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Abstract

A cograph is a graph that contains no path on four vertices as an induced

subgraph. A cograph k-partition of a graph G = (V,E) is a vertex-partition

of G into k sets V1, . . . , Vk ⊂ V so that the graph induced by Vi is a cograph for

1 ≤ i ≤ k. Gimbel and Nešetřil [5] studied the complexity aspects of the cograph

k-partitions and raised the following questions: Does there exist a triangle-free

planar graph that is not cograph 2-partitionable? If the answer is yes, what is the

complexity of the associated decision problem? In this paper, we prove that such

an example exists and that deciding whether a triangle-free planar graph admits a

cograph 2-partition is NP-complete. We also show that every graph with maximum

average degree at most 14

5
admits a cograph 2-partition such that each component

is a star on at most three vertices.

1 Introduction

In this paper we focus on vertex-partitions such that each partite set induces a graph

with a given structure. Cographs form the minimal family of graphs containing K1

that is closed with respect to complementation and disjoint union. Cographs are also

characterized as the graphs containing no induced copy of P4, the path on four vertices

(see for example [9]). A star k-partition (resp. cograph k-partition) of G is a vertex-

partition of G in k sets V1, . . . , Vk such that the graph induced by each Vi is a star forest

(resp. a cograph). Moreover we call a d-star k-partition a star k-partition where every

induced component has order at most d. A 1-star k-partition is a proper k-coloring.

Deciding whether a graph is cograph k-partitionable is linear time solvable when

k = 1 [4] and is NP-complete for k ≥ 2 [1]. In [5] Gimbel and Nešetřil focused on

planar graphs and proved:
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Theorem 1 (Gimbel, Nešetřil [5])

1. Deciding whether a planar graph is cograph 3-partitionable is NP-complete.

2. Deciding whether a planar graph with maximum degree at most 6 is cograph

2-partitionable is NP-complete.

Also, the following questions are implicit in the same paper:

Question 2 (Gimbel, Nešetřil [5]) Does there exist a triangle-free planar graph that

is not cograph 2-partitionable? If the answer is yes, what is the complexity of the

associated decision problem?

Let Cy be the class of graphs admitting a 3-star 2-partition. Let Cn be the class of

graphs admitting no vertex-partition into two cographs. Notice that Cy ∩ Cn = ∅. In

Section 2, we provide an example of a non cograph 2-partitionable triangle-free planar

graph, and prove:

Theorem 3

1. It is NP-complete to determine whether a triangle-free planar graph in Cy ∪ Cn
belongs to Cy .

2. It is NP-complete to determine whether a planar graph with no 4-cycle and with

maximum degree 4 in Cy ∪ Cn belongs to Cy .

This answers Question 2 ; moreover this improves the hypothesis on the maximum

degree from 6 to 4 in Theorem 1, which is best possible since graphs with maximum

degree 3 admit a vertex-partition into two subgraphs of maximum degree 1.

Many studies on vertex partitions use the maximum average degree as a parameter,

see for example [2, 3]. The maximum average degree of a graph G is defined by

mad(G) = max

{

2|E(H)|

|V (H)|
, H ⊆ G

}

This parameter can be computed in polynomial time as proved by Jensen and Toft

in [7]. It is also well known that every planar graph G with girth at least g satisfies

mad(G) < 2g
g−2 . In regards to the previous studies, it seems natural to consider the

following problem:

Problem 4 Given an integer k ≥ 1, does there exist f(k) such that every graph with

mad(G) < f(k) is k-star 2-partitionable?

Graphs that are 1-star 2-partitionable correspond to 2-colorable graphs; hence, ev-

ery graph G with mad(G) < 2 is 1-star 2-partitionable. By Havet and Sereni [6],

every graph with mad(G) < 8
3 is 2-star 2-partitionable. Studying list strong lin-

ear 2-arboricity of sparse graphs, Borodin and Ivanova proved that every graph with

mad(G) < 14
5 and girth at least 7 is 3-star 2-partitionable [3]. In Section 3, we show

that we can drop the assumption on the girth and prove:
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Theorem 5 Every graph G with mad(G) < 14
5 is 3-star 2-partitionable.

For k ≥ 4, Problem 4 remains open. By [3], every planar graph of girth at least

7 is 3-star 2-partitionable. Moreover, there exist planar graphs with girth 4 which

are not cograph 2-partitionable, and therefore not k-star 2-partitionable for any k (see

Section 2.1). We thus conclude with the following two questions:

Question 6

1. Does there exist an integer s6 so that every planar graph with girth at least 6 is

s6-star 2-partitionable?

