ECOLE POLYTECHNIQUE UNIVERSITAIRE DE MONTPELLIER

Département Electronique, Robotique & Informatique Industrielle 3ème Année

ANNEE 2010-2011

Initiation aux Circuits Intégrés Analogiques CMOS

Support de cours et textes de TD

Pascal Nouet, nouet@lirmm.fr

http://www.lirmm.fr/~nouet/homepage/lecture_ressources.html

Contexte

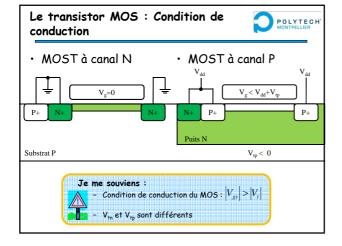
- · PCB = carte électronique, circuit imprimé
 - Assemblage de composants individuels (fabriqués, triés, testés)
 - R, L, C, Transistors Bipolaires, Circuits Intégrés Standards, Circuits Intégrés Spécifiques
 - On peut réparer une carte (pas toujours vrai)
 - On utilise majoritairement des transistors bipolaires
- · ASIC = Application Specific Integrated Circuits
- · SOC = System On Chip
 - Assemblage et fabrication des composants en même temps
 - · Transistors MOS complémentaires → CMOS
 - · Quelques R et C des blocs entiers réutilisés (hiérarchie)
 - Coûts récurrents énormes → Grands volumes, grand nombre de fonction
 On ne peut pas réparer un Circuit Intégré !!! (presque vrai)
 - · La conception doit-être robuste aux impondérables inévitables

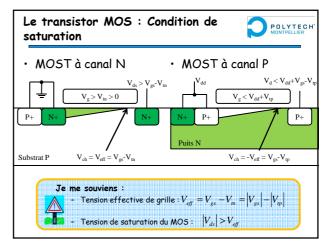
Objectifs du cours

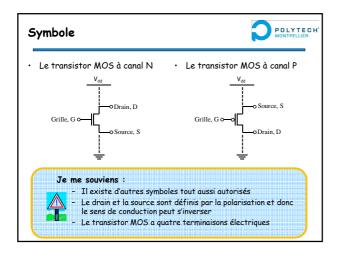
- Comprendre les bases indispensables pour la conception de circuits intégrés analogiques
 - Les transistors MOS N et P en régime de saturation
 - La polarisation et le dimensionnement
 - Le comportement petit-signal
 - Les structures élémentaires
 - · Miroirs et sources de courant
 - · Amplificateurs et charges actives
 - · Montages en cascade ou cascode
- · Evaluation des connaissances
 - Dimensionner et polariser une petite structure par rapport à un cahier des charges
 - Déterminer ses performances à l'aide d'une étude petitsignal

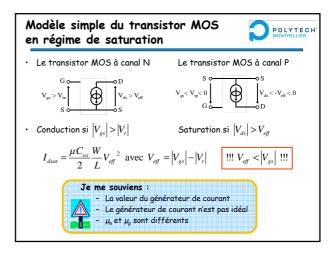
Polytech'Montpellier Département Electronique, Robotique & Informatique Industrielle 3^{ème} Année

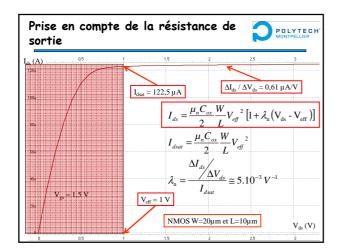
Initiation aux Circuits Intégrés Analogiques CMOS Chapitre I - Le transistor MOS : un générateur de courant contrôlé en tension

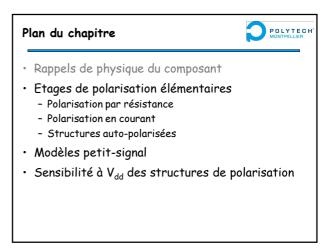

> Pascal Nouet - 2010/2011 nouet@lirmm.fr

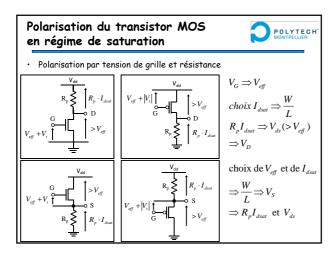


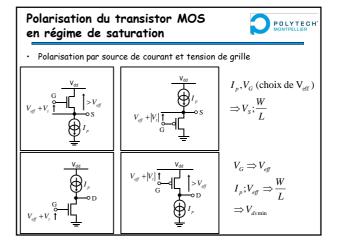

Plan du chapitre

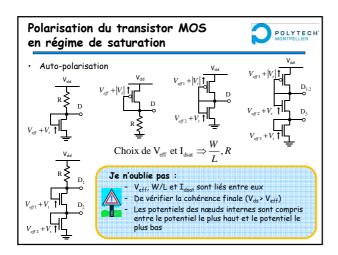



- · Rappels de physique du composant
 - Régimes de conduction pour l'analogique
 - Symboles et représentations
 - Modèles en grand signal
- · Etages de polarisation élémentaires
- · Modèles petit-signal
- · Sensibilité à V_{dd} des structures de polarisation





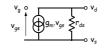




Plan du chapitre

- · Rappels de physique du composant
- · Etages de polarisation élémentaires
- · Modèles petit-signal
 - NMOS en régime statique
 - PMOS en régime statique
 - Cas particulier du transistor auto-polarisé
- Sensibilité à V_{dd} des structures de polarisation

Modèle petit-signal du transistor MOS en régime de saturation



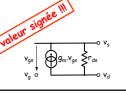
· Transistor à canal N

$$I_{ds} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} V_{eff}^2 \left[1 + \lambda_n \left(V_{ds} - V_{eff} \right) \right]$$

