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Abstract

A proper vertex coloring of a grapi = (V, E) is acyclic if G contains no bicolored cycle.
A graph@ is L-list colorable if for a given list assignmeiit = {L(v) : v € V}, there exists
a proper coloring: of G such thate(v) € L(v) forall v € V. If G is L-list colorable for every
list assignment witHL(v)| > k for all v € V, thenG is saidk-choosable. A graph is said to
be acyclicallyk-choosable if the obtained coloring is acyclic. In this papee study the links
between acyclid-choosability of G and M ad(G) defined as the maximum average degree of
the subgraphs aff and give some observations about the relationship betwaeati@coloring,
choosability and acyclic choosability.

1 Introduction

Let G be a graph. LeV(G) be its set of vertices an8(G) be its set of edges. A proper vertex
coloring of G is an assignmenf of integers (or labels) to the vertices@fsuch thatf (u) # f(v) if
the vertices, andv are adjacentid:. A k-coloringis a proper vertex coloring usirigcolors. A pro-
per vertex coloring of a graph &yclicif there is no bicolored cycle. Thacyclic chromatic number
of G, x. (@), is the smallest integér such that7 is acyclicallyk-colorable. Acyclic colorings were
introduced by Griinbaum in [Grii73] and studied by MitchemtjiM], Albertson, Berman [AB77],
and Kostochka [Kos76]. In 1979, Borodin proved Griinbauroisjecture :

Theorem 1 [Bor79] Every planar graph is acyclically 5-colorable.

This bound is best possible : In 1973, Griinbaum gave an exaai@ 4-regular planar graph
[Gru73]which is not acyclically colorable with four colofdoreover, there exist bipartite 2-degenerate
planar graphs which are not acyclically 4-colorable [KM{&3e Figure 1).

FIG. 1 — Grinbaum’s example and Kostochka-Mel'nikov’s example
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Borodin, Kostochka and Woodall improved this bound for plagraphs with a given girth. We
recall that the girth of a graph is the length of its shortgste:

Theorem 2 [BKW99]
1. Every planar graph with girth at least 7 is acyclically 8lorable.
2. Every planar graph with girth at least 5 is acyclically étorable.

A graphG is L-list colorable if for a given list assignmeit= {L(v) : v € V(G)} there exists
a coloringc of the vertices such thai{v) € L(v) andc(v) # c(u) if v andv are adjacent iz
If G is L-list colorable for every list assignment with(v)| > & for all v € V(G), thenG is said
k-choosable. In [Tho94], Thomassen proved that every plgwrzgnh is 5-choosable and Voigt proved
that there are planar graphs which are not 4-choosable 3}/0i® the following, we are interested
in the acyclic choosability of graphs. In [BFDFK2], the following theorem is proved and the next
conjecture is given ;

Theorem 3 [BFDFK*02] Every planar graph is acyclically 7-choosable.
This means that for any given list assignménsuch thatvv € V,|L(v)| > 7, we can choose

for each vertex a color in L(v) such that the obtained coloring 6f is acyclic. Theacyclic list
chromatic numbeof G, !, (G), is the smallest integér such thatG is acyclicallyk-choosable.

Conjecture 1 [BFDFK'02] Every planar graph is acyclically 5-choosable.
Conjecture 1 is very strong, since it implies the celebragsdlt of Borodin (Theorem 1), and we
know that its proof is tough.

A first observation can be made concerning outerplanar graph

Proposition 1 Every outerplanar graph is acyclically 3-choosable.

Since outerplanar graphs are partial 2-trees, Propoditfoows from the following easy result :
Proposition 2 Everyk-tree is acyclically(k + 1)-choosable.

We can consider Proposition 2 as a counterpart for acyclhoshbility of the following well-
known fact :
Proposition 3 Everyk-degenerate graph i€ + 1)-choosable.

Now, we will prove that some sparse graphs verify the prgpErConjecture 1. For this, we recall
a graph invariant : the maximum average degree.
Definition 1 LetG be a graph, the maximum average degreé&ptlenoted by ad(G) is :

Mad(G) = max{2|E(H)|/|V (H)|,H S G}

Notice that the maximum average degree of a graph can be ¢ethimpolynomial time by using
the Matroid Partitioning Algorithm due to Edmonds [Edm689%].

Our main result is the following :

Theorem 4
1. Every graphG with Mad(G) < § is acyclically 3-choosable.
2. Every graphG with Mad(G) < 22 is acyclically 4-choosable.
3. Every graphG with Mad(G) < # is acyclically 5-choosable.



We can apply these results to planar graphs by using thenfioigpwell known observation based
on the Euler’s formula :

29
g—2"

Observation 1 If G is a planar graph with girtty, thenM ad(G) <

Corollary 1
1. Every planar graph with girth at least 8 is acyclically Baosable.
2. Every planar graph with girth at least 6 is acyclically 4ansable.
3. Every planar graph with girth at least 5 is acyclically hansable.

