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Abstract

A graph G is (dy, ..., d;)-colorable if the vertex set of G can be par-
titioned into subsets Vi,...,V; such that the graph G[V;] induced by
the vertices of V; has maximum degree at most d; for all 1 < i < [.
In this paper, we focus on complexity aspects of such colorings when
[ = 2,3. More precisely, we prove that, for any fixed integers k, j, g with
(k,j) # (0,0) and g > 3, either every planar graph with girth at least
g is (k,j)-colorable or it is NP-complete to determine whether a pla-
nar graph with girth at least g is (k, j)-colorable. Also, for every fixed
integer k, it is NP-complete to determine whether a planar graph that
is either (0,0, 0)-colorable or non-(k, k, 1)-colorable is (0, 0, 0)-colorable.
Additionally, we exhibit non-(3, 1)-colorable planar graphs with girth 5
and non-(2, 0)-colorable planar graphs with girth 7.

1 Introduction

A graph G is (dy,...,dy)-colorable if the vertex set of G can be partitioned
into subsets Vi, ...,V such that the graph G[V;] induced by the vertices of V;
has maximum degree at most d; for all 1 < ¢ < k. This notion generalizes
those of proper k-coloring (when d; = - -+ = dj, = 0) and d-improper k-coloring
(whendy =+ =d,=d > 1).

Planar graphs are known to be (0,0,0,0)-colorable (Appel and Haken
[1, 2]) and (2, 2, 2)-colorable (Cowen, Cowen, and Woodall [13]). The (2,2, 2)-
colorability is optimal (for any integer k, there exist non-(k, k, 1)-colorable
planar graphs) and holds in the choosability case (Eaton and Hull [15] or
Skrekovski [23]). Improper colorings have then been considered for planar
graphs with large girth or graphs with low maximum average degree. We
recall that the girth of a graph G, denoted by ¢(G), is the length of a short-
est cycle in G, and the maximum average degree of a graph G, denoted by
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mad(G), is the maximum of the average degrees of all subgraphs of G, i.e.
mad(G) = max {2|E(H)|/|V(H)|,H C G}.

(1, 0)-coloring.

Glebov and Zambalaeva [20] proved that every planar graph with girth at least
16 is (1, 0)-colorable. This was then strengthened by Borodin and Ivanova |[3|
who proved that every graph G with mad(G) < % is (1,0)-colorable. This
implies that every planar graph G with girth at least 14 is (1,0)-colorable.
Borodin and Kostochka [7] then proved that every graph G with mad(G) < 2
is (1,0)-colorable. In particular, it follows that every planar graph with girth
at least 12 is (1,0)-colorable. On the other hand, they constructed graphs G
with mad(G) arbitrarily close (from above) to 2 that are not (1,0)-colorable;
hence their upper bound on the maximum average degree is best possible.
The last result was strengthened for triangle-free graphs: Kim, Kostochka, and
Zhu |22] proved that triangle-free graphs G satisfying 11|V (G)|-9|E(G)| > —4
are (1,0)-colorable. This implies that planar graphs with girth at least 11 are
(1,0)-colorable. On the other hand, Esperet, Montassier, Ochem, and Pin-
lou [16] proved that determining whether a planar graph with girth 9 is (1, 0)-
colorable is NP-complete. To our knowledge, the question whether all planar
graphs with girth at least 10 are (1, 0)-colorable is still open.

(k,0)-coloring with k > 2.
Borodin, Ivanova, Montassier, Ochem, and Raspaud [4] proved that every
graph G with mad(G) < 3:—3 is (k,0)-colorable. The proof in [4] extends
the one in [3] but does not work for £ = 1. Moreover, they exhibited a non-
(k,0)-colorable planar graph with girth 6. Finally, Borodin and Kostochka [§|
proved that for k > 2, every graph G with mad(G) < ?’kk—:f is (k,0)-colorable.
This result is tight in terms of maximum average degree.

(k,1)-coloring.
Recently, Borodin, Kostochka, and Yancey [9] proved that every graph with
mad(G) < % is (1, 1)-colorable, and the restriction on mad(G) is sharp. In [5],
it is proven that every graph G with mad(G) < % is (k, 1)-colorable for
k> 2.