2. Does there exist an integer s5 so that every planar graph with girth at least 5 is

s5-star 2-partitionable?

2 NP-completeness

This section is dedicated to the proof of Theorem 3.

We recall that a 2-coloring of a hypergraph H = (V, E) is a partition of its vertex

set V into two color classes such that no edge in E is monochromatic. We reduce

our problem to the NP-complete problem of deciding the 2-colorability of 3-uniform

hypergraphs [8].

2.1 Triangle-free planar graphs

Our reduction is based on some gadget graphs Sx,y, Fx,y,z, and Ux1,x2,y1,y2
that have

some nice properties.

(C01) The graph Sx,y in Figure 1 has no cograph 2-partition such that x and y are

in the same partite set.

PROOF. Suppose for the sake of contradiction that Sx,y has a cograph 2-partition

V = A∪̇B such that x and y are in the same partite set A.

(O1) For 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3, vi,j and vi,j+1 cannot be both in A. Otherwise,

this forces the four vertices “between” them to be in B, creating a P4. Similarly,

v1,i, v1,i+1, v2,i+1 cannot be all in the same partite set, and so it is for v2,i, v2,i+1, v1,i.
(O2) Two non-adjacent vertices v1,i, v2,j cannot be both in A. Otherwise v1,ixyv2,j

is a P4 in A, a contradiction.

First assume that v1,1 is in A, then v1,2 is in B by O1 and v2,3 is in B by O2. Now

v1,3 and v2,2 must be in A by O1. This contradicts O2.

By symmetry, we can assume that v1,1 and v2,4 are in B. So suppose now that v1,2
is in A. By O1, v1,3 is in B. Again by O1, v1,4 and v2,3 are in A. This contradicts O2.

So we have v1,1, v1,2, v2,3, v2,4 in B. By O1, it follows that v1,3 and v2,2 are in A.

This contradicts O2.

✷

The graph Sx,y can be seen as a switcher: if x is in A, then y is in B and vice versa.

Two copies of Sx,y, say Sx1,y1
, Sx2,y2

where y1 = x2 can be seen as an extender:

3



Sx,y

x

y

v1,1 v1,2 v1,3 v1,4

v2,1 v2,2 v2,3 v2,4

Fx,y,z

x y z u

v

Ux1,x2,y1,y2

x1 x2

y2 y1

z

Figure 1: The graphs Sx,y , Ux1,x2,y1,y2
, and Fx,y,z .
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vertices x1 and y2 must belong to the same partite set. One can construct a triangle-

free planar graph that does not admit a cograph 2-partition by taking a cycle of length

5 and replacing each of its edges xy by Sx,y . This answers the first part of Question 2.

The graphs Fx,y,z and Ux1,x2,y1,y2
are the graphs depicted in Figure 1 where each

dashed edge is a copy of Sx,y .

(C02) The graph Fx,y,z has no cograph 2-partition such that x, y, and z are in the

same partite set.

PROOF. Suppose, by way of contradiction, that Fx,y,z has a cograph 2-partition

V = A∪̇B such that x, y, and z are in the same partite set, say A. The two switchers

between xv and vu force u to be in A ; this produces a P4 = xyzu in A, a contradiction.

✷

(C03) Let A∪̇B be a cograph 2-partition of Ux1,x2,y1,y2
. Then x1, y1 (resp. x2, y2)

must be in the same partite set.

PROOF. By the path of switchers between x2 and y2, necessarily x2 and y2 must be in

the same partite set, say A. Suppose now that x1 and y1 are in different partite sets, say

x1 is in A and y1 is in B. Propagating the partition from x1 and y1 using the switchers

creates two paths P ′, P ′′ of length 3 ending in z such that the first three vertices of

P ′ (resp. P ′′) are in B (resp. A). It follows that putting z in A or B creates a P4, a

contradiction. ✷

The graph Ux1,x2,y1,y2
can be seen as an uncrosser: if x1 is in a partite set, then y1

must be in the same partite set, and so it is for x2, y2.

We can now present the reduction. We transform an instance H of 2-colorability

of 3-uniform hypergraphs into an instance G of our problem. For each vertex in H, we

associate a vertex in G. For each edge in H, we associate a copy of the graph Fx,y,z .

Now for each incidence between a vertex v and an edge e, we link the vertex associated

to v to one of the vertices x, y, z of the copy of Fx,y,z associated to e. We construct

such links using extenders in series. The obtained graph is not necessarily planar: we

handle each crossing with an uncrosser. Finally we obtain an instance G that is planar

and triangle-free. See Figure 2.