In the following, we prove Theorem 4.1 in section 3, Theoreghid section 4 and Theorem 4.3
in section 5. In section 6, we give some hints for new direxgtiof research and section 7 provides
some observations about the relationship betwggn; andy’.

2 Proof technique

In what follows, we call respectiveli-vertex,” k-vertex and=k-vertex a vertex of degrek,
> k, < k. We denote by:(x) the color assigned to the vertexA d(k)-vertex is ad-vertex adjacent
to at leastk 2-vertices. The proof of Theorem 4 is based on the methaddfcible configurations
and on thedischarging methodas used in [BKN'99]. To obtain a result of the form “every graph
with Mad(G) < q is acyclicallyn-choosable”, we proceed as follows : We consider a gidghat
is not acyclicallyn-choosable and is minimal for the subgraph partial ordes iifeans that for every
proper subgraplil’ of H, x.,(H') < n. First, we provide a sef of configurations thaf{ cannot
contain due to its minimality property. To show that a confegionC' € S is forbidden, we suppose
that i/ containsC' and we consideH together with a list assignmentwitnessing thag’, (H) > n.
We then argue that an acyclic coloriagchosen fromL) of some proper subgraph éf can be
extended in a acyclic coloring (chosen frdiof the whole grapt, which is a contradiction. Now,
we have to prove that any graph avoidingS satisfiesM ad(K) > ¢q. We assume that every vertex
v is assigned an initial charge equal to its degt@e and define a suitabléischarging procedure
that preserves the total charge. We show that if the disahg@mrocedure is applied to a gragh
avoiding$, then the final chargé* (v) of every vertexs € V(K) satisfiesi*(v) > ¢. We thus have

" 2|E(K)| 2 vev(x) V) B 2wevi) (V) qlV(K) _
MedB) 2 i) = vy~ @ S vm)

In all the figures depicting forbidden configurations, adl tieighbors of “white” vertices are drawn,
whereas “black” vertices may have other neighbors in thelgrawo or more black vertices may
coincide in a single vertex, provided they do not share a comwhite neighbor.

3 Proof of Theorem 4.1

We prove now that every gragh with Mad(G) < 8/3 is acyclically 3-choosable.

3.1 Forbidden configurations

Lemma 1 Letn > 3 and letH be a minimal graph such that, (H) > n. ThenH does not contain
1. ad-vertex adjacent to a clique of sizg0 < d <n — 1),

ad(d)-vertex(2 < d < n? - 1),

ad(d—1)-vertex(2 < d < (n —1)?),

ad(2)-vertex(2 < d < n),

ad(l)-vertex(2 <d<n-1).

akrown
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FIG. 2—(i) : A d(d)-vertex. (ii): A d(d — 1)-vertex. (iii): A d(2)-vertex.

Proof

1. Trivial.

2. Suppose thall contains al(d)-vertexw adjacent tal 2-verticesvy, . .. , vq. Each vertex;
is adjacent taw and to another vertex;, 1 < i < d (see Figure 2(i)). The verticas are
not necessarily distinct. Letbe a coloring ofH \ {w,v1,...,v4}. Sinced < n? — 1 and
|L(w)| = n, the pigeonhole principle ensures that sogime L(w) is used at most — 1 times
to color theu;. We setc(w) = j. If ¢(u;) # j, we can choose(v;) in L(v;) \ {c(u;), 7} since
|L(v;)| = n > 3. The number of;; such that(u,;) = j is at most: — 1, so we can give these
v; distinct colors different frony.

3. Suppose thall contains al(d — 1)-vertexw adjacenttdd — 1) 2-verticesuy, . .., v4—1 and to
another vertex. Each vertex; is adjacent tav and to another vertex;, 1 <i < d — 1 (see
Figure 2(ii)). Letc be a coloring o/ \ {w, v1, . . ., v4—1 }. Note that we havil(w)\ {c(z)}| >
n—1landd —1 < (n—1)? — 1. We sete(w) = j wherej € L(w) \ {c(2)} is used at most
n — 2 times to color theu;. If c(u;) # j, we can choose(v;) in L(v;) \ {c(u;),j} since
L(v;) = n > 3. The number ob; such that(u;) = j is at mostn — 2, so we can give these
v; distinct colors different from ande(z).

4. Suppose that! contains al(2)-vertexw adjacentto:, . .., z4_2, and to two 2-vertices; , vo
that are adjacent respectively 49, uo (see Figure 2(iii)). We assume > 4 since the case
n = 3 isimplied by Lemma 1.3. Let be a coloring off \ {w, vy, v2}.

4.1 Ifthec(z;) are pairwise distinct, we chooséw) € L(w) \ {¢(z1), ..., c(za—2), c(u1)}
andc(vy) € L(vy) \ {c(w),c(ur)}. If c(w) = ¢(uz), we choose:(ve) € L(vg) \
{c(#1),...,¢c(z4—2), c(w)} ; otherwise we choosgvs) € L(vs) \ {c(w), c(uz)}.