(k, 3)-coloring.
A first step was made by Havet and Sereni [21] who showed that, for every
k > 0, every graph G with mad(G) < % is (k, k)-colorable (in fact (k,k)-
choosable). More generally, they studied k-improper [-choosability and proved
that every graph G with mad(G) < I+ % (I > 2,k > 0) is k-improper [-
choosable; this implies that such graphs are (k,...,k)-colorable (where the
number of partite sets is [). Borodin, Ivanova, Montassier, and Raspaud [6]
gave some sufficient conditions of (k, j)-colorability depending on the density

of the graphs using linear programming. Finally, Borodin and Kostochka [§]
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solved the problem for a wide range of 7 and k: let j > 0 and k > 25 + 2;
every graph G with mad(G) < 2(2 — %) is (k, j)-colorable. This result
is tight in terms of the maximum average degree and improves some results

in [4, 5, 6].

Using the fact that every planar graph G with girth ¢(G) has mad(G) <
29(G)/(g(G) —2), the previous results give results for planar graphs. They are
summarized in Table 1, which also shows the recent results that planar graphs
with girth 5 are (5, 3)-colorable (Choi and Raspaud [12]) and (10, 1)-colorable
(Choi, Choi, Jeong, and Suh [11]).

girth (k,0) (k,1) (k,2) (k,3) (k,4)
3,4 X X X X X
5 X (10,1) [11] | (6,2) [8] | (5,3) [12] | (4,4) [21]
6 x 4] (4,1) [8] | (2,2) [21]
7 40)[8] | (1,1)]9]
8 (2,0) [8]
11 (1,0) |22]

Table 1: The girth and the (k, j)-colorability of planar graphs. The symbol
“x” means that there exist non-(k, j)-colorable planar graphs for every k.

From the previous discussion, the following questions are natural:
Question 1.
1. Are planar graphs with girth 10 (1,0)-colorable?

(
Are planar graphs with girth 7 (3,0)-colorable?

DR

(3,0)

Are planar graphs with girth 6 (1,1)-colorable?

Are planar graphs with girth 5 (4,1)-colorable?
(2,2)

5. Are planar graphs with girth 5 (2,2)-colorable?

(diy...,dg)-coloring.
Finally we would like to mention two studies. Chang, Havet, Montassier, and
Raspaud [10] gave some approximation results to Steinberg’s Conjecture using
(k, j,i)-colorings. Dorbec, Kaiser, Montassier, and Raspaud [14] studied the
particular case of (di, ..., d)-coloring where the value of each d; (1 < i < k)
is either 0 or some value d, making the link between (d,0)-coloring [8] and
(d,...,d)-coloring [21].

The aim of this paper is to provide complexity results on the subject and to

obtain non-colorable planar graphs showing that some above-mentioned results
are optimal.
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Claim 2. There exist 2-degenerate planar graphs that are:
1. non-(k, k)-colorable with girth 4, for every k > 0,
2. non-(3,1)-colorable with girth 5,
3. non-(k,0)-colorable with girth 6,

4. non-(2,0)-colorable with girth 7.

Claim 2.4 shows that the (2,0)-colorability of planar graphs with girth
at least 8 [8] is a tight result. Claim 2.3 has been obtained in [?| and the
corresponding graph is depicted in Figure 1.

2k+1 2k+1

2k+1 2k+1

Figure 1: A non-(k,0)-colorable planar graph with girth 6 [4].

Theorem 3. Let k, j, and g be fized integers such that (k,7) # (0,0) and
g = 3. Either every planar graph with girth at least g is (k, j)-colorable or it
1s NP-complete to determine whether a planar graph with girth at least g is
(k,j)-colorable.

Theorem 4. Let k be a fized integer. It is NP-complete to determine whether
a 3-degenerate planar graph that is either (0,0,0)-colorable or non-(k,k,1)-
colorable is (0,0,0)-colorable.

We construct a non-(k, k)-colorable planar graph with girth 4 in Section 2,
a non-(3, 1)-colorable planar graph with girth 5 in Section 3, and a non-(2, 0)-
colorable planar graph with girth 7 in Section 4. We prove Theorem 3 in
Section 5 and we prove Theorem 4 in Section 6.

