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1 Introduction

Oriented graphs are directed graphs without opposite arcs. In other words an
oriented graph is an orientation of an undirected graph, obtained by assigning
to every edge one of the two possible orientations. If G is a graph, V (G) denotes
its vertex set, E(G) denotes its set of edges (or arcs if G is an oriented graph)
and F (G) denotes its set of faces if G is planar. A homomorphism from an
oriented graph G to an oriented graph H is a mapping ϕ from V (G) to V (H)
which preserves the arcs, that is (x, y) ∈ E(G) =⇒ (ϕ(x), ϕ(y)) ∈ E(H). We
say that H is a target graph of G if there exists a homomorphism from G to H .
The oriented chromatic number χo(G) of an oriented graph G is defined as the
minimum order of a target graph of G. The oriented chromatic number χo(G)
of an undirected graph G is then defined as the maximum oriented chromatic
number of its orientations. Finally, the oriented chromatic number χo(C) of
a graph class C is defined as the maximum of χo(G) taken over all graphs
G ∈ C. We will say that a graph G is H-colorable if H is a target graph of G
and the vertices of H will be called colors.

The problem of bounding the oriented chromatic number has already been in-
vestigated for various graph classes [7]. In this note, we focus on planar graphs
and we use the notation Pk for the class of planar graphs of girth at least k.
In particular, it has been shown that χo(P5) ≤ 19 [2] and χo(P3) ≤ 80 [6]. The
proofs of these results involve an auxiliary graph parameter, respectively the
maximum average degree and the acyclic chromatic number. The maximum
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average degree mad(G) of a graph G is defined as the maximum of the average
degrees ad(H) = 2|E(H)|/|V (H)| taken over all the subgraphs H of G. Recall
that a k-coloring of an undirected graph G is said to be acyclic if every cycle
in G uses at least three colors. The acyclic chromatic number χa(G) of G is
then defined as the minimum number k such that G has an acyclic k-coloring.
More precisely, we have:

G ∈ P5 =⇒ mad(G) < 10/3, mad(G) < 10/3 =⇒ χo(G) ≤ 19 [2]

G ∈ P3 =⇒ χa(G) ≤ 5 [1], χa(G) ≤ 5 =⇒ χo(G) ≤ 80 [6]

Unfortunately, these graph parameters cannot directly give us a good upper
bound for graphs in P4, that is triangle-free planar graphs:

• There are bipartite planar graphs whose maximum average degree is arbi-
trarily close to 4 (consider for instance large grids or K2,n), and the oriented
chromatic number of a graph with maximum average degree strictly less
than 4 can be arbitrarily large [2].

• There are bipartite planar graphs with acyclic chromatic number 5 [4], thus
we cannot improve this way upon our current upper bound of 80.

Raspaud and Nešetřil introduced in [5] the strong oriented chromatic number

of an oriented graph G (denoted χs(G)), which definition differs from that of
χo(G) by requiring that the target graph is an oriented Cayley graph. Thus
In this note, we prove the following:

Theorem 1 11 ≤ χo(P4) ≤ χs(P4) ≤ 59

In section 2, we exhibit an oriented triangle-free planar graph with oriented
chromatic number at least 11 to prove the lower bound of Theorem 1.
In section 3, we introduce the tournament QR59 and some of its properties.
In section 4, we prove the upper bound of Theorem 1 by showing that every
triangle-free planar graph has a homomorphism to the Cayley graph QR59.