4.2 If the ¢(2;) are not pairwise distinct, we consider a colorin@f H \ {v,v2} and
assume w.l.o.g. thad(z1) = c¢(22). If ¢(w) = ¢(uy), we choose:(vy) € L(vy) \
{c(#2),...,¢(z4—2), c(w)}, otherwise we choose(v1) € L(v1) \ {c(u1),c(w)}. If
c(w) = c(usz), we choose(ve) € L(vs) \ {c(22), ..., c(za—2), c(v1), c(w)}, otherwise
we choose(vs) € L(vg) \ {c(uz), c(w)}.

5. The proof is similar (and simpler) to that of Lemma 1.4.

It follows that the minimum degree df is at least 2 and that no 2-vertex is in a triangle.

3.2 Discharging procedure

We use the following discharging rule : Each vertex gi\gem each of its 2-neighbors. Let us
check that for every € V(H), d*(v) > & :
— If d(v) = 2, thend*(v) = 2 + 23 = 3, sincev has no 2-neighbor by Lemma 1.3 and
receivest from each neighbor.
— If d(v) = 3, thend*(v) > 3 — + = &, sincev has at most one 2-neighbor by Lemma 1.3, so
it gives at most.
- Ifd(v) = k > 4, thend*(v) > k — k3 = 2 > & because gives at most times 3.



4 Proof of Theorem 4.2

We prove now that every gragh with M ad(G) < 19/6 is acyclically 4-choosable.

4.1 Forbidden configurations

Lemma 2 Letn > 4 and letH be a minimal graph such that, (H) > n. ThenH does not contain
1. a 5(3)-vertex adjacent to a 3-vertex,
2. a 3-vertex adjacent to two 3-vertices.

Proof
U1 /
U1 21 A1
U2 w 24
U2
U3 Z2
u3

Fic. 3 — A 5(3)-vertex adjacent to a 3-vertex.

1. Suppose thall contains a 5(3)-vertex adjacent to three 2-vertices, vo, v3 (each adjacent
to another vertex;), a 3-vertexz; (adjacent to:; andz{’) and another vertex, (see Figure
3). Letc be a coloring ofH \ {v1}. If ¢(u1) # c¢(w), we give a proper color to;. Now, we
assume that(uq) = c(w) =1:

1.1 Ife(z1) # ¢(22), we erase the colors of, v3 and we modify the color ofv : In L(w) \
{c(z1),¢(22)}, there is a color which appears on at most oneQfus, u3 ; we choose
this color forw. Then, we give a color different from(z1 ), c(z2), c(w) to the vertex;

(if it exists) whose neighbors have the same cot¢w() and we give a proper color to
the other,.

1.2 Ife(z1) = ¢(22) and w.l.o.g.¢(z1) = 2. Observe thak(v;) contains 1 and 2 ; otherwise,
we can colomw, with a color different from 1,2 and(vs ), c(vs). We assume w.l.0.g. that
L(v1) = {1,2,3,4}. If we cannot colow, this implies that(u;) = c(uz) = c(uz) = 1,
c(vg) =3, ¢(vg) =4 andc(z1) = 2.

1.2.1 Ife(zy) # e(2Y), we modify the colors of;, w and give proper colors toy, va, vs :
c(z1) € L(z1) \ {c(21), e(21), 2}, e(w) € L(w) \ {c(21), e(22), 1}

1.2.2 Ife(z)) = e(2)), we modify the color ofw with a color different from 1, 2¢(z/)
and give proper colors toy, vs, v3.

us z
Uy U2
U3
U1 w (%)
/ /
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FiG. 4 — A 3-vertex having two 3-neighbors.

2. First suppose thdi contains a 3-vertex adjacent to two adjacent 3-verticesKagure 4, left).
Let ¢ be a coloring off \ {v1,v2,v3}. We can choose(vy) in L(vy) \ {c(u1), c(u2), c(us)},
c(va) in L(vg) \ {c(v1), c(ua), c(us)}, and there(vs) in L(vs) \ {c(v1), c(v2), e(us)}. Now
suppose thall contains a 3-vertew adjacent to two 3-vertices, v, (each adjacentto,, v
andus, u}) and to another vertex (see Figure 4, right). Let be a coloring ofHf \ {w}. We
have to consider the following cases :



2.1 ¢(v1), c(v2) andc(z) are pairwise distinct. We colar with a proper color.

2.2 c(v1) = c(va) # c(2). W.l.o.g., suppose thatv,) = c¢(v2) = 2 ande(z) = 1. Observe
that L(w) contains 1 and 2; otherwise, we colerwith a color different from 1 or 2
and different frome(uq ), c(u}). Assume that(w) = {1,2,3,4}. If we cannot color
w, this implies that{c(u1), c(u))} = {c(uz),c(ub)} = {3,4}. As well, observe that
L(v1) = L(ve) = {1,2,3,4}; otherwise, we modify the color af; (orvs) with a color
different from 1,2,3,4 to get case 2.1. Hence, we recojoand v, with 1 and colorw
with 2.