By the properties of the switchers, extenders, and uncrossers, the graph G admits a

3-star 2-partition if H is 2-colorable and it admits no cograph 2-partition otherwise.

If H is not 2-colorable, then this implies that in any vertex-partition A∪̇B of G
there is a copy of Fx,y,z whose all vertices x, y, z are in the same partite set; by C02,

G admits no cograph 2-partition.

Assume H is 2-colorable. Let A∪̇B be a 2-colouring of H. We construct a 3-star

2-partition of G as follows. We put each vertex of G corresponding to a vertex of H in

A (resp. B) in A (resp. B). We then extend this partition to all the vertices of extenders

(composed of two switchers) and uncrossers as depicted in Figure 3. Observe that in

the 2-partition of Sx,y , the endvertices x and y have no neighbour in their own partite

set. This yields a 3-star 2-partition of G.
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GH

Figure 2: Reduction from H to G. Double edges, dashed edges represent extenders,

switchers, respectively. Thin edges are usual edges. Each crossing will be handled by

an uncrosser.

2.2 Planar graphs with maximum degree four

The proof of Theorem 3.2 is similar to the proof of Theorem 3.1, but is based on a new

switcher Ex,y .

(C01) Let P be the graph depicted in Figure 4. Let x1x2x3x4x5 be the inner cycle

of length 5 of P . Up to permutation, in any cograph 2-partition A∪̇B of P , we have

necessarily x1, x2, x4 ∈ A and x3, x5 ∈ B.

(C02) Let Hx be the graph depicted in Figure 4. Let A∪̇B be a cograph 2-partition

of Hx. Suppose x ∈ A. Then at least one of a1, a2 is in A.

PROOF. Suppose by way of contradiction that none of a1, a2 is in A. By (C01),

it follows that a1, a2, u ∈ B and c1, c2 ∈ A. At least one of b1, b2 must be in A
(otherwise b1a1a2b2 is a P4 in B), say b1 ∈ A. By (C01), we have i1 ∈ A and

f1, g1 ∈ B. As well j2 ∈ B and j1, g2 ∈ A by (C01), and similarly f2 ∈ A and

b2, i2 ∈ B. Now, by symmetry, assume v is in A ; it follows that e1, e2, h1 are in B,

creating a P4 = e2e1h1f1 in B, a contradiction. ✷

The graph Gx is obtained from a triangle xx1x2 and two copies Hx1
, Hx2

glued

on x1 and x2 (see Figure 4).

(C03) Let A∪̇B be a cograph 2-partition of Gx. Suppose x ∈ A. Then vertex x is

an end of a path of length 3 in A.

PROOF. If none of x1, x2 is in A, then by (C02) there is a P4 in B. Suppose w.l.o.g.

that x1 is in A. By (C02), a neighbor of x1 in Hx1
is in A. This completes the proof of

(C03). ✷

Finally the graph Ex,y is constructed as follows: Take a path of length 4 xz1z2y
and identify z1 (resp. z2) with the vertex x of a copy of Gx. By (C03) we have:
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Figure 3: 3-star 2-partitions of Sx,y and Ux1,x2,y1,y2
.
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b1b2

c2
d1

g2
h1

i1i2

j1j2

e1e2

a2 a1

d2

f1f2

g1

c1

h2

P

0

0 0

1 1

Ex,y

x yz1 z2

Gz1
Gz2

Gx x

x1 x2

Hx1
Hx2

Hx x

u

v

Figure 4: The graphs P,Hx, Gx, Ex,y .

(C04) Let A∪̇B be a cograph 2-partition of Ex,y . Then x and y are in different

partite sets.

The proof of Theorem 3.2 is the same as the proof of Theorem 3.1 where the

switcher Sx,y is replaced by the switcher Ex,y . A 3-star 2-partition of Ex,y is given in

Figure 5.

A

A BB A

A

B A

A

AB

B

BA

B

A A

A

B

B

B

A

B

B

A

A B

B

A

B

Gx

Hx1
Hx2

Ex,y

x y

Gz1
Gz2

Hx

Figure 5: 3-star 2-partition of Ex,y .

Observe that the value 4 in Theorem 3.2 is best possible, since every graph with

maximum degree at most 3 is (1, 1)-colorable, i.e. admits a vertex-partition into two

subsets, each of them inducing a subgraph with maximum degree at most 1 (and so is
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3-star 2-partitionable). To see this, consider φ a coloring of the vertices with two colors

0 and 1, so that σ(φ) = E00(φ) + E11(φ) is minimum, where Eii denotes the number

of edges whose both ends are colored with color i. Then φ is a (1, 1)-coloring (if not,

we can recolor a vertex and obtain a coloring φ′ with σ(φ′) < σ(φ), contradicting the

choice of φ).