- Effet d'une petite variation de V_{as}
- Effet d'une petite variation de $V_{\rm ds}$

Modèle petit-signal du transistor MOS en régime de saturation

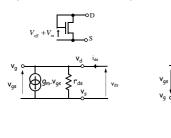
Transistor à canal P

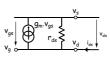

$$I_{ds} = \frac{\mu_p C_{ox}}{2} \frac{W}{L} V_{eff}^2 \left[1 + \lambda_p \left(V_{ds} \right) - V_{eff} \right) \right]$$

• Effet d'une petite variation de Vas

$$\frac{\partial I_{ds}}{\partial V_{gs}} \cong \frac{\partial I_{dsat}}{\partial V_{eff}} = \mu_p C_{ox} \frac{W}{L} V_{eff} = g_m$$

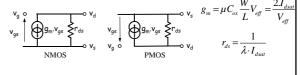
- Effet d'une petite variation de $V_{\rm ds}$


$$\frac{\partial I_{ds}}{\partial V_{ds}} = g_{ds} = \frac{1}{r_{ds}} = \lambda_p . I_{ds}$$


Modèle petit-signal du transistor MOS en régime de saturation

Cas particulier : transistor auto-polarisé

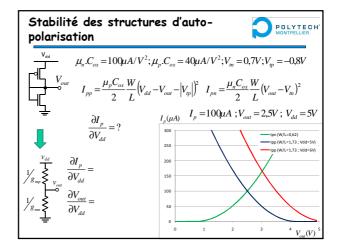
MOS en régime de saturation : aide-mémoire

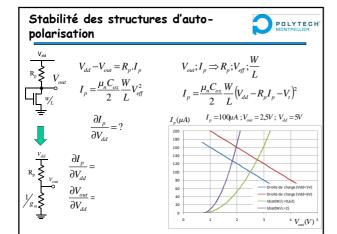


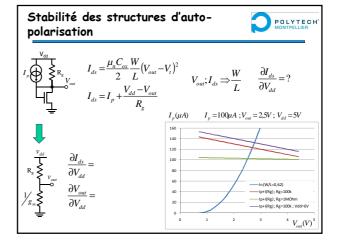
· Modèle fort-signal

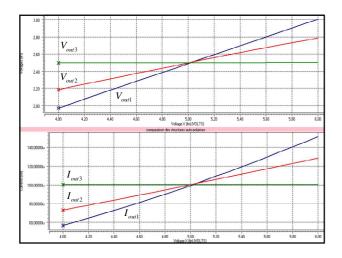
$$I_{ds} = \frac{\mu C_{ox}}{2} \frac{W}{L} V_{eff}^{2} \left[1 + \lambda \left(|V_{ds}| - V_{eff} \right) \right]$$

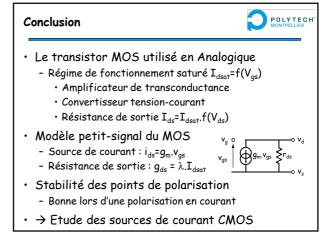
$$var{eq} \sum_{G \text{ operator}} S_{D} \text{ avec } V_{eff} = \left| V_{gs} \right| - \left| V_{r} \right|$$


· Modèle petit-signal




Plan du chapitre




- · Rappels de physique du composant
- · Etages de polarisation élémentaires
- · Modèles petit-signal
- \cdot Sensibilité à V_{dd} des structures auto-polarisées
 - à base de transistor
 - Polarisation par résistance
 - Polarisation par source de courant

Polytech'Montpellier Département Electronique, Robotique & Informatique Industrielle 3^{ème} Année

Initiation aux Circuits Intégrés Analogiques CMOS
Chapitre II – Les sources de courant
Pascal Nouet – 2010/2011
nouet@lirmm.fr

Introduction

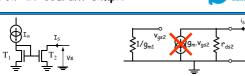
- · Qu'est-ce qu'une bonne source de courant ?
- Un générateur délivrant un courant constant quelque soit :
 - · La tension à ses bornes,
 - Résistance de sortie élevée
 - Dynamique de sortie élevée
 - · La tension d'alimentation,
 - · La température, ...
- · Source de courant & CIA
 - Elément de base à tout montage
 - Un étage de **référence** auto-polarisé et une ou plusieurs sorties obtenues par miroir de courant

II - Les sources de courant

POLYTEC

- · Les miroirs de courant élémentaires
 - Miroir de courant simple
 - Miroir de courant à source dégénérée
 - Miroir de courant cascode
 - Miroir de courant Wilson
 - Autres miroirs de courant élémentaires
- · Les sources de courant élémentaires
- · Un aperçu des sources de courant avancées

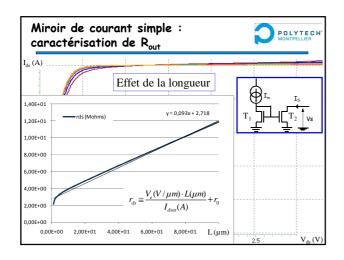
Miroir de courant simple

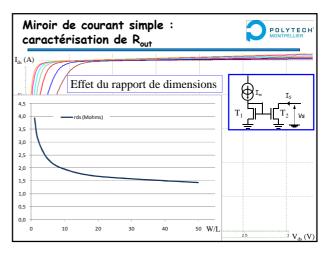


- Polarisation en fort signal → calcul de W/L
 - T2 doit agir en source de courant
 - Forte résistance de sortie régime saturé
 - · Plage de fonctionnement : V_{ds} ≥ X => V_{eff} ≤ X
 - T₁ est saturé (V_{gs} = V_{ds})
 - Courant de saturation : $I_{dsat} = \frac{\mu_n C_{ox} W}{2}$
 - Technologie utilisée
 - → calcul de W/L minimum