2.3 c(v1) = c(2) # c(ve). W.Lo.g., suppose thai{v,) = ¢(z) = 1 ande(ve) = 2. With
the same argument as above, we can assumelthet = {1,2,3,4} and L(v;) =
{1,2,3,4}. We recolor; with 2 to get case 2.2.

2.4 ¢(v1) = ¢(v2) = ¢(z). Observe that(u;) = c¢(u}) ; otherwise, we modify the color of
v1 to get a previous case. We hayes) = ¢(u}) for the same reason and we can choose
c(w) € L(w) \ {c(ur), c(uz), ¢(2)}.

0O

4.2 Discharging procedure

We use the following discharging rule : Eagh-vertex givesys to each of its 2-neighbors arﬁ
to each of its 3-neighbors. Let us check that for every V (H ) d*( ) > 19 :

— If d(v) = 2, thenv has two=4-neighbors by Lemma 1.5, st (v) = 2+ 2L =1

— Ifd(v) =3, thenv has at least twg 4-neighbors by Lemma 1.5 and Lemma 2.2486v) >
3+245 =14,

—If d(v)12_ 4, ‘theno has at most one 2- -neighbor by Lemma 1.4¢8@) > 4— L — 3% = &2,

— If d(v) = 5, thenv has at most three 2-neighbors by Lemma 1.3 i§ a5( ) -vertex, then
it has no 3- neighbor by Lemma 2.1, 86(v) = 5 — 35 = 1 > 12 Otherwised* (v) >
5-2L-35=8>21

- Ifd(v ) =k, 6 < k < 7, thenv has at mos(k — 2) 2-neighbors by Lemma 1.3, st(v) >
k—(k—2)5—25=%+1>1>2%

- Ifd(v):kz&thend*( ) >k — k7 :5—22%>%.

5 Proof of Theorem 4.3

We prove now that every grapgh with Mad(G) < 24/7 is acyclically 5-choosable. A vertex is
saidweakif it is either a 3-vertex or a 6(4)-vertex.

5.1 Forbidden configurations

Lemma 3 Letn > 5 and letH be a minimal graph such that, (H) > n. ThenH does not contain
1. ad(d — 2)-vertex adjacent to a weak vertex, with< d < 10,
2. a 6(3)-vertex adjacent to three weak vertices,
3. a 6(4)-vertex adjacent to a4-vertex,
4. a 4-vertex adjacent to three 3-vertices.

Proof

1. Suppose thall contains al(d — 2)-vertexw adjacent tdd — 2) 2-verticesv;, 1 <i < d —2
(each adjacent to another vertey, a 3-vertex: (adjacent to two other vertices, z;) and a
vertexy, with 3 < d < 10 (see Figure 5).

Let ¢ be a coloring ofA \ {v;,1 <1i <d— 2}.
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FIG. 5—Ad(d — 2)-vertex adjacent to a weak vertex.

— ¢(2) # ¢(y). We recolorw with a color, different from(z), ¢(y), which appears on at most
two of theu;, 1 <14 < d—2.1f ¢(u;) # c¢(w), we colorv; with a proper color. At most two of
thew; (sayus, us) satisfyc(u;) = ¢(w). We can choose(v1) € L(v1) \ {c(w), c(y), c(2)}
ande(vz) € L(v2) \ {c(w), ¢(y), (=), c(vn)}.

— ¢(z) = c¢(y). Observe that(z1) = c(z2) ; otherwise, we replace the color ofwith a color
different frome(z1), ¢(22), ¢(y), ¢(w) and we are in the previous case. Now, we recalor
with a color, different frome(z), ¢(z1), which appears on at most two of thg 1 < i <
d — 2. As above, itis easy thentocoloy, 1 < i < d — 2.

Now, we consider the case where th{@ — 2)-vertexw is adjacent to a 6(4)-vertexadjacent
to four 2-vertices;, 1 < j < 4 and another vertex (see Figure 5). Observe that # u; for
all 4, j since there is no 2(1)-vertex by Lemma 1.3. kéte a coloring ofHf \ {z1}.

— c(w) # c(s). We erase the colors of the verticeses, x3, 4. We recolorz with a color,
different frome(s), c(w), which appears on at most onexdf 1 < i < 4. Then, we give a
proper color tax; for each index such thaie(z}) # ¢(z) and give a color different from
c(2), c(w), c(s) to the vertexr; such that(z) = c(z}).

— c(w) = ¢(s). If e(x}) # ¢(z), we colorz properly, which suffices. I§(z) # c(x) for some
i, we colorz; avoidingc(w), ¢(z), and alle(x;) for j # 4, j > 1, which suffices.

Thus we may assume thatr)) = c(zh) = c(z}) = ¢(z}y) = ¢(z) = 1 ande(s) = c(w) = 2.