3 3-star 2-partition of graphs with mad <
14
5

The first part of the proof, namely Lemma 7, is similar to the lemma proposed by

Borodin and Ivanova in [3]. It is given for sake of completeness.

For simplicity, we use the following nomenclature. A k-vertex (resp. k+-vertex,

k−-vertex) is a vertex of degree k (resp. at least k, at most k).

A light 3-vertex is a 3-vertex adjacent to a 2-vertex. A weary 3-vertex is a light 3-

vertex adjacent to another light 3-vertex. An exhausted 3-vertex is a 3-vertex adjacent

to a light 3-vertex and a weary 3-vertex. Note that all of them are always 3-vertices,

we may omit to precise it (and say light vertex, weary vertex and exhausted vertex) in

the following. Examples of such vertices are provided in Figure 6.

a) b) c)

Figure 6: Examples of a) light, b) weary, and c) exhausted vertices

Lemma 7 If a graph G satisfies mad(G) < 14
5 , then it contains one of the following

configurations C1-C12, examples of which are depicted in Figure 7:

C1. A 1−-vertex.

C2. Two adjacent 2-vertices.

C3. A 3-vertex adjacent to two 2-vertices.

C4. A light 3-vertex adjacent to two light 3-vertices.

C5. A 3-vertex adjacent to three light 3-vertices.

C6. Two adjacent 3-vertices, each of them adjacent to two light 3-vertices.

C7. A 3-vertex adjacent to two weary 3-vertices.

C8. A 3-vertex adjacent to a weary 3-vertex and an exhausted 3-vertex.

C9. A 3-vertex adjacent to two exhausted 3-vertices.
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C10. A 4-vertex adjacent to four 2-vertices.

C11. A 4-vertex adjacent to three 2-vertices and a light 3-vertex.

C12. A 4-vertex adjacent to three 2-vertices and an exhausted 3-vertex.

C5

C4

C1

C2

C3

C9

C7 C10

C12

C11

C8

C6 a
e

d

c

b a

dc

ab

a

a
b

Figure 7: The smallest trees containing configurations C1-C12.

PROOF. We prove Lemma 7 using a discharging procedure. Suppose G is a coun-

terexample to the lemma, namely a graph with mad(G) < 14
5 , containing none of the

configurations C1 to C12. We first assign to each vertex v a charge ω(v) equal to its

degree: ∀v ∈ V (G), ω(v) = d(v). By hypothesis,
∑

v∈V (G) ω(v) < 14
5 |V (G)|. We

then redistribute the charges according to the rules R1 to R4, illustrated in Figure 8:

R1. Every 3+-vertex gives 2
5 to each adjacent 2-vertex.

R2. Every 4+-vertex or non-light (non weary) 3-vertex gives 1
10 to each adjacent

non-weary light vertex.

R3. Every 4+-vertex or non-light (non-weary) 3-vertex gives 1
5 to each adjacent

weary vertex.
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R4. Every 4+-vertex or non-light (non-weary) non-exhausted 3-vertex gives 1
10 to

each adjacent exhausted vertex.

Once the rules have been applied, each vertex v ends with a new charge ω∗(v). Dur-

ing the procedure, no new charge appears and no charge disappears; hence
∑

v∈V (G) ω(v) =
∑

v∈V (G) ω
∗(v). However we will prove that every vertex ends with a new charge

ω∗(v) at least 14
5 which will lead to the following contradiction, that completes the

proof:
14

5
|V (G)| >

∑

v∈V (G)

ω(v) =
∑

v∈V (G)

ω∗(v) ≥
14

5
|V (G)|

r
2

r
1

r
1

r
1

r
1

r
1

r
1

r
1

r
2

r
2

a) b) c)

r r

r r

r

rr

1

1

1 1

1

33

r
2

r
4

r
3

r
3

Figure 8: Rules R1 to R4 applied to the a) light, b) weary, and c) exhausted 3-vertices.

(

r1 = 2

5
, r2 = r4 = 1

10
, r3 = 1

5

)

Let us now prove that ∀v ∈ V (G), ω∗(v) ≥ 14
5 . By exclusion of configuration C1,

each vertex v of our graph G has degree at least 2. We consider the following cases

according to the degree of v.

Case d(v) = 2. Initially, ω(v) = 2. By exclusion of configuration C2, v is adjacent

to two 3+-vertices, and thus receives a charge 2
5 from each of them, by application of

rule R1. It follows that ω∗(v) = 2 + 2 · 2
5 = 14

5 .