$\frac{W}{I} \ge \frac{2I_{in}}{UCX^2}$

Miroir de courant simple


· Dynamique de sortie (W/L fixé)


$$V_{\scriptscriptstyle dost} = V_{\scriptscriptstyle eff} = \sqrt{\frac{2I_{\scriptscriptstyle in}}{\mu_{\scriptscriptstyle n}C_{\scriptscriptstyle ox}W/L}} \Rightarrow I_{\scriptscriptstyle S} = I_{\scriptscriptstyle in} = I_{\scriptscriptstyle dost} = \frac{\mu_{\scriptscriptstyle n}C_{\scriptscriptstyle ox}}{2}\frac{W}{L}{V_{\scriptscriptstyle eff}}^2 \text{ si } V_{\scriptscriptstyle S} > V_{\scriptscriptstyle dost}$$

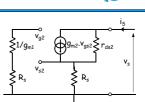
- · Analyse petit-signal
 - Effet d'une variation de tension de sortie

$$\frac{v_s}{i_s} = r_{ds2} = \frac{1}{\lambda I_{dsat}}$$

Miroir de courant simple : POLYTECH caractérisation de Rout I_{ds} (A) Effet de I_{dsat} 5,00E-01 4,50E-01 4,00E-01 3.50E-01 3.00E-01 $r_{ds}(M\Omega)$ 2,50E-01 2,00E-01 gds (µA/V) 1,50E-01 Linéaire (gds (µA/V)) 1,00E-01 5.00E-02 0.00F+00

Résistance de sortie du miroir de courant

- \cdot Influence de I_{dsat}
 - La résistance de sortie est divisée par 2 lorsque le courant double

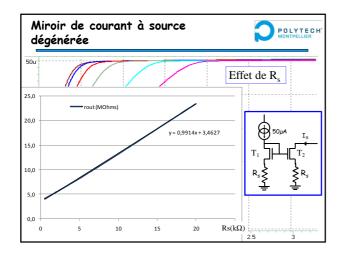

- · Influence des dimensions
 - La résistance de sortie est multipliée par 2 lorsque la longueur du transistor double (à W/L constant)
- · Modèles « concepteur » utilisés
 - Travail à longueur constante

$$\frac{i_s}{v_s} = \frac{1}{r_{ds}} = \frac{\partial I_{ds}}{\partial V_{ds}} \cong \lambda(V^{-1}) \cdot I_{dsat}(A)$$

- Cas général ightarrow $r_{ds} \alpha$ L

$$r_{ds} \cong \frac{V_e(V/\mu m) \cdot L(\mu m)}{I_{dsat}(A)} + r_0$$

Miroir de courant à source dégénérée



POLYTECH

T₂ doit être saturé

$$I_{dsat} = \frac{\mu_{n}C_{ox}}{2}\frac{W}{L}V_{eff}^{2} = I_{in} \qquad V_{S} > R_{S}I_{in} + V_{eff} \qquad \frac{v_{S}}{i_{s}} \cong r_{ds2} \left(1 + g_{m2}R_{s}\right)$$

• Effet du 2nd ordre (substrat) $\Rightarrow \frac{v_s}{i_s} \cong r_{ds2}[1 + (g_{m2} + g_s)R_s]$

Miroir de courant cascode

POLYTECH

MONTPELLER

T₃

T₄

T₄

T₇

T₂

T₄

T₂

T₄

T₂

T₄

T₂

T₄

T₇

T₈

T₉

T₁

T₂

T₁

T₂

T₁

T₂

T₂

T₁

T₂

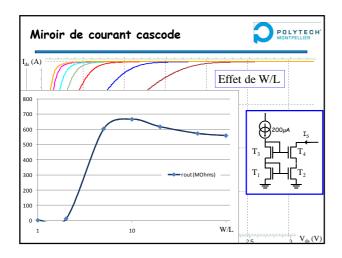
T₂

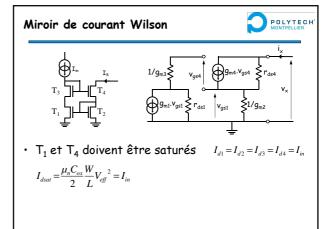
T₃

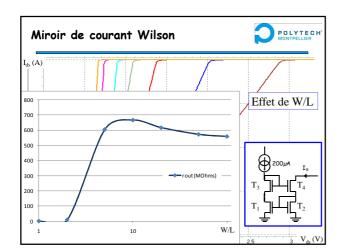
T₄

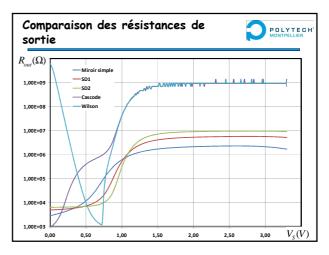
T₄

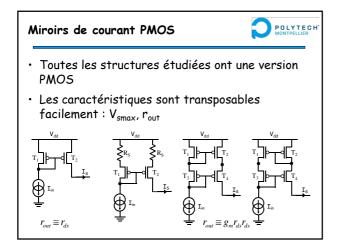
T₅

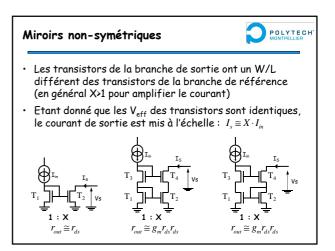

T₄

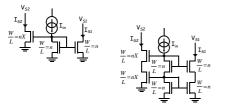

T₇


T₈

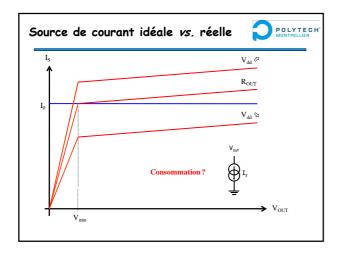

T₉

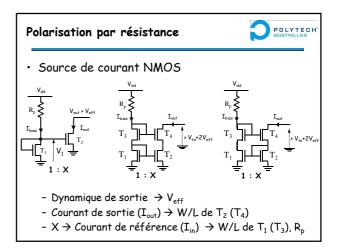

T₂ et T₄ doivent être saturés $I_{d1} = I_{d2} = I_{d3} = I_{d4} = I_{in}$ $I_{dsat} = \frac{\mu_n C_{ox}}{2} \frac{W}{L} V_{eff}^2 = I_{in}$