2 The lower bound

Sopena showed that χo(P3) ≥ 16 [8]. Let N+(x) and N−(x) be respectively
the out-neighborhood and in-neighborhood of the vertex x. We say that a pair
(x, y) of distinct vertices forms a good pair if the sets N+(x)∩N+(y), N+(x)∩
N−(y), N−(x)∩N+(y) and N−(x)∩N−(y) are all of size at least 2. A triplet
(x, y, z) is a good triplet if (x, y), (y, z) and (z, x) are all good pairs. Consider
the graph G in Figure 1. Let a i-vertex (resp. ≥ i-vertex) be a vertex of degree
i (resp. at least i). We remark that every two distinct ≥ 3-vertices are joined
by an arc or a directed 2-path. Therefore every two ≥ 3-vertices must be
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Fig. 1. How to force a good pair in a target graph.

assigned distinct colors in any oriented coloring of G. This provides a simple
proof of χo(P4) ≥ 10 since G is clearly in P4. It also implies that the colors
of a and b form a good pair in any target graph of G. We now construct the
graph G∗ by taking 3 copies G1, G2, G3 of G and identifying a1 and b2, a2

and b3, a3 and b1. Similarly, the colors of a1, a2, a3 form a good triplet in any
target graph of G∗. A computer check shows that no tournament of order 10
contains a good triplet. The lower bound of Theorem 1 is thus proved since
G∗ is a 2-degenerate 2-outerplanar bipartite graph having no target graph of
order at most 10.

3 The target graph

For a prime p ≡ 3 (mod 4), the Paley tournament QRp is defined as the
oriented graph whose vertices are the integers modulo p and such that (i, j) is
an arc if and only if j−i is a non-zero quadratic residue of p. Paley tournaments
are clearly Cayley graphs. Another important property is that they are arc-

transitive [3], which means that for every two arcs (v, w) and (x, y) there
exists an automorphism mapping (v, w) to (x, y). An orientation k-vector is a
sequence α = {α1, α2, . . . , αk} in {0, 1}k. If G is an oriented graph, a k-sequence

of G is a sequence X = (x1, x2, . . . , xk) of k pairwise distinct vertices of G.
A vertex y of G is said to be an α-successor of X if for every i, 1 ≤ i ≤ k,
we have αi = 1 =⇒ (xi, y) ∈ E(G) and αi = 0 =⇒ (y, xi) ∈ E(G). An
oriented graph G satisfies property Sk,n if for every k-sequence X of G and for
every orientation k-vector α, there exist at least n vertices in V (G) which are
α-successors of X.

Lemma 2 The tournament QR59 satisfies property S3,5.
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PROOF. The first part of the proof holds on any statement of the form
“QRp satisfies S3,n”. Note that the order of the vertices in a sequence does
not matter. Thus, since any oriented triangle contains a directed 2-path, we
only have to consider sequences (s1, s2, s3) in which (s1, s2) and (s2, s3) are
arcs of QRp. Now, by the arc-transitivity of QRp, we only need to check the
property on sequences of the form (0, 1, v) such that 2 ≤ v ≤ p − 1 and v − 1
is a quadratic residue of p. Let us write 〈v1, v2, v3〉 if and only if v1 6= v2 and
there are automorphisms of QRp mapping (0, 1, v1) to (v2, 0, 1) and (1, v3, 0).
We easily see that if 〈v1, v2, v3〉 and (0, 1, v1) is checked, then (0, 1, v2) and
(0, 1, v3) need no check. In the case of QR59, we have 〈2, 58, 30〉, 〈6, 47, 50〉,
〈8, 42, 23〉, 〈10, 13, 54〉 and 〈18, 52, 37〉. For every remaining sequence and for
every orientation vector, 5 α-successors are listed in the appendix. ✷

4 The upper bound

We use the well-known method of reducible configurations to show that every
triangle-free planar graph is QR59-colorable.

PROOF. We define the partial order ≺ for the set of all graphs. Let n3(G)
be the number of ≥ 3-vertices in G. For any two graphs G1 and G2, we have
G1 ≺ G2 if and only if at least one of the following conditions hold:

• G1 is a proper subgraph of G2.
• n3(G1) < n3(G2).