Notation.
In the following, when we consider a (di,...,d)-coloring of a graph G, we
color the vertices of V; with color d; for 1 < i < k: for example in a (3,0)-
coloring, we will use color 3 to color the vertices of Vi inducing a subgraph
with maximum degree 3 and use color 0 to color the vertices of V5 inducing a
stable set. A vertex is said to be colored i’ if it is colored i and has j neighbors
colored 7, that is, it has degree j in the subgraph induced by its color. A vertex
is saturated if it is colored #‘, that is, if it has maximum degree in the subgraph
induced by its color. A cycle (resp. face) of length k is called a k-cycle (resp.
k-face). A k-vertex (resp. k™ -vertex, kt-vertex) is a vertex of degree k (resp.
at most k, at least k). The minimum degree of a graph G is denoted by 6(G).
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2 A non-(k, k)-colorable planar graph with girth 4

For every k > 0, we construct a non-(k, k)-colorable planar graph J; with
girth 4. Let H,, be a copy of Ks 9,11, as depicted in Figure 2. In any (k, k)-
coloring of H, ,, the vertices x and y must receive the same color. We obtain
Jy from a vertex u and a star S with center vy and k + 1 leaves vy, ..., U1
by linking u to every vertex v; with a copy H,,, of H,,. The graph J; is not
(k, k)-colorable: by the property of H,,, every vertex v; should get the same
color as u. This gives a monochromatic S, which is forbidden. Notice that J,
is a planar graph with girth 4 and is 2-degenerate.

2k +1
A PR
x y U @S === ==
~
~
T oo oo oom om om m m m oY J4
H,,

Figure 2: A non-(k, k)-colorable planar graph with girth 4.

3 A non-(3,1)-colorable planar graph with girth 5

We construct a non-(3, 1)-colorable planar graph J5 with girth 5. Consider the
graph H, , depicted in Figure 3. If  and y are colored 3 but have no neighbor
colored 3, then it is not possible to extend this partial coloring to H,,. Now,
we construct the graph S, as follows. Let z be a vertex and t;t2t3 be a path
on three vertices. Take 21 copies Hy, . of Hyy with 1 <i<7and1<j<3.
Identify every z; with z and identify every y; with ¢;. Finally, we obtain J;
from three copies S,,, S,,, and S, of S, by adding the edges 2122 and 2923
(Figure 3). Notice that J5 is planar with girth 5 and is 2-degenerate. Let us
show that J5 is not (3, 1)-colorable. In every (3,1)-coloring of J;, the path
212923 contains a vertex z colored 3. In the copy of S, corresponding to z,
the path ¢;t5t3 contains a vertex t colored 3. Since z (resp. t) has at most 3
neighbors colored 3, one of the seven copies of H,, between z and ¢, does not
contain a neighbor of z or ¢ colored 3. This copy of H,, is not (3, 1)-colorable,
and thus J5 is not (3, 1)-colorable.
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Figure 3: A non-(3, 1)-colorable planar graph with girth 5.

4 A non-(2,0)-colorable planar graph with girth 7

We construct of a non-(2, 0)-colorable planar graph J; with girth 7. Consider
the graphs T, , . and S in Figure 4. If the vertices z, y, and z of T}, . are
colored 2 and have no neighbor colored 2, then w is colored 22. Suppose that
the vertices a, b, c,d, e, f, g of S are respectively colored 2, 0, 2, 2, 2, 2, 0, and
that a has no neighbor colored 2. Using successively the property of T, , ., we
have that w;, ws, and ws must be colored 22. It follows that wy is colored 0, ws
is colored 2, and so wg is colored 22. Again, by the property of T}, , ., w7 must
be colored 22. Finally, wg must be colored 0 and there is no choice of color for
wg. Hence, such a coloring of the outer 7-cycle abcde fg cannot be extended.