Case d(v) = 3. Initially, ω(v) = 3. By exclusion of C3, v is adjacent to at most

one 2-vertex. We first consider the following two cases where v is adjacent to exactly

one 2-vertex:

• Suppose first that v is weary (see Fig 8.b), i.e. v is adjacent to a 2-vertex and to a

light vertex. Note that the exclusion of C4 assures that v is adjacent to at most one

light vertex. By rule R1, v gives 2
5 to its adjacent 2-vertex whereas by rule R3, v

receives 1
5 from its non-light neighbour. Hence we have ω∗(v) = 3− 2

5+
1
5 = 14

5 .

• Suppose now that v is light but not weary (see Fig. 8.a): v is adjacent to a 2-

vertex and to two non light 3+-vertices. In that case, by rule R1, v gives 2
5 to its

adjacent 2-vertex, and by rule R2, v receives 1
10 from each adjacent 3+-vertices;

so ω∗(v) = 3− 2
5 + 2 · 1

10 = 14
5 .
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Assume now that v is not adjacent to a 2-vertex. By exclusion of C5, v is adjacent

to at most two light vertices. Moreover, by exclusion of C7, v is adjacent to at most

one weary vertex. We consider the following cases:

• Suppose v is exhausted (see Fig 8.c), i.e. v is adjacent to a (non-weary) light

vertex and to a weary vertex. Its remaining neighbour is a 3+-vertex that is not

light (thus not weary) by exclusion of C5, nor exhausted by exclusion of C6.

Hence, applying rules R2 and R3, v gives respectively 1
10 and 1

5 to its light and

weary neighbours, but by R4, v receives 1
10 from its third neighbour. We thus

have ω∗(v) = 3− 1
10 − 1

5 + 1
10 = 14

5 .

• Suppose now that v is adjacent to two (non-weary) light vertices. Its last neigh-

bour is a 3+-vertex that can be neither light by exclusion of C5, nor exhausted by

exclusion of C6. So we only apply rule R2 twice and we get ω∗(v) = 3−2· 1
10 =

14
5 .

• Suppose that v is adjacent to exactly one light vertex. If this vertex is weary, then

by exclusion of C8, v cannot be adjacent to an exhausted vertex, and applying

rule R3 we get ω∗(v) = 3− 1
5 = 14

5 . Otherwise, by exclusion of C9, at most one

of v’s non-light neighbours is exhausted. It follows that ω∗(v) ≥ 3− 1
10 −

1
10 =

14
5 by rules R2 and possibly R4.

• Finally, assume that v is not adjacent to any light vertices. By exclusion of C9,

v is adjacent to at most one exhausted vertex. Hence, possibly applying R4, we

get ω∗(v) ≥ 3− 1
10 > 14

5 .

Case d(v) = 4. Initially, ω(v) = 4. By exclusion of C10, v is adjacent to at most

three 2-vertices. If v is adjacent to three 2-vertices, then its last neighbour cannot be

light (by exclusion of C11) nor exhausted (by exclusion of C12); hence, applying rule

R1, ω∗(v) = 4− 3 · 2
5 = 14

5 . Otherwise, we apply rule R1 at most twice and possibly

two rules from R2 to R4, and we get ω∗(v) ≥ 4− 2 · 2
5 − 2 · 1

5 = 14
5 .

Case d(v) = k ≥ 5. Applying rules R1 to R4, v may give at most k times 2
5 , and

we get ω∗(v) ≥ k − k · 2
5 = 3k

5 ≥ 3 since k ≥ 5.

In all cases, we got ω∗(v) ≥ 14
5 as claimed, and this concludes the proof. ✷

Before proving Theorem 5, we show some useful properties of graphs containing

one of the configurations C1-C12.

Note that configurations C1-C12 may exist in a graph G with a different embedding

than the ones depicted in Fig. 7, containing short cycles. In [3], the authors reduced

the possible number of such embeddings by considering only graphs with girth at least

7. Here, we use a different technique to consider any possible embedding of a con-

figuration without enumerating them. The principle of this technique is to verify that

no matter how a configuration is embedded, we still have enough leeway to extend a

partition of the rest of the graph to the configuration. This leeway is carried by a few
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ϕ

Figure 9: An example of a different embedding of T4.

vertices in the configurations, namely the vertices of the set later denoted V△. Observa-

tion 8 to Proposition 12 are simple structural properties of the configurations and their

embeddings. One may easily convince himself these hold by looking at the Configura-

tions C1-C12. Then we describe a simple process, in two stages, to extend a partition

of the rest of the graph to the configuration. Most of the time, the first stage (steps 1 and

2) should almost suffice to extend the partition. In some cases where vertices of V△

have many common neighbours, fewer vertices are colored, and more leeway makes

things harder to describe, but there is no real difficulty in extending the partition.