Note that this partial order is well-defined, since if G1 is a proper subgraph of
G2, then n3(G1) ≤ n3(G2). So ≺ is a partial linear extension of the subgraph
poset. Consider a potential counter-example to Theorem 1 which is minimal
according to ≺. We first remark that such a graph G must be 2-connected
since QR59 is a circular tournament. We now show that G cannot contain any
of the configurations depicted in Figure 2. In a figure representing a forbidden
configuration, all the neighbors of “white” vertices are drawn, whereas “black”
vertices may have other neighbors in the graph. For every configuration, we
give both a subgraph of G and a QR59-coloring of this subgraph (such a
coloring exists since G is a minimal counter-example). The coloring is chosen
so that it can be extended to G thanks to Lemma 2, contradicting the fact
that G is a counter-example.

(i) Let f be any QR59-coloring of G \ {x}. By Lemma 2, we can choose f such
that f(c) 6= f(v).

(ii) Since (i) is forbidden, u1, u2 and u3 are ≥ 3-vertices. We now consider
the graph G′ obtained from G \ {x} by adding directed 2-paths joining
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Fig. 2. Unavoidable set of configurations for triangle-free planar graphs.

respectively u1 and u2, u2 and u3, u3 and u1, Note that G′ ≺ G since
n3(G

′) = n3(G)−1. Any QR59-coloring f of G′ induces a coloring of G\{x}
such that f(u1) 6= f(u2) 6= f(u3) 6= f(u1).

(iii) Let G′ be the graph obtained from G \ {x1, x2} by adding a directed 2-
path joining u1 and u2. Any QR59-coloring f of G′ induces a coloring of
G \ {x1, x2} such that f(u1) 6= f(u2).

(iv) Let f be any QR59-coloring of G\{x1, . . . , xn}. By Lemma 2, we can choose
f such that f(c) 6∈ {f(v1), . . . , f(vn)}.

Euler’s formula |V (G)| + |F (G)| = |E(G)| + 2 and

∑

v∈V (G)

d(v) =
∑

f∈F (G)

d(f) = 2|E(G)|

show that ∑

v∈V (G)

(d(v) − 4) +
∑

f∈F (G)

(d(f) − 4) = −8.

We set an initial charge ch to every vertex and every face:

∀x ∈ V (G) ∪ F (G), ch(x) = d(x) − 4

Then we use a discharging procedure consisting of the following two rules, and
we get a final charge ch∗.

Rule 1. Every ≥ 4-vertex v gives 1
2

to each face f incident to both v and a
2-neighbor of v.
Rule 2. Every face f gives 1 to each 2-vertex incident to f .

Since the above procedure preserves the total charge, we have:

∑

x∈V (G)∪F (G)

ch(x) =
∑

x∈V (G)∪F (G)

ch∗(x) = −8.

We now prove the following to get a contradiction:

∀x ∈ V (G) ∪ F (G), ch∗(x) ≥ 0.

case x ∈ V (G)

d(x) = 2: by Rule 2, x receives exactly 1 from each of the two faces incident
to x and thus ch∗(x) = −2 + 2 × 1 = 0.
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d(x) = 3: Since (ii) is forbidden, G contains no 3-vertex.
d(x) = k, 4 ≤ k ≤ 7: Since (iv) is forbidden, x has at most (k − 4) 2-
neighbors, so x gives 1

2
to at most 2 × (k − 4) faces and thus ch∗(x) ≥

k − 4 − 2 × (k − 4) × 1
2

= 0.
d(x) = k ≥ 8: x gives 1

2
to at most k faces and thus ch∗(x) ≥ k−4−k× 1

2
≥ 0.

case x ∈ F (G)

d(x) = 3: G is triangle-free, so it contains no face of degree 3.
d(x) = 4: Since (i) and (iii) are forbidden, x is incident to at most one
2-vertex. If x is incident to a 2-vertex then ch∗(x) = 0 + 2 × 1

2
− 1 = 0,

otherwise ch∗(x) = ch(x) = 0.
d(x) = k ≥ 5: Let n be the number of 2-vertices incident to x. Since
(iv) is forbidden, n ≤ ⌊k

2
⌋ and x receives 1

2
from at least n vertices, thus

ch∗(x) ≥ k − 4 + n × 1
2
− n × 1 = k − 4 − n

2
≥ k − 4 − ⌊k

4
⌋ = ⌈3k

4
⌉ − 4 ≥ 0.