The graph H, depicted on the left of Figure 5 is obtained as follows. We
link a vertex z to every vertex of a 7-cycle v ... v; with a path of three edges.
Then we embed the graph S in every 7-face F; (1 < ¢ < 7) incident to z by
identifying the outer 7-cycle of S with the 7-cycle of F; such that a is identified
to z. Finally, the graph J; depicted on the right of Figure 5 is obtained from
two adjacent vertices u and v and six copies H.,, ..., H,, of H, by identifying
21, 29, z3 with v and z4, 25, 26 with v. Notice that J; is planar with has girth 7.
Let us prove that J7 is not (2, 0)-colorable.

e We assume that w is colored 2 since v and v cannot be both colored 0.

e In one of the three copies of H, attached to u, say H.,, u has no neighbor
colored 2.

e Since a 7-cycle is not 2-colorable, the 7-cycle vy ...v; of H,, contains a
monochromatic edge colored 2, say v;vs.

e The coloring of the face F5 cannot be extended to the copy of S embedded
in FQ.
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Figure 5: The graphs H, and J7.

5 NP-completeness of (k, j)-colorings

Let g ; be the largest integer g such that there exists a planar graph with girth
g that is not (k, j)-colorable. Because of large odd cycles, g is not defined.
For (k,7) # (0,0), we have 4 < g ; < 10 by the example in Figure 2 and the
result that planar graphs with girth at least 11 are (0, 1)-colorable [22]. We
prove this equivalent form of Theorem 3:
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Theorem 5. Let k and j be fized integers such that (k,j) # (0,0). It is NP-
complete to determine whether a planar graph with girth gy ; is (k, j)-colorable.

Let us define the partial order <. Let n3(G) be the number of 3*-vertices
in G. For any two graphs (G; and G5, we have G; < Gy if and only if at least
one of the following conditions holds:

° |V(G1)| < |V(G2)| and ng(Gl) < 7’L3(G2).
o n3<G1) < ng(G2>.

Note that the partial order < is well-defined and is a partial linear extension
of the subgraph poset. The following lemma is useful.

Lemma 6. Let k and j be fized integers such that (k,j) # (0,0). There
exists a planar graph Gy with girth g ;, minimally non-(k,j)-colorable for
the subgraph order, such that 6(Gy, ;) = 2.

Proof. We have §(Gy, ;) > 2, since a non-(k, j)-colorable graph that is minimal
for the subgraph order does not contain a 17 -vertex. Supppose that for some
pair (k,7), we construct a 2-degenerate non-(k, j)-colorable planar graph with
girth gi ;. Then this graph contains a (not necessarily proper) minimally non-
(k, j)-colorable subgraph with minimum degree 2. Thus, we can prove the
lemma for the following pairs (k, j) by using Claim 2.

e Pairs (k, j) such that g ; < 4: We actually have g ; = 4 by Claim 2.1.

e Pairs (k, j) such that g5 ; > 6: Indeed, a planar graph with girth at least
6 is 2-degenerate. In particular, Claim 2.3 shows that gzo > 6, so the
lemma is proved for all pairs (k,0).

e Pairs (k,1) such that 1 < k < 3: If gy ; > 6, then we are in a previous
case. Otherwise, we have g, ; = 5 by Claim 2.2.

The remaining pairs satisfy gx; = 5. There are two types of remaining
pairs (k, j):

e Typel: k>4 and j =1.
e Type 2: 2< 5 < k.

Consider a planar graph G with girth 5 that is non-(k, j)-colorable and is
minimal for the order <. Suppose for contradiction that G does not contain
a 2-vertex. Also, suppose that GG contains a 3-vertex a adjacent to three 47 -
vertices a1, as, and az. For colorings of type 1, we can extend to G a coloring
of G\ {a} by assigning to a the color of improperty at least 4. For colorings
of type 2, we consider the graph G’ obtained from G \ {a} by adding three
2-vertices by, by, and b3 adjacent to, respectively, as and a3, a; and agz, a; and
ao. Notice that G’ < G, so G’ admits a coloring ¢ of type 2. We can extend to
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G the coloring of G\ {a} induced by c as follows. If ay, ag, and az have the
same color, then we assign to a the other color. Otherwise, we assign to a the
color that appears at least twice among the colors of by, by, and bs. Now, since
G does not contain a 2-vertex nor a 3-vertex adjacent to three 4™ -vertices, we
have mad(G) > %. This can be seen using the discharging procedure such
that the initial charge of each vertex is its degree and every 5" -vertex gives %
to each adjacent 3-vertex. The final charge of a 3-vertex is at least 3 + % = %,
the final charge of a 4-vertex is 4 > 1—??, and the final charge of a k-vertex with
k > 5 1is at least k& — k x % = % > %. Now, mad(G) > 13—0 contradicts the
fact that G is a planar graph with girth 5, and this contradiction shows that
G contains a 2-vertex. O