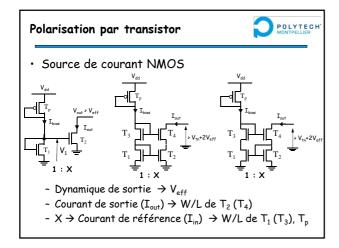


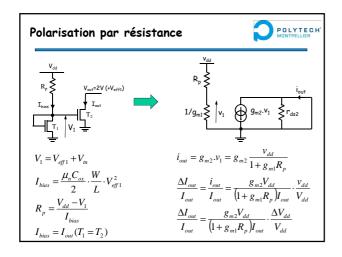


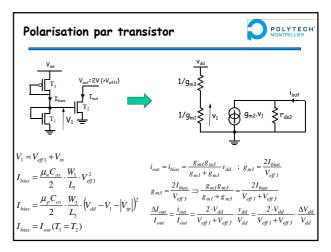
Miroirs à plusieurs sorties

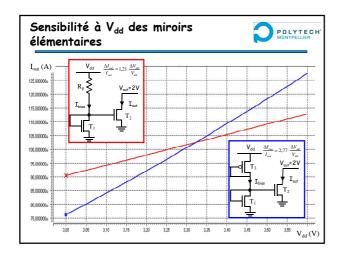

- On peut créer autant de sorties que nécessaire à partir d'une seule branche de référence.
- · Les sorties peuvent fournir des courants différents
- · Les résistances de sortie peuvent-être différentes

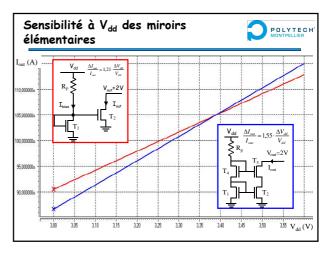


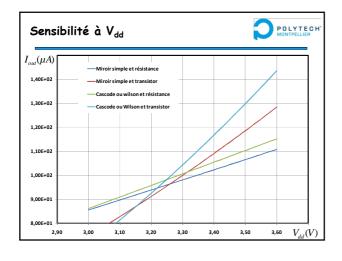

II - Les sources de courant

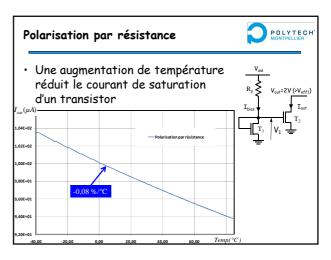

- · Les miroirs de courant élémentaires
- · Les sources de courant élémentaires
 - Polarisation par résistance
 - Polarisation par transistor
 - Sensibilité à V_{dd}
 - Sensibilité à la T°
 - Sources avec sortie à V_{dd}
- · Un aperçu des sources de courant avancées

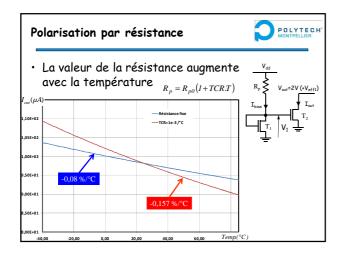


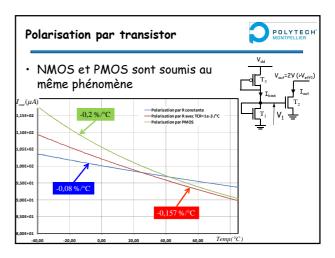


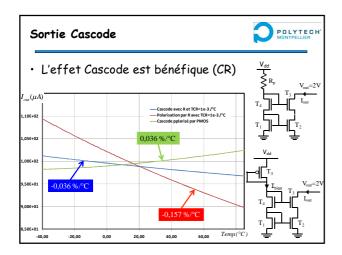


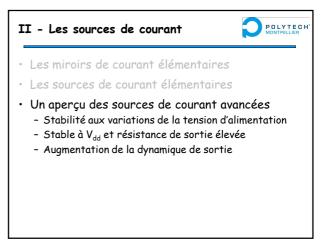


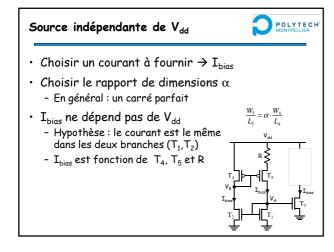


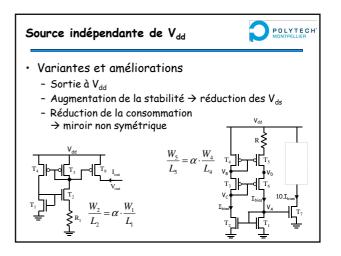


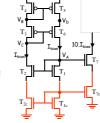










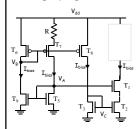


Source indépendante de V_{dd}

- Stabilité en V_{dd} → R, T₄ et T₅ imposent I_{bias} indépendant de V_{dd}
- · Gestion de la consommation →Miroirs asymétriques
- · Adaptation à V_{dd} →T₃ et T₆ peuvent-être supprimés
- \cdot Augmentation de R_{out} → sortie Cascode
 - → Problème : dynamique de sortie