Now, we erase the colors of the vertices(l < i < 4),v; (1 < j < d—2), wandz. We

recolorw with a color different frome(y) and 2, which appears on at most two of the So,

¢(s) # c¢(w) and we recolor with a color different from 1,2¢(w), ¢(y), then we color each

x; with a proper color. Finally, we recolor the as in the case(z) # c(y).

. Suppose thall contains a 6(3)-vertex adjacent to three 2-vertices, v2, vs (each adjacent
to another vertex;) and three weak vertices, 22, 3. Letc be a coloring of \ {v1, va, vs}.

!
z
zZ1 1
'Ul Z//
U7 }
(%) w z9 )
Uo @ S
Uu v :
3 /
z
z3 3
2y

FIG. 6 — A 6(3)-vertexw adjacent to three 3-vertices.

First, observe that if(z1), c(z2), c(z3) are all different, we can colar, v2, vs : We recolor
w with a color different frome(z1), ¢(22), ¢(z3), which appears on at most onewf, us, us.
Then, we give a proper color g for each index for whichc(u;) # ¢(w) and a color different
from c(w), ¢(21), ¢(22), ¢(z3) otherwise.

Second, observe thatdfz1) = ¢(z2) = ¢(z3), we can colow, ve, vs : If c(u;) # c(w), we
give a proper color t@;. In the worst case, we havg¢u,) = c(u2) = c¢(us) = ¢(w) and we
colorvy with ¢(v1) € L(v1) \ {c(w), c(z1)}, vo with ¢(ve) € L(ve) \ {c(w), ¢(21), ¢(v1)} and



v With ¢(v3) € L(vs) \ {c(w), ¢(21), c(v1), c(va) }.

Consider now the case where twoaf 25, z3 have the same color. W.l.0.g., we assume that
c(w) =1,¢(z1) = ¢(22) = 2,¢(z3) = 3.

Third, observe that it:(u1) # 1, we can colorvy,vs,v3 : We colorv; andwy such that
c(v1) € L(v1)\ {1, c(u1)} ande(ve) € L(v2)\{1,2,3,c(usz)}. Thenife(us) = 1, we choose
c(vs)in L(vs) \ {1, 2,3, c(ve)} and otherwise we choogévs) in L(vs) \ {1, c(u3)}.

So, suppose now thatu;) = c(u2) = c(us) = c¢(w) = 1,¢(z1) = ¢(22) = 2,¢(z3) = 3.
The idea is to consider the neighborhood of the two verti€es.a», z3 which have the same
color (z1, 22 in our case) and modify if necessary the color of one of thesevertices to get
a previous case.

By permuting indices, we have only two cases to study :

2.1 2, is a 6(4)-vertex. The 6(4)-vertex is adjacent tav, to four 2-vertices; (each adja-
cent to another vertex,) and another vertex Observe that since there is no 2(1)-vertex
by Lemma 1.3x; # u; for all 4,j. We erase the colors ab, 21, 21, 22, x3, z4. We
recolorz; with a color, different from 2, 3¢(s), which appears on at most two of,

1 < ¢ < 4. We recolor noww with a color different from 1, 2, 3;(z;) and give proper
colors tovy, va, v3. Finally, we color ther;, 1 <1 < 4: For two or fewer vertices whose
neighbors have the same color, we give distinct colorsmiffefrome(s), ¢(z1) and give
proper colors to the other vertices.

2.2 z; andz, are 3-vertices. The vertex is adjacent tav and two other vertices;, z{ and
the vertexz, is adjacent tav and two other vertices), z (see Figure 6). It may be that
zi, 2;, 2y, are not distinct, but it will not matter. (z7) # c(z{') we can recolor; and
w suchthat(z1) € L(z1) \ {2,3,¢(2]), e(z])} ande(w) € L(w) \ {1,2,3,¢(z1)}, and
then give proper colors to thg, 1 < i < 3. Thusc(z]) = ¢(z{) and, for the same
reasong(z}) = c(z4). Now we can recolot with a color different from 1, 2, 3;(z})
and we give proper colorsto thg, 1 < i < 3.

3. Suppose thali contains a 6-vertew adjacent to four 2-vertices , v, vs, v4 (€ach adjacent
to another vertex;), a<4-vertex- and another vertex(see Figure 7). Notice thatdf(z) < 4
then the configuration is forbidden by Lemma 2.1 and LemmaSoZuppose is a 4-vertex
adjacent to, 20, 23 (see Figure 7).

(%1
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FIG. 7 — A 6(4)-vertex adjacent to a 4-vertex

Let ¢ be a coloring ofH \ {v1,v2,v3,v4}. If ¢(y) # ¢(z), we recolorw with a color from
L(w) \ {c(2),c(y)} that appears on at most ong, then properly color each; avoiding
c(uy), e(w), ¢(z), ande(y). Suppose that(y) = ¢(z). If ¢(u;) # c(w), we properly colow;

and then may ignore it, so the worst case(is;) = c(uz) = c¢(us) = c¢(us) = c(w). Assume
thatc(uq) = 1 ande(z) = 2. Consider the following three cases :

3.1 If¢(z1) # e(z2) # c(z3) # ¢(21), we modify the color ofz, then we recolotw with a
color different from 1¢(z), ¢(y), then we colow; (: = 1, ..., 4) with proper colors.