We are ready to prove Theorem 5. The case of (1,0)-coloring is proved in a
stronger form which takes into account restrictions on both the girth and the
maximum degree of the input planar graph [16].

Proof of the case (k,0), k > 2.
We consider a graph Gy as described in Lemma 6, which contains a path
uzv where x is a 2-vertex. By minimality, any (k,0)-coloring of Gy \ {z} is
such that u and v get distinct saturated colors. Let G be the graph obtained
from Gy \ {z} by adding three 2-vertices x1, z2, and x3 to create the path
uz1T2w3v. So any (k,0)-coloring of G is such that x is colored k'. To prove the
NP-completeness, we reduce the (k,0)-coloring problem to the (1,0)-coloring
problem. Let I be a planar graph with girth g; o. For every vertex s of I, add
(k — 1) copies of G such that the vertex xs of each copy is adjacent to s, to
obtain the graph I'. By construction, I’ is (k,0)-colorable if and only if I is
(1,0)-colorable. Moreover, I’ is planar, and since gio < g1, the girth of I’ is

9k,0-

Proof of the case (1,1).
By Claim 2.2 and [9], g1 is either 5 or 6. There exist two independent
proofs [17, 19] that (1, 1)-coloring is NP-complete for triangle-free planar graphs
with maximum degree 4. We use a reduction from that problem to prove that
(1, 1)-coloring is NP-complete for planar graphs with girth g, ;. We consider
a graph G as described in Lemma 6, which contains a path uzv where x is
a 2-vertex. By minimality, any (1, 1)-coloring of G;; \ {z} is such that u and
v get distinct saturated colors. Let G be the graph obtained from Gy \ {z}
by adding a vertex u' adjacent to u and a vertex v’ adjacent to v. So any
(1,1)-coloring of G is such that ' and v" get distinct colors and u’ (resp. v’)
has a color distinct from the color of its (unique) neighbor. We construct the
graph £, ; from two vertices a and b and two copies of G such that a is adjacent
to the vertices u' of both copies of G and b is adjacent to the vertices v’ of
both copies of G. There exists a (1, 1)-coloring of E,; such that a and b have
distinct colors and neither a nor b is saturated. There exists a (1, 1)-coloring of
E,; such that a and b have the same color. Moreover, in every (1, 1)-coloring
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of E,; such that a and b have the same color, both a and b are saturated.

The reduction is as follows. Let I be a planar graph. For every edge (p, q)
of I, replace (p,q) by a copy of E,, such that a is identified with p and b is
identified with ¢, to obtain the graph I’. By the properties of E,, I is (1,1)-
colorable if and only if I’ is (1, 1)-colorable. Moreover, I’ is planar with girth
d1,1-

Proof of the case (k, j).

We consider a graph Gj; as described in Lemma 6, which contains a path
uzrv where x is a 2-vertex. By minimality, any (k, j)-coloring of Gy ; \ {z} is
such that u and v get distinct saturated colors. Let G be the graph obtained
from Gy ; \ {z} by adding a vertex u’ adjacent to u and a vertex v" adjacent
to v. So any (k, j)-coloring of G is such that u' and v’ get distinct colors and
u (resp. v') has a color distinct from the color of its (unique) neighbor. Let
t = min(k — 1, 7). To prove the NP-completeness, we reduce the (k, j)-coloring
to the (k—t, j—t)-coloring. Thus the case (k, k) reduces to the case (1, 1) which
is NP-complete, and the case (k,7) with j < k reduces to the case (k — 7,0)
which is NP-complete. The reduction is as follows. Let I be a planar graph
with girth gy ;. For every vertex s of I, add t copies of G such that the
vertices v’ and v’ of each copy is adjacent to s, to obtain the graph I’. By
construction, I is (k — t,j — t)-colorable if and only if I’ is (k, j)-colorable.
Moreover, I" is planar, and since gy j < gr—¢,j—¢, the girth of I" is gy ;.