We use the following definitions. For any 1 ≤ i ≤ 12, let Ti be the smallest tree

containing configuration Ci ; namely the trees depicted in Fig. 7.

Given a tree Ti, we partition its vertices into three sets, V◦, V△ and V✷. The set V✷

contains all the vertices whose degree was not fixed by the configuration. Except for

T1, this corresponds to all the leaves. The set V◦ contains all the vertices adjacent to

a vertex in V✷. Finally, V△ contains the remaining vertices, adjacent to no vertices of

V✷. This partition is displayed in Fig. 7 with the shape of the vertices.

By construction of V◦, V△, V✷, we observe the following property on any tree in

T1-T12 :

Observation 8 Any vertex in V◦ has exactly one neighbour in V✷, and any vertex in

V△ has no neighbours in V✷.

∀v ∈ V◦, |N(v) ∩ V✷| = 1
∀v ∈ V△, |N(v) ∩ V✷| = 0

Let G be a graph containing an occurrence of configuration Ci. We define the

homomorphism ϕ : V (Ti) −→ V (G) that maps each vertex of Ti to the vertex of G
having the same role in this occurrence of configuration Ci. Some vertices of G may be

the image of more than one vertex of Ti. See for example Fig. 9. Abusing the notation,

we will simply denote by ϕ−1(v) the set {u ∈ Ti | ϕ(u) = v}.

Note that for any edge uv in E(Ti), ϕ(u)ϕ(v) is an edge in G. Also note that,

for ϕ(Ti) to be an occurrence of configuration Ci, the restriction of ϕ from N [u] to

N [ϕ(u)] has to be bijective for any u ∈ V◦ ∪ V△. The mapping ϕ thus preserves

degree, lightness, weariness, and exhaustedness of vertices in V◦ ∪ V△. We later refer

to this property saying that ϕ is locally bijective.

In G, we denote by E♦ the set of edges defined by

E♦ = {e ∈ E(G) | ϕ−1(e) ⊆ E(V◦, V✷)}

13



Such edges are dashed in Fig. 9.

The following propositions hold.

Proposition 9 If v ∈ V (G) is a vertex of ϕ(V◦), then at most one edge incident to v is

in E♦.

PROOF. Let v = ϕ(v′), v′ ∈ V◦. Suppose there exists u ∈ N(v) such that uv ∈ E♦.

Let w ∈ N(v) \ {u}. By local bijectivity of ϕ, there exist a unique u′ ∈ ϕ−1(u) ∩
NTi(v

′) and w′ ∈ ϕ−1(w) ∩NTi(v
′), and u′ 6= w′. From Observation 8, w′ /∈ V✷ so

vw /∈ E♦. ✷

Proposition 10 Suppose a configuration C 6= C2 appears in G. Let uv be an edge

of G such that u, v ∈ ϕ(V◦) \ ϕ(V△). If uv /∈ E♦, then d(u) = 2 and d(v) = 3, or

conversely.

PROOF. Let uv satisfy the condition of the proposition. Since uv /∈ E♦, there exist

u′, v′ adjacent vertices in C such that φ(u′) = u, φ(v′) = v, and none of u′, v′ are in

V✷. By hypothesis, u′ and v′ are also not in V△, thus they must both be in V◦. It is

then easy to check on all configurations that any edge between two vertices in V◦ has

an extremity of degree 2 and the other of degree 3. ✷

Proposition 11 On C1 to C12, the homomorphism ϕ restricted on V△ → ϕ(V△) is

bijective.

PROOF. We only need to check injectivity to reach the conclusion. For configurations

C1 to C5, C10 and C11, since |V△| ≤ 1, this is clearly true. For configurations C6, C7

and C12, the proposition is a corollary of bijectivity of ϕ on N [a].
Let us now deal first with C8. By bijectivity of ϕ respectively on N [b] and on

N [c], we know that ϕ(a) 6= ϕ(c) and ϕ(c) 6= ϕ(d). Moreover, if ϕ(a) = ϕ(d), then

necessarily, ϕ(b) = ϕ(c), since other neighbours of a and of d are either 2-vertices or

light-vertices. But this contradicts local bijectivity of ϕ. Therefore ϕ(a) 6= ϕ(d) and ϕ
is injective on V△.

