 - e.g. 50Hz hum in a loudspeaker, cellular phone interfering with a TV set, …
 - It can usually be eliminated by proper methods of grounding, shielding, etc (electromagnetic compatibility, EMC)
- Inherent noise is generated by the circuit itself. It is always random.
 - e.g.: resistance and transistors are noisy
 - Different shape of random noises are thermal, shot and flicker
 - It can not be eliminated (inherent) but its effects can be reduced by changing the circuit structure or the power consumption.

Random noise basics

- Noise combination
 - Different noise sources combine as voltages in series and current in parallel
 - Assuming uncorrelated noise sources

\[
V_{n1}(t) + V_{n2}(t) = V_{n1(n1)} + V_{n2(n2)}
\]

• Frequency-domain analysis
 - Noise spectral density
 - Noise is considered only in the bandwidth of the system → filtered out elsewhere
 - Noise rms value @ 100Hz for a 90Hz bandwidth? A 0.1 Hz bandwidth?

\[
V^2_{n(100Hz)} = 10 \mu V^2/\sqrt{Hz}
\]

\[
V^2_{n(1Hz)} = 10 \mu V^2/\sqrt{Hz}
\]
Inherent noise models

<table>
<thead>
<tr>
<th>Element</th>
<th>Noise Models</th>
<th>$k = 1.38 \times 10^{-23} J.K^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resistor R</td>
<td>$V_{nR}^2 = 4kTR$ (Noiseless)</td>
<td></td>
</tr>
<tr>
<td>MOSFET J_{DS} (Active region)</td>
<td>$V_{nJ}^2 = 4kT(q^2/2)J_{DS}$ (Noiseless)</td>
<td>$V_{T1}^2 = k \times W/L \cdot C_{ox}$</td>
</tr>
</tbody>
</table>

- **1/f noise tangent principle!!!**

Noise considerations

- Basic considerations regarding noise in feedback systems

 - V_{n1} represents the input noise in v_i.
 - V_{n2} represents the equivalent input noise of A_1 and the output noise of b_2.

Outline

- Analog IC Design Flow
- Advanced specifications
 - Offset considerations
 - Common Mode Rejection Ratio
 - Design for low mismatches
- Noise fundamentals
- Characterization
- Advanced design techniques
Cours Circuits Intégrés Analogiques

Chapitre II

8

Wheatstone bridge SNR

\[V_{BBW} = \frac{V_{VBBW}}{2} \]

- **WL**: keep WL and \(V_{eff} \) constant

\[WL = 10 \mu m^2 \Rightarrow W = \frac{10 \mu m^2}{L}; I_n = 28 \mu A \]

- \(L = \{1; 2; 5; 10; 20\} \rightarrow \delta(I_{diss}) = \sigma; \text{mean}(I_{diss}) = \mu A \)

Effect of W/L: keep WL and \(V_{eff} \) constant

\[WL = 10 \mu m^2 \Rightarrow W = \frac{L}{W}; I_n = \frac{L}{W} ; I_n = 28 \mu A \]

- \(W/L = \{1; 2; 5; 10\} \)

Case study: magnetometer signal conditioning

Wheatstone bridge SNR

- **MC process & mismatch**: \(\delta(I_{diss}) = \sigma; \text{mean}(I_{diss}) = \mu A \)

Outline

- **Analog IC Design Flow**
- **Advanced specifications**
- **Advanced design techniques**
 - Design for low-noise: active bridge example
 - Design for robustness: digitally programmable current source

Characterization

Makes use of MC simulations

Define a DOE

Example: error in a current mirror

- Set \(1: 100 \) runs, \(T_1 \rightarrow T_2 \)

- Studied influences: \(V_{eff} \), WL, W/L, L

- Initial design: \(V_{eff} = 0.2 V \), W/L = 10, L = 1 \(\mu m \), \(V_S = 2 V \)

\[I_n = I_{diss} = \frac{2kT}{2} \frac{W}{L} V_{eff}^2 = 28 \mu A \]

- MC process: \(\delta(I_{diss}) = \sigma; \text{mean}(I_{diss}) = \mu A \)

- MC process & mismatch: \(\delta(I_{diss}) = \sigma; \text{mean}(I_{diss}) = \mu A \)

Design for low noise: active bridge example

- **High power consumption**

- Targeted power consumption: 100 \(\mu A \) (for mobile applications) – less for autonomous systems

Low resistance for SNR III

- **Strain gauges**

- **Reference resistors**

- **SNR**

\[\text{SNR}_{pp} = 20 \log \left(\frac{V_{cc} - V_{BBW}}{V_{BBW}} \right) - 20 \log \left(\frac{\Delta R}{R} \right) \]

- For a given signal (\(\Delta R/R \)), \(\text{SNR}_{pp} \) increases with \(V_{cc} \) and reduces with \(R \) and \(BW \)
Output SNR and LNA's noise figure

- LNA is necessary to reach a measurable signal
- LNA will amplify signal and noise of the WB
- LNA will add its own noise to the output
- LNA's noise figure NF_{dB} is used to characterize the loss of SNR due to the LNA

\[
\Delta \text{SNR}_{dB} = 20 \log \left(\frac{V_{out} - V_{in}}{\sqrt{\text{BW} \times (V_{out} - V_{in})}} \right) = 20 \log \left(\frac{\Delta R \times V_{cc}}{R + \sqrt{6} \times V_{BW} \times \text{BW}} \right)
\]

Output SNR and LNA's noise figure

- Preserve input SNR by having an amplifier with negligible noise contribution
- Example: $R=1k\Omega$ and $V_{eff}=0.1V$
- How to reduce power consumption?

Outline

- Analog IC Design Flow
- Advanced specifications
- Advanced design techniques
 - Design for robustness: digitally programmable current source
 - Design for low-noise: active bridge example