6 NP-completeness of (k, j,)-colorings

In this section, we prove Theorem 4 using a reduction from 3-colorability, i.e.
(0,0, 0)-colorability, which is NP-complete for planar graphs [18|.

Let E be the graph depicted in Fig 6. The graph E’ is obtained from 2k —1
copies of E by identifying the edge ab of all copies. Take 4 copies F/, Ej, Ef,
and F) of E' and consider a triangle 7" formed by the vertices vy, o, 1 in one
copy of F in E]. The graph E” is obtained by identifying the edge yozo (resp.
Yor1, Tox1) of T with the edge ab of El (resp. Ei, Ej). The edge ab of Ef is
then said to be the edge ab of E”.

Lemma 7.
1. E" admits a (0,0,0)-coloring.

2. E' does not admit a (k,k, 1)-coloring such that a and b have a same color
of improperty k.

3. E" does not admit a (k,k,1)-coloring such that a and b have the same
color.

Proof.
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a b

Figure 6: The graph E. We take t = 0 if k is odd and ¢t = 1 if k is even, so
that 3k + 3 +t is even.

1. The following (0,0, 0)-coloring ¢ of E is unique up to permutation of
colors: c(a) = c¢(x;) = 1 for even i, ¢(b) = c(y;) = 2 for even i, and
c(x;) = c(y;) = 3 for odd i. This coloring can be extended into a (0, 0, 0)-
coloring of £’ and E”.

2. Let kq, k2, and 1 denote the colors in a potential (k, k, 1)-coloring ¢ of
E’ such that c(a) = ¢(b) = k;. By the pigeon-hole principle, one of the
2k —1 copies of E in E’, say E*, is such that a and b are the only vertices
with color k1. So, one of the vertices xg, yg, and x3i3.¢ in E* must
get color ko since they cannot all get color 1. We thus have a vertex
v1 € {a,b} colored k; and vertex vy € {zo, Yo, T3kr3+¢} colored ks in
E* which both dominate a path on at least 3k + 3 vertices. This path
contains no vertex colored k; since it is in £*. Moreover, it contains at
most k vertices colored ks. On the other hand, every set of 3 consecutive
vertices in this path contains at least one vertex colored ks, so it contains
at least %TH = k + 1 vertices colored ks. This contradiction shows that
E’ does not admit a (k, k, 1)-coloring such that a and b have a same color
of improperty k.

3. By the previous item and by construction of E”, if E” admits a (k, k, 1)-
coloring ¢ such that c¢(a) = ¢(b), then c¢(a) = ¢(b) = 1. We thus have
that {c(yo), c(xo),c(x1)} C {k1, k2}. This implies that at least one edge
of the triangle 7" is monochromatic with a color of improperty k. By
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the previous item, the coloring ¢ cannot be extended to the copy of E’
attached to that monochromatic edge. This shows that E” does not
admit a (k, k, 1)-coloring such that a and b have the same color.

]

For every fixed integer k, we give a polynomial construction that transforms
every planar graph G into a planar graph G’ such that G’ is (0,0, 0)-colorable
if G is (0,0, 0)-colorable and G” is not (k, k, 1)-colorable otherwise. The graph
G’ is obtained from G by identifying every edge of G with the edge ab of a
copy of E”. If G is (0,0, 0)-colorable, then this coloring can be extended into a
(0,0, 0)-coloring of G’ by Lemma 7.1. If G is not (0,0, 0)-colorable, then every
(k, k,1)-coloring G contains a monochromatic edge uv, and then the copy of
E" corresponding to uv (and thus G’) does not admit a (k, k, 1)-coloring by
Lemma 7.3. The instance graph G in the proof that (0,0, 0)-coloring is NP-
complete [18] is 3-degenerate. Then by construction, G’ is also 3-degenerate.
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