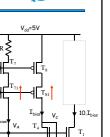
Augmentation de la dynamique de sortie

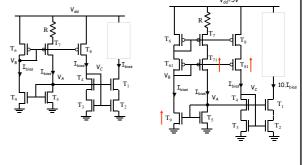
Principe


$$\begin{split} V_{eff} &= V_{gs} - V_{m} \\ V_{ds1} &= V_{gs1} = V_{eff} + V_{m} \\ V_{gs3} &= V_{ds1} + R.I_{bias} - V_{s3} = V_{eff} + V_{m} \\ \Rightarrow V_{ds2} &= V_{s3} = R.I_{bias} \ge V_{eff} \\ \Rightarrow V_{d3} \ge 2.V_{eff} \approx 0.4V \end{split}$$

Compromis entre tension de sortie minimale et résistance de sortie élevée...

Augmentation de la dynamique de sortie


· Mise en œuvre : le miroir de courant cascode à large plage de fonctionnement


$$\begin{split} \frac{W_7}{L_7} &= \alpha \cdot \frac{W_6}{L_6} (\alpha > 1) \\ V_{eff \, 6} &= V_{eff \, 7} + V_R \text{ avec } V_R = R \cdot I_{bias} \\ V_{eff \, 6} &= \sqrt{\alpha} \cdot V_{eff \, 7} \end{split}$$

$$\frac{W_1}{L_1} = \frac{W_2}{L_2} = \frac{W_3}{L_3} = 4 \cdot \frac{W_5}{L_5} = 4 \cdot \frac{W_9}{L_9}$$

Augmentation de la dynamique de sortie (variantes)

POLYTECH

Caractéristiques des sources de courant

Bilan

	Sensibilité à Vdd	Résistance de sortie	Plage de fonctionnement
Miroir simple	±25%	625kΩ	> 0,8V
indépendante de V _{dd}	±2,3%	500kΩ	> 0,9V
indépendante de V _{dd} + Cascode	±0,02%	80ΜΩ	> 1V
indépendante de V _{dd} + Cascode large excursion	±9% ±2,25%	3,54MΩ 4,88MΩ	> 0,3V > 0,3V

Fin du 2ème chapitre

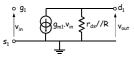
· J'ai appris

Polytech'Montpellier Département Electronique, Robotique & Informatique Industrielle 3^{ème} Année

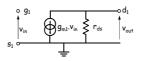
Initiation aux Circuits Intégrés Analogiques CMOS Chapitre III - Etages Amplificateurs CMOS Pascal Nouet - 2010/2011 nouet@lirmm.fr

Amplificateurs CMOS élémentaires

- Amplificateur source commune
 - Polarisation par résistance
 - Polarisation par source de courant
 - Polarisation par miroir de courant
- Amplificateur à drain commun (source suiveuse)
- Amplificateur à grille commune
- · Amplificateur différentiel

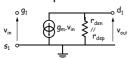

Amplificateur source commune

- · Polarisation par résistance
- Dimensionnement
 - $V_{eff} \cdot V_{out} \rightarrow On choisit V_{out} \# V_{dd}/2$
 - $V_{in}(dc) \rightarrow V_{eff1} \rightarrow W/L$ (choix de I_{bias})
 - →calcul de R (choix de V_{out})


- · Modèle petit-signal
 - Gain, résistance d'entrée et résistance de sortie

Amplificateur source commune

· Polarisation par source de courant idéale



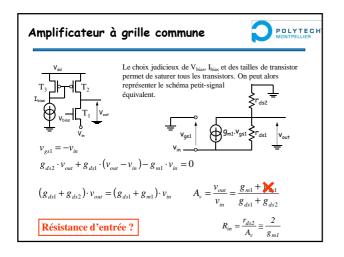
- · Polarisation statique
 - V_{in} > V_{tn} ; V_{in} - V_{tn} = V_{eff} < V_{out} ; V_{out} # V_{dd} /2
 - Calcul de W/L
- · Modèle petit-signal
 - Gain, résistance d'entrée et résistance de sortie

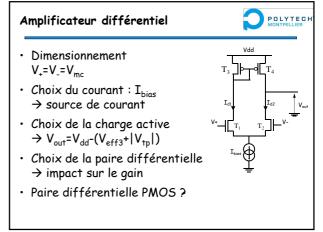
Amplificateur source commune

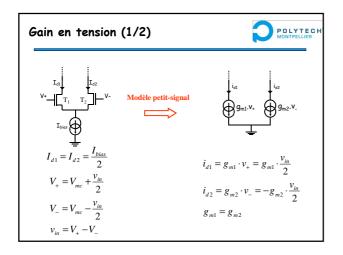
· Polarisation par miroir de courant

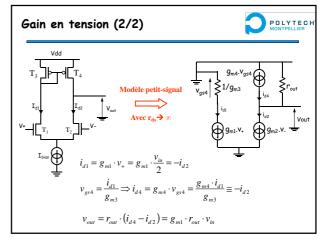
- Polarisation statique
 - V_{in} > V_{tn} ; V_{in} - V_{tn} = V_{eff} < V_{out} ; V_{out} # V_{dd} /2
 - Calcul de W/L et de R
- · Modèle petit-signal
 - Gain, résistance d'entrée et résistance de sortie

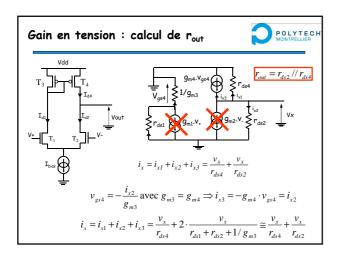
Amplificateur source suiveuse ou drain commun

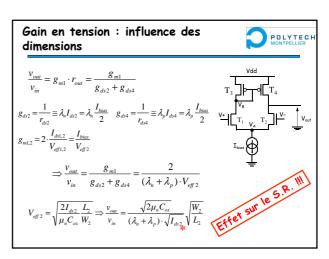



de saturer tous les transistors. On peut alors représenter le


schéma petit-signal équivalent.