3.2 Ife(z1) = ¢(22) # ¢(z3), we recolorw such that(w) € L(w)\ {1,2,¢(z1),¢(z3)} and
give proper colors t@;.

3.3 Ife(z1) = ¢(z2) = ¢(z3), we modify the color ofw. We colorw with ¢(w) € L(w) \
{1,2,¢(z1)} and give proper colors to;.



4. Suppose thall contains a 4-vertew adjacent to three 3-vertices, x2, z3 (each adjacent to

x;, z;') and to another vertex (see Figure 8). Although;, z’;, zj, may not all be distinct, it

Uiy g

will not matter.
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FiG. 8 — A 4-vertex adjacent to three 3-vertices

Let ¢ be a coloring off \ {w}. We consider the following cases :
4.1 If (1), c(x2), c(x3), c(z) are all different, then we colar with a proper color.

4.2 Suppose that two neighborswfhave the same color, and no color is shared by three
neighbors ofw.

4.2.1 Suppose thatx;) = c(z2) # c(x3). W.l.o.g. we assume thatz;) = 1.

4.2.1.1 Ife(xzs) # c(z) andce(zs) # 1,¢(z) # 1, we assume that(z3) = 2 and
¢(z) = 3. NecessarilyL(w) containsl, 2, 3 ; otherwise, we can colap with
acolor differentfrom 1, 2, 3;(z} ) ande(x!). W..0.g., we suppose tha{w) =
{1,2,3,4,5}. If we cannot colorw, this implies that{c(z}),c(z])} =
{e(xh), e(x4)} = {4,5}. Observe now thak (z1) = L(x2) = {1,2,3,4,5};
otherwise, we can recolar; with a color differentfrom 1, 2, 3, 4, 5 to get case
4.1. So, we recolar, andzy with 3 and colonw with 1.

4.2.1.2 Ife(zs) = c(z) ande(xs) # 1, we assume that(xz3) = 2. Observe first
thatc(zs) = c(x¥); otherwise, we can recolar; with a color different from
1,2, (%), c(xf) to get case 4.2.1.1. So, suppose that;) = c(z4) = 3
(c(xh) = c(af) = 1is an easier case). Necessarilyw) contains 1, 2, 3;
otherwise, we can colar with a color different from 1, 2, 3;(2}) ande(z).
W.lo.g9..L(w) ={1,2,3,4,5},and{c(z}), c(z})} = {c(xh), c(zf)} = {4,5}.
So, we recolor:; andxy with a color different from 1, 2, 4, 5 and we coler
with 1.

4.2.2 Suppose that(z1) = c¢(z). W.l.o.g. we assume thaiz;) = 1. Observe that
c(xa) # c(xs3); otherwise, we get case 4.2.1.2. We assume d¢hat) = 2 and
c(x3) = 3. Observe that(z]) = c¢(xY) ; otherwise we can recolar, with a color
different from1, e(a}), c(z}) to get case 4.1 or 4.2.1.1. Hence, we calowith a
color different from 1, 2, 3¢(2).

4.3 Suppose that exactly three neighbors dfave the same color.

4.3.1 We assume thatz,) = ¢(z2) = ¢(z3) = 1 ande(z) = 2. Observe that(z)
c(«?) ; otherwise, we can recolar; with a color different from 1, 2¢(z), e(«f
to get case 4.2.1.1. In the same waly,) = c(z}), i = 1,2,3. ThenL(w) =
{1,2,c(x}), c(ahy), c(xh)} with c(z]) # c(zh) # c(zh) # c(z)); otherwise, we
color w with a color different fromi, 2, ¢(z}), ¢(z%), c(2%). So, we colorw with

4.3.2 We assume thafz) = c¢(z1) = c(x2) = 1 ande(z3) = 2. As above, observe that
c(x)) = e(2f) ande(xhy) = ¢(2) ; otherwise we can recolar; or z, to obtain a
previous case. Hence, we colowith a color different from 1, 2¢(x}), c(a%).

4.4 All the neighbors ofv have the same color. Suppose that;) = c(z2) = c(x3) =
c(z) = 1. As above, fori = 1,2,3, ¢(z}) = c(z}) (otherwise we can get a previous
case). We colow with a color different from 1¢(z)), e(ah), c(z%).