Finally, we deal similarly with C9. By local bijectivity of ϕ, we know that ϕ(a) 6=
ϕ(b), ϕ(b) 6= ϕ(d), and ϕ(d) 6= ϕ(e). Moreover, since a and e are light vertices

but not b and d, ϕ(a) 6= ϕ(d) and ϕ(b) 6= ϕ(e). Finally, if ϕ(a) = ϕ(e), then

ϕ(b) = ϕ(d), b and d being the only neither light nor degree 2 neighbours of a and e,

and that contradicts bijectivity of ϕ on N [c]. Therefore, ϕ is also injective on V△ in

C9, and the proposition is proven. ✷

Proposition 12 Let Ti be a configuration occuring in G. No vertices in ϕ(Ti) may be

adjacent to three or more vertices in ϕ(V△).

PROOF. The only configurations where this could occur are C8, C9 and C12. In C8,

only the vertex ϕ(b) may have three neighbours in ϕ(V△), if ϕ(d) was a neighbour

of ϕ(b). But neighbours of d different from c are 2-vertices or light-vertices, which

b is not. In C9, only ϕ(c) could have three neighours in ϕ(V△), yet for the same

14



reason, ϕ(c) can not be a neighbour of ϕ(a) or of ϕ(e). Finally, in C12, for having

three neighbours in ϕ(V△), a vertex should be adjacent to the 4-vertex, and to ϕ(a),
but vertices adjacent to the 4-vertex different from a are of degree 2. Therefore, no

vertices may be adjacent to three vertices in ϕ(V△). ✷

We now prove Theorem 5, that we recall here:

Theorem 5 Every graph G with mad(G) < 14
5 is 3-star 2-partitionable.

PROOF. We prove the theorem by contradiction. Suppose it is false and G is a coun-

terexample with minimum order. By Lemma 7, G contains one of the configurations

C1 to C12, let C be the configuration of smallest label appearing in G.

Let ν be a valid partition of G[V \ϕ(V◦∪V△)]. We see this partition as a colouring

of the vertices ν : V −→ {0, 1}, where one part is {v ∈ V | ν(v) = 0} and the other

is {v ∈ V | ν(v) = 1}.

We extend ν to G[V \ ϕ(V△)] with the following procedure :

Step 1 Colour any edge uv ∈ E♦ properly, that is choose ν(u) 6= ν(v). We know this

can be done by Proposition 9.

Step 2 For any remaining vertex v in V \ϕ(V△), with at least one coloured neighbour,

choose for ν(v) a least represented colour in N(v). We reiterate step 2 as long

as possible. If at some point, there are some vertices left in V \ ϕ(V△) with no

coloured neighbours, pick one, colour it randomly, and continue step 2.

Remark that are coloured during Step 2 precisely all vertices v ∈ ϕ(V◦) \ ϕ(V△)
that are incident to no edges of E♦. The following observation also holds:

Observation 13 Any vertex coloured during step 1 or 2 has either no coloured neigh-

bours, or at least one neighbour of the opposite colour.

Proposition 14 After application of Steps 1 and 2, either G contains Ci for some i ∈
{1, 2, 3} or ν is such that G

[

{v ∈ ϕ(V◦) | ν(v) = i}
]

contains no paths on three

vertices for i = 0, 1, that is, there is no monochromatic P3.

PROOF. Suppose G contains neither of C1, C2 or C3, yet that u, v, w ∈ ϕ(V◦) form a

P3 with edges uv and vw, such that ν(u) = ν(v) = ν(w). Clearly, none of uv and vw
is in E♦, or the two ends of the edge would have a different label. We can thus apply

Proposition 10 for both edges, and conclude that either v is of degree 2, or both u and

w are and v is of degree 3. The later case corresponds to the presence of configuration

C3 in G. Suppose now that v is of degree 2, whereas u and w are of degree at least 3

to avoid presence of C1 or C2. Since v have no incident edges in E♦, it was assigned

a colour ν during Step 2. It then must have at least one neighbour coloured differently,

(either u or v), a contradiction. ✷

Proposition 15 After application of Steps 1 and 2, ν is a proper 3-star 2-partition of

G
[

V \ ϕ(V△)
]

.
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PROOF. Suppose on the contrary that there exists a component of order at least

4 or a triangle in the subgraph of G induced by a colour class. Since ν is a valid

partition of G
[

V \ ϕ(V◦ ∪ V△)
]