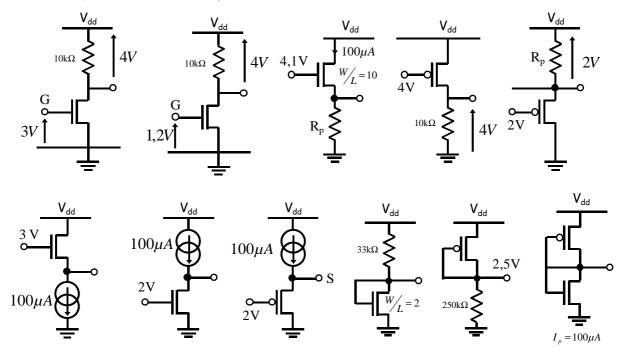



 $v_{in} - g_{ds1} + g_{ds2} + g_{m1}$



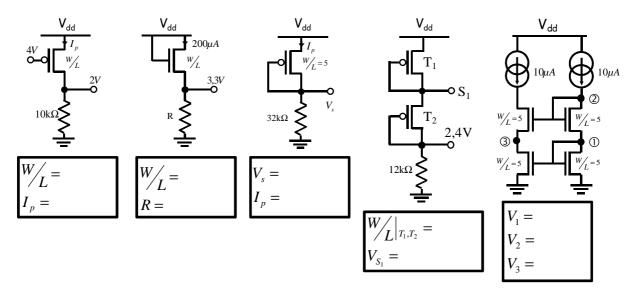
Travaux Dirigés d'Initiation aux Circuits Intégrés Analogiques

Les caractéristiques suivantes seront utilisées sauf en cas d'indication contraire :


$$\mu_{n}.C_{ox} = 100~\mu\text{A/V}^{2}$$
 ; $\mu_{p}.C_{ox} = 40~\mu\text{A/V}^{2}$; $V_{tn} = 0.7~V$; $V_{tp} = -0.8~V$; $V_{dd} = 5~V$

I. Polarisation et dimensionnement

a. Exercice n°1

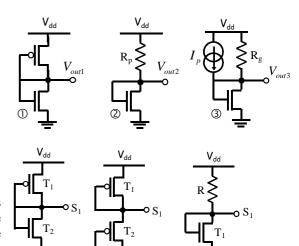

Les schémas ci-dessous sont-ils bien polarisés (transistors saturés) ?

Lorsque c'est le cas, calculer les grandeurs manquantes (tension de sortie, courant de polarisation, rapport W/L des transistors, valeur des résistances...).

b. Exercice n°2

Pour chacun des schémas ci-dessous, calculer les grandeurs demandées. On négligera les effets de la polarisation du substrat et de la résistance de sortie des transistors.

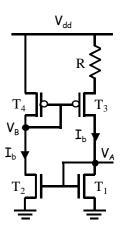
c. Exercice n°3


Dimensionner les trois structures ci-contre de façon à ce que la tension de sortie soit de 1,7V avec une consommation de courant de $10\mu A$. On considèrera R_g = $1M\Omega$.

En vous aidant de la représentation petit signal de ces montages, déterminer la sensibilité relative de la tension de sortie et du courant consommé à une variation de tension d'alimentation.

Renouveler cette étude avec un dimensionnement permettant d'obtenir 0,8V en sortie de chacun des montages.

Pour chacun des trois schémas ci-contre, dimensionner les composants (W/L des transistors et valeur de la résistance) de façon à ce que chacun des montages délivre deux tensions de 1V et 3,2V avec une consommation de $50\,\mu W$.

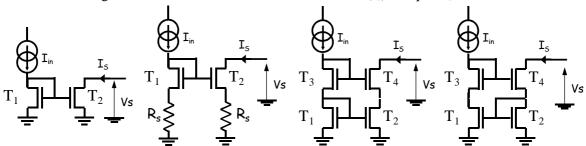

e. Structure auto-polarisée insensible à V_{dd}

Soit le schéma ci-dessous destiné à fournir une tension V_A indépendante de V_{dd} . On considère λ =0, T_1 , T_2 forme un miroir de courant qui impose I_{ds1} = I_{ds2} . Sachant que l'on souhaite utiliser un courant de polarisation de 10 μ A,

- Calculez le rapport de dimensions de T_4 de façon à avoir V_B =3,2V.
- Etablir la relation entre V_{gs4} , V_{gs3} et la chute de tension aux bornes de R. Dans le cas où T_3 a un rapport de dimensions 4 fois plus élevé que T_4 , calculez R.
- Calculez les dimensions de T_1 et T_2 pour que V_A =0,9V.
- Que se passe-t-il lorsque la tension d'alimentation diminue ? Quelle est la plus petite valeur de V_{dd} pour laquelle le montage fonctionne encore ? Que valent alors les courants I_1 et I_2 ?
- Calculer la transconductance de chacun des transistors (pour V_{dd}=5V)

Pour la suite du problème, on posera $\left(\frac{W}{L}\right)_3 = K\left(\frac{W}{L}\right)_4$

- Exprimez V_{eff3} en fonction de I_{ds} et $\beta_3 = \frac{\mu_p C_{ox}}{2} \frac{W}{L}\Big|_{T_a}$
- Faites de même pour V_{eff4} puis démontrez que I_{ds} ne dépend que de $\beta_3,\,R$ et K.
- ullet Montrez alors que les transconductances des transistors ne dépendent pas de V_{dd} .
- On considère maintenant $\lambda \neq 0$. En supposant $r_{ds} >> \frac{1}{g_m}$, faites un schéma petit-signal du montage pour étudier la sensibilité de I_{ds} et de V_A à V_{dd} .