~—



5.2 Discharging procedure

We use the following discharging rule : Eagd-vertex gives% to each of its 2-neighbor§3ﬁ to
each of its 3-neighbors anbto each of its 6(4)-neighbors. Let us check that for every V (H),
d*(v) > 2

— If d(v) = 2, thenv has two=5-neighbors by Lemma 1.5, st (v) = 2 + 22 = 2,
— If d(v) = 3, thenv has at least twg 4-neighbors by Lemma 1.5 and Lemma 2.2 d$¢v) >
34235 =2

— If d(v) = 4, thenv has no 2-neighbor by Lemma 1.5, no 6(4)-neighbor by LemmgaaBi@ at
most two 3-neighbors by Lemma 3.4,80(v) > 4 — 23 = £ > 21,

— If d(v) = 5, thenv has at most one 2-neighbor by Lemma 1.4d5@) > 5— 2 — 43 = 2.

— If d(v) = 6, by Lemma 1.3y has at most four 2-neighbors.lfis a 6(4)-vertex, then it has no
weak neighbor by Lemma 3.1, §0(v) = 6 — 42 + 21 = 2L If v has three 2-neighbors, then
it has at most two weak neighbors by Lemma 3.2/5@) > 6 — 32 — 2.3 = 21, Otherwise,
v has at most two 2-neighbors, 86(v) > 6 — 22 — 42 = 20 > 21,

— Ifd(v) = k,7 < k < 10, thenv has at mostk — 2) 2-neighbors by Lemma 1.3. ifis a
k(k — 2)-vertex, then it has no weak neighbor by Lemma 3.1 @) = k — (k — 2)2 =
2h410 > 24 Otherwised* (v) > k — (k —3)2 — 32 = 4ht2l > 7 5 24

- szgd(v)gf 11, thenv has at most nine 2-neighbors by Lemma 1.3/5@) > 11-92 —22 =
7 > 7-

- Ifd(v) =k > 12, thend*(v) > k — k2 = 2£ > 2%,

6 Optimality of Theorem 4
In order to study the tightness of Theorem 4, we introducerheasuring functions.
Definition 2 Let f : N — R be the function defined b{(n) = inf{Mad(H) | xo(H) > n}.

Definition 3 Let f; : N — R be the function defined bf/(n) = inf{Mad(H) | x},(H) > n}.

By Theorem 4, we have lower bounds 6(3), f;(4) and f;(5). We now give graphs that provide
upper bounds on these quantities.

FIG. 9 — A graphG with Mad(G) = § such thaty,(G) = X, (G) = 4.

The graphG with Mad(G) = % depicted in Figure 9 is acyclically 4-choosable by Theorem
4.2. To see thaf? is not acyclically 3-colorable, consider its four 3-veetic: Any two of them are
either adjacent or have three common neighbors. Thusyeiiffecolors must be assigned to these

four vertices in any acyclic 3-coloring @f. This contradiction shows that :

10



FiG. 10 — A graphG with Mad(G) = 22 such thaty,(G) = X% (G) = 5.

The graphG with Mad(G) = % (see Figure 10) is acyclically 5-choosable : First, we assig
five distinct colors to the four 4-vertices and to one of theeBtex, then we assign proper colors
to the other vertices. To see th@tis not acyclically 4-colorable, consider its four 4-veesc: Any
two of them are either adjacent or have four common neighfidngs, different colors are assigned
to the 4-vertices in any acyclic 4-coloring 6f Now, observe that properly coloring the 3-vertices
produces a bicolored in every case. This contradiction shows that :

19 13

RS IOEFIOES

FIG. 11— A graphG with Mad(G) = 4 such thaty,(G) = X% (G) = 6.

The graphG with Mad(G) = % depicted by Figure 11 is acyclically 6-choosable : First, we
assign distinct colors to the six 7-vertices, then we asgigper colors to the 2-vertices. To see that
G is not acyclically 5-colorable, consider its six 7-verceAny two of them are either adjacent or
have five common neighbors. Thus, different colors must beggasd to six vertices in any acyclic
5-coloring of G. This contradiction shows that :

24 11

= < fi(5) < f(5) < 5

FIG. 12 - The grapld?,, is such that\/ad(G,,) = 4 — 557 andx.(Gy) = x,(Gn) = n+ 1,
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We now use the construction proposed in [KM76] to obtain gmrgotic upper bound orfi(n).
Let G,, be the graph defined as followss,, is a(n + 1)-clique in which each edge is replaced by
n paths with length 2 (see the graph depicted in Figure 12). It is easy to see thdtd(G,,) =
4— QJF% The graph7,, is acyclically(n + 1)-choosable : First, we assign distinct colors to tfze
vertices, then we assign proper colors to the 2-verticese&ahats,, is not acyclicallyn-colorable,
consider its> 2-vertices : Any two of them have common neighbors. Thus, different colors must be

assigned to thén + 1) ~2-vertices in any acyclia-coloring of G,,. This contradiction shows that :

8
24 n2’

f(n) <4 -

Problem 1
- What are the values ¢f(n) and f(n) forn > 3?
- Does the equality;(n) = f(n) hold also for every: > 3?