, this component does not contain only vertices of

V \ϕ(V◦∪V△). Remark that any edge joining a vertex from ϕ(V◦∪V△) to a vertex of

V \ϕ(V◦∪V△) is necessarily in E♦, so is properly coloured. Therefore, the component

must be contained in ϕ(V◦ ∪ V△).
Configurations C1 and C2 are such that

∣

∣ϕ(V◦∪V△)
∣

∣ ≤ 2, so no component of size

at least three may be included in ϕ(V◦ ∪ V△). In C3, |V◦ ∪ V△| = 3, so we may only

find a triangle. However, if the vertex of degree 3 with its two neighbours of degree 2

form a triangle, then the edge joining the vertices of degree 2 is in E♦, and is properly

coloured, a contradiction. Finally, if none of C1, C2 and C3 appears in G but another

configuration appears, then the result holds by Proposition 14. ✷

From this last proposition, we only have to extend the colour assignment to vertices

in ϕ(V△). We assign colours, trying to preserve the following properties :

P1: The graph induced by ϕ(V◦ ∪ V△) contains no monochromatic P3 adjacent to an

uncoloured vertex of ϕ(V△).

P2: The graph induced by ϕ(V◦ ∪ V△) contains no monochromatic P2 (path on two

vertices) adjacent to 2 uncoloured vertices of ϕ(V△).

After Steps 1 and 2, P1 is a consequence of Proposition 14. Suppose P2 does not

hold. Let a, b form a monochromatic P2 adjacent to two vertices of ϕ(V△). The edge

ab is not in E♦, so applying Proposition 10, we know that a and b are of degree 2 and

3, say b is of degree 2. If b is adjacent to a vertex in ϕ(V△), then a is its only coloured

neighbour, and by Observation 13, it is coloured differently, a contradiction. If a is

adjacent to the two vertices of ϕ(V△), then b is the only coloured neighbour of a, and

Observation 13 again leads to a contradiction.

We use the following strategies (in this order) to colour yet uncoloured 3-vertices

of ϕ(V△). We also show that for each strategy, the colouring still corresponds to a

3-star 2-partition and satisfies properties P1 and P2 (note that we leave the colouring

of 4-vertices to the very end).

• If v ∈ ϕ(V△) has two uncoloured neighbours, assign to v the opposite colour of

its third neighbour.

In that case, it is clear that we still have a 3-star 2-partition and that P1 and P2 are still

satisfied.

• If v ∈ ϕ(V△) has two neighbours of the same colour, assign to v the opposite

colour.

Since v is a 3-vertex, it has at most one neighbour of the same colour, thus, we do not

form a monochromatic triangle. From property P1, we easily infer that colouring v,

we do not form a component of order more than 3. Suppose a monochromatic P3 is

formed, then by property P2, it is not adjacent to an uncoloured vertex of ϕ(V△) and

P1 and P2 hold trivially. If only a monochromatic P2 is formed, by Proposition 12, P2

holds, and P1 holds trivially.
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Figure 10: A particular partial embedding of C12.

• If u, v ∈ ϕ(V△) are two adjacent uncolored vertices both adjacent to a vertex of

each color, then properly color the edge uv.

Here again, P1 suffices to conclude that the obtained colouring corresponds to a 3-star

2-partition. Property P2 implies that P1 still holds, and Proposition 12 implies that P2

still holds.

We now need to deal with the remaining 4-vertex v in ϕ(V△) for configurations

C10, C11 and C12. Note that in C12, the first strategy should be applied on a before

colouring the other vertices, so that only the 4-vertex remains uncoloured at the end.

If v has at least three neighbours of the same colour, use the opposite colour for v.

By property P1, the colouring obtained corresponds to a 3-star 2-partition of the graph.

Suppose now that v has two neighbours of each colour. Among them, three are

2-vertices, and two of them have necessarily the same colour, say 0. If the second

neighbour of each of these two vertices are of colour 1, then we choose for v colour 0,

forming a monochromatic P3, and this extends the 3-star 2-partition. The only situation

when this is not true is in C12, when one of them, say w, has both its neighbours in

ϕ(V△); otherwise, Observation 13 applies. The second neighbour is then necessarily

ϕ(b).
Suppose we are in this situation, which is depicted in Fig. 10. We know that w is of

same colour than ϕ(b) and than some other degree 2 neighbour of v. Also, ϕ(a) is of

different colour than w and ϕ(b). By the strategy applied, ϕ(a) got a different colour

than its only neighbour not in ϕ(V△). Thus, we can choose for v the same colour has

ϕ(a). This forms no more than a monochromatic P3, and extends the 3-star 2-partition

to G.

Finally, in each situation, we proved that G was not a counterexample, reaching a

contradiction. This concludes the proof. ✷
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