II. Miroirs de courant

a. Exercice n°1

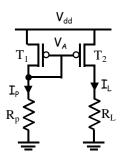
On utilise la technologie suivante : μ_n . $C_{ox} = 120 \mu A/V^2$; $V_{tn} = 0.5 \text{ V}$; $\lambda = 0.005 \text{ V}^{-1}$

Pour les applications numériques, on prendra I_{in}=120µA. Pour chacun des montages ci-dessous :

- En négligeant l'effet de la résistance de sortie de l'étage, déterminer le rapport W/L afin que le courant de sortie soit égal à I_{in} quel que soit V_S compris entre 1V et 3,3V.
- Démontrez à partir d'une analyse petit-signal, l'expression de la résistance de sortie de chacun des montages. Estimer la variation de courant de sortie (I_S) lorsque V_S varie de 1 à 3,3 V.

III. Sources de courant élémentaires

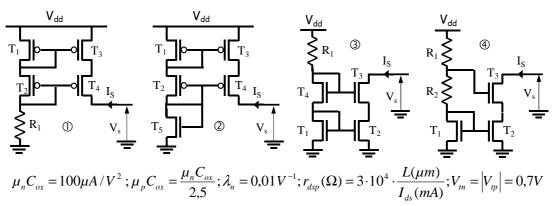
a. Exercice n°1


On souhaite utiliser le montage ci-contre de façon à ce que le courant dans la charge R_L soit égal à 100 μA quelle que soit la valeur de la résistance R_L dans la gamme $[0;30k\Omega]$.

Déterminer la gamme admissible pour la tension V_A. Choisir V_A au centre de celle-ci.

Sachant que l'on souhaite $I_p=10\mu A$, calculez la valeur de R_p et les dimensions des transistors T_1 et T_2 .

Que devient le courant dans la charge si V_{dd} augmente de 10%?


Sachant que λ_p =0,01 V^{-1} , tracer la variation du courant dans la charge en fonction de R_L .

b. Exercice n°2

On utilise le schéma n°1 ci-dessous, pour réaliser une source de courant.

- 1°) Déterminer la tension effective de grille (V_{eff}) et le W/L de chacun des transistors de façon à ce que le miroir de courant délivre 8μ A pour toute valeur de V_s inférieure à 3,9 Volts. Calculez la valeur de la résistance R_1 .
- 2°) Calculez la résistance de sortie de la source de courant. On négligera l'effet substrat.
- 3°) Redimensionner la structure pour obtenir un courant de sortie de $100 \,\mu\text{A}$ en changeant le W/L de T_3 et T_4 . Que devient la résistance de sortie de la source de courant ?
- 4°) Que devient le courant de sortie si V_{dd} augmente de 10% ?

c. Exercice n°3

On remplace la résistance R₁ par le transistor T₅ (schéma n°2).

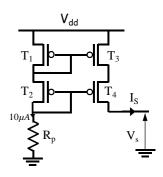
- 1°) Déterminer la tension effective de grille ($V_{eff}=V_{gs}-V_{tn}$) nécessaire pour conserver les mêmes conditions de polarisation (8 μ A dans la branche composée de T_1 , T_2 et T_5). En déduire le W/L de T_5 .
- 2°) Proposer une solution permettant de réduire la surface de la source de courant en remplaçant la résistance R_1 ou le transistor T_5 par deux transistors. Donner le W/L de chacun de ces transistors.

d. Exercice n°4

On utilise le schéma n°3 ci-dessus, pour réaliser un miroir de courant délivrant $100\mu A$ de courant de sortie avec $V_{dd} = 5V$.

- 1°) Déterminer la tension effective de grille ($V_{eff}=V_{gs}-V_{tn}$) et le W/L de chacun des transistors de façon à ce que le miroir de courant ait une limite basse de fonctionnement à $V_s=1,1$ Volt. Calculez la valeur de la résistance R_1 .
- 2°) Calculez la résistance de sortie du miroir de courant. On négligera l'effet substrat.

e. Exercice n°5

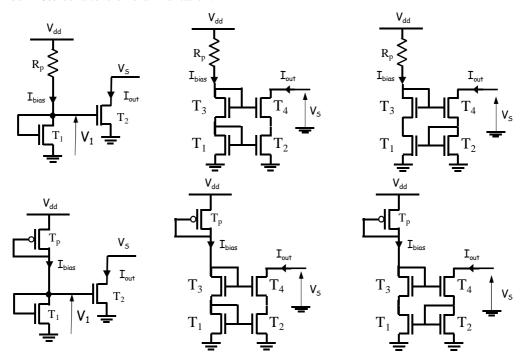

On remplace le transistor T_4 par la résistance R_2 afin d'élargir la plage de fonctionnement du miroir de courant en conservant le même courant (schéma $n^{\circ}4$).

- 1°) Déterminer la tension effective de grille ($V_{eff}=V_{gs}-V_{tn}$) et le W/L de chacun des transistors de façon à ce que le miroir de courant ait une limite de fonctionnement à $V_s=0.6$ Volt. Calculez la valeur des résistances R_1 et R_2 .
- 2°) On multiplie le W/L des transistors T_2 et T_3 par 5 en conservant R_1 , R_2 et T_1 à l'identique. Calculer le courant de sortie et la résistance de sortie du miroir de courant. Quel est l'intérêt de cette modification ?

f. Exercice n°6

On utilise le schéma ci-contre pour réaliser une source de courant.