We remark that we cannot reach the results of [BKW99] appibiete acyclic choosability without
using some contraints of planarity : Indeed, to imply Theo22, we should have proven that every
graphG with Mad(G) < % is acyclically 4-choosable, which is not true, since thedists a graph
G with Mad(G) = 1} < 12 which is not acyclically 4-colorable (see Figure 10). Sanl, it is

impossible to prove that every graghwith Mad(G) < % is acyclically 3-choosable to imply

Theorem 2.1, since there exists a graptwith Mad(G) = § < % which is not acyclically 3-

colorable (see Figure 9).
Problem 2 Prove that planar graphs with girth at least 4 are acycligafl-choosable.

As the graphG,, shows, we cannot solve Problem 2 with techniques usifugl(G) only.

7 Relationship betweeny,, x; and x/,

We first consider the relationship betwegn andy;. The graph,, above satisfies,(G,) =
x4 (Gr) = n+1andy,(G,,) = 3, thus we cannot boung, (G) by a function ofy;(G) for a general
graphG. On the other hand, we can show thatG) < 2x.(G) — 2 by using the following lemma :

Lemma 4 [Xu04] Every maximal acyclically;-colorable graph withn vertices has exactlyk —
1)(n — %) edges.

Supposé: > 2 : Lemma 4 implies that if a grap& is acyclicallyk-colorable, therG has arbo-
ricity k — 1, soG is (2k — 3)-degenerate, and thésis (2k — 2)-choosable. (For more details on
arboricity, see [NW61])

The previous result is best possible for= 2 sincex,(K2) = x;(K2) = 2. The next statement
implies in particular that it is also best possible fo# 3.

Claim 1 There exist acyclically 3-colorable planar graphs withaytles of length 4 and 5 which
are not 3-choosable.

Proof
In [Voi03], Voigt gives a planar graph without cycles of léhgt and 5 which is not 3-choosable.
This graph is acyclically 3-colorable. See Figure 13. a

Claim 2 There exist acyclically 4-colorable planar graphs whicle awot 4-choosable.

Proof

Let p; andp, be adjacent vertices with lists,, = L,,, = {1,2,3,4}. Then, for each paifa, b) of
colors of{1,2,3,4}2, a # b, take the corresponding copy of the grafgh, depicted in Figure 14.
We identify all the vertices; (resp.vs) to the vertexp; (resp.ps). It is easy to see that the obtained
graph is acyclically 4-colorable and not 4-choosable. O

12



FiG. 13— The graph of Voigt without cycles of length 4 and 5 whighat 3-choosable is constructed
as follows : We take nine copies of the drawn graph and weiiiyeait nine top vertices to a vertex
and all nine bottom vertices to a vertex The given acyclic 3-coloring of the drawn graph applied

to each copy gives an acyclic 3-coloring of the whole graph.

U1 {1727374}

{5,6,7,8} {5,6,7,8}

{b7 57 77 8}

v2 {1727374}

FIG. 14 — The grapl#y, ; : 4-list assignment and acyclic 4-coloring.
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We now consider the relationship betwegnandy?,.

Lemma5 Let G be a properlyp-colorable graph which is not-choosable. LetG’ be the graph
obtained by replacing every edge of G by [ 2-vertices, each adjacent @ and v. ThenG’ is
bipartite, 2-degenerate and acyclicallywax(3, p))-colorable, but not acyclicallj-choosable.

Proof

The graphG’ is clearly bipartite and 2-degenerate. A vertex®fthat is also inG is calledold,
and for each edgev of GG, the non old vertices aff’ adjacent ta, andv are called(u, v)-vertices.
We now give an acyclic coloring af’ using a setS of max(3, p) colors. SincgS| > p, we can
take a proper coloring off usingp colors in.S which colors the old vertices af’. To color the
(u, v)-vertices, we use a color &f distinct frome(u) andc(v) : Such a color exists singé| > 3.
We check easily that this coloring is acyclic. Finally we éde show that!, (G’) > I. Let L be a
list assignment of the old vertices with lists of sizé-or each edgev of G, pick one endpoint,
and assign the list (u) to every(u, v)-vertex. Suppose(u) = c¢(v). To avoid a bicolored’y, no
two (u, v)-vertices can get the same color. Therelasach vertices but only— 1 colors in the set
L(u) \ c¢(u). This contradiction shows thatu) # c(v). Given a non-colorable list assignment of
V(@) with lists of sizel, we can thus produce a list assignmentvgfs’) with lists of sizel that is
not acyclically colorable. ]

Itis well known that, for any fixed, there exist bipartite graphs which are hethoosable. There
also exist 3-colorable non-4-choosable planar graphs|\8&®7, Mir96]. We can use Lemma 5
with these graphs to obtain the following claim.

Claim 3
- For any fixedk, there exist bipartite 2-degenerate graphs which are acgtty 3-colorable
but not acyclicallyk-choosable.
- There exist bipartite 2-degenerate planar graphs which acyclically 3-colorable but not
acyclically 4-choosable.
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