- 1°) Calculer le rapport W/L des transistors T_1 et T_2 de façon à ce que la tension effective des deux transistors soit égale à 0,2 Volt. Calculer la valeur de la résistance R_p .
- 2°) Calculer les dimensions des transistors T_3 et T_4 de façon à ce que le courant de sortie soit égal à $100\mu A$. Faire le schéma petit-signal de la source de courant correspondant à une variation de la tension de sortie V_s (schéma $n^{\circ}1$ au dos). En déduire la résistance de sortie R_{out} de la source de courant. Calculer la gamme de tension de sortie qui permet un fonctionnement correct de la source de courant (T_3 et T_4 saturés).


g. Sensibilité à V_{dd} des sources de courant élémentaires

On utilise une technologie ayant les caractéristiques suivantes :

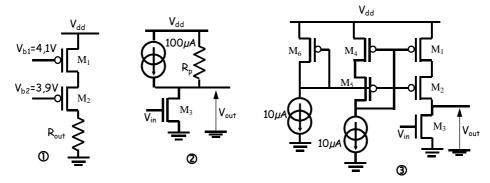
$$\begin{array}{l} \mu_{n}.C_{ox}\!=\!140~\mu A/V^{2}~;~V_{tn}\!=\!0.5~V~;~\lambda_{n}\!\!=\!\!0.005~V^{\text{-}1}\\ \mu_{p}.C_{ox}\!=\!50~\mu A/V^{2}~;~V_{tp}\!=\!\text{-}0.7~V~;~\lambda_{p}\!\!=\!\!0.003~V^{\text{-}1} \end{array}$$

Pour chaque source de courant composée de transistors identiques :

- En négligeant l'effet de la résistance de sortie de l'étage, calculez les dimensions des composants afin que le courant de sortie soit égal à 100μA quel que soit V_S compris entre 1V et 3,3V (On prendra V_{dd}=3.3V).
- Calculez la résistance de sortie du montage.
- Donnez le schéma petit-signal de chaque montage pour V_s constant et supérieur à 1V dans le cas d'une variation de V_{dd} . En déduire la variation relative du courant de sortie obtenue pour une variation de $\pm 10\%$ de la tension d'alimentation.

IV. Amplificateurs à un transistor

a. Exercice n°1


Soit la source de courant à forte résistance de sortie représentée ci-dessous (transistors M_1 et M_2 sur schéma $n^\circ 1$). Sachant que les deux transistors ont les mêmes dimensions (même rapport W/L) et que l'on souhaite un courant de $100~\mu A$ dans la résistance de charge, R_{out} , déterminez :

- le rapport W/L des deux transistors,
- la valeur maximale admissible pour la résistance R_{out},
- la résistance de sortie de la source de courant.

b. Exercice n°2

Soit l'amplificateur de tension représenté ci-dessous (schéma n°2). Sachant que R_p est grand devant la résistance drain-source du transistor M3, calculez :

- le rapport W/L du transistor de façon à ce que sa transconductance soit égale à 1mA/V,
- faire le schéma petit-signal du montage puis en déduire :
 - la résistance de sortie de l'amplificateur,
 - le gain en tension obtenu pour une petite variation de V_{in},
 - la bande passante de l'amplificateur si une charge de 100pF est connectée en sortie de l'amplificateur.

Exercice n°3

Soit l'amplificateur de tension représenté ci-dessus (schéma n°3), calculez :

- les dimensions (rapport W/L) de M₄, M₅ et M₆ permettant d'obtenir les mêmes tensions de grille pour M_1 et M_2 que sur le schéma n°1,
- les dimensions de M_1 et M_2 donnant un courant de saturation de 100 μ A pour M_1 et M_2 ,
- quel est le rôle de M₅?
- sachant que V_{eff3}=0,1V, calculez le gain de l'amplificateur

Exercice n°4

On utilise la source de courant de l'exercice n°1 pour réaliser les deux montages ci-contre.

1°) Pour chacun des montages :

- Calculez le W/L du transistor T₅, de façon à avoir un V_{eff} de 0,2 Volts.
- Tracer l'allure de V_s lorsque V_{in} varie de 0 à 5V.
- Estimez sans calcul la gamme de tension d'entrée acceptable.
- 2°) Pour chacun des montages, on se place dans le cas ou la tension d'entrée est satisfaisante. Dessinez le schéma petit-signal permettant de calculer la variation de V_s induite par une petite variation de V_{in}. En déduire :
 - l'expression du rapport V_s/V_{in} pour une petite variation de V_{in}
 - la résistance de sortie R_{out} du montage.

V. Problème

La technologie utilisée a les caractéristiques suivantes :

- Tension d'alimentation : $V_{dd} = 3.3V$
- MOS à canal $P:\mu_p.C_{ox}=50~\mu A/V^2~;~V_{tp}=\text{-0.7 V}~;~\lambda_p=0.0125~V^{\text{-1}}$ MOS à canal $N:\mu_n.C_{ox}=125~\mu A/V^2~;~V_{tn}=0.5~V~;~\lambda_n=0.008~V^{\text{-1}}$

On étudie le schéma ci-contre avec T_2 et T_3 identiques, V_{in} =0,7V, I_{bias} =50 μ A et V_{eff3} =0,5V. Calculez les dimensions des transistors (W/L). Donnez ensuite au dos de la feuille le schéma petit-signal du montage pour une petite variation de V_{in} . En déduire la résistance de sortie petit-signal du montage et l'expression du gain. Calculez le gain. Donnez la plage de fonctionnement du montage en sortie. En dehors de cette plage, le schéma petit-signal ne sera plus valable. Proposer un montage équivalent à celui-ci ou vous remplacerez la source $V_{dd} \\$ V_{dd} V_{dd}

de courant idéale par une source CMOS. Dimensionnez les composants ajoutés et mentionnez les valeurs et dimensions sur le schéma...