✷

References

[1] O.V. Borodin. On acyclic colorings of planar graphs, Discrete Math. 25 (1979),
211–236.

[2] O.V. Borodin, A.V. Kostochka, J. Nešeťril, A. Raspaud and E. Sopena. On
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Appendix

The quadratic residues of 59:
0 1 3 4 5 7 9 12 15 16 17 19 20 21 22 25 26 27 28 29 35 36 41 45 46 48 49 51 53 57

The table of α-successors:

(0,1,v) {0,0,0} {0,0,1} {0,1,0} {0,1,1}
{1,0,0} {1,0,1} {1,1,0} {1,1,1}

(0,1,02) 32.33.34.39.40 11.14.24.31.38 08.10.13.42.52 06.18.23.30.37
12.15.25.35.41 03.07.09.19.48 04.16.20.26.36 05.17.21.22.27

(0,1,04) 14.34.38.43.44 11.24.31.32.33 06.10.18.37.42 02.08.13.23.30
03.12.15.35.41 07.09.19.25.45 17.22.27.28.36 05.16.20.21.26

(0,1,05) 11.38.39.43.44 14.24.31.32.33 02.13.18.23.37 06.08.10.30.50
07.15.19.35.45 03.09.12.25.41 04.16.28.29.36 17.20.21.22.26

(0,1,06) 14.24.38.39.40 11.31.32.33.34 02.08.30.37.50 10.13.18.23.42
03.12.19.45.48 07.09.15.25.35 05.16.17.20.29 04.21.22.26.27

(0,1,08) 14.31.32.38.39 11.24.33.34.43 10.18.42.47.50 02.06.13.23.30
03.07.19.41.45 09.12.15.25.35 04.05.16.21.22 17.20.27.28.29

(0,1,10) 24.33.34.40.43 11.14.31.32.38 06.18.23.42.47 02.08.13.30.37
03.07.09.12.41 15.19.25.35.45 05.16.20.21.28 04.17.22.26.27

(0,1,16) 11.24.34.39.40 14.31.32.33.38 13.18.30.47.50 02.06.08.10.23
07.09.12.15.48 03.19.25.35.41 04.22.26.27.29 05.17.20.21.28

(0,1,17) 14.31.40.55.56 11.24.32.33.34 02.08.10.13.23 06.18.37.42.52
12.19.25.35.41 03.07.09.15.45 05.16.27.28.49 04.20.21.22.26

(0,1,18) 11.14.24.31.32 33.34.38.39.40 02.06.13.42.50 08.10.23.30.37
03.09.15.41.48 07.12.19.25.35 17.20.26.28.29 04.05.16.21.22

(0,1,20) 11.31.33.34.38 14.24.32.39.40 08.13.30.50.52 02.06.10.18.23
03.15.19.51.53 07.09.12.25.35 04.05.16.17.22 21.27.29.36.46

(0,1,21) 14.31.32.34.39 11.24.33.38.40 02.06.18.23.52 08.10.13.30.37
09.12.35.45.51 03.07.15.19.25 04.05.16.17.20 22.26.28.36.46

(0,1,22) 24.32.33.40.55 11.14.31.34.38 02.06.10.13.18 08.23.37.42.47
03.07.15.19.35 09.12.25.41.48 05.17.21.28.36 04.16.20.26.27

(0,1,26) 11.14.32.34.39 24.31.33.38.43 06.10.23.37.50 02.08.13.18.30
07.09.19.25.57 03.12.15.35.41 04.05.17.21.22 16.20.27.29.46

(0,1,27) 11.24.33.38.40 14.31.32.34.39 02.06.08.10.18 13.30.42.47.52
07.12.15.35.41 03.09.19.25.48 05.20.22.26.29 04.16.17.21.28

(0,1,28) 11.24.34.38.39 14.31.32.33.40 02.06.08.13.23 10.18.37.47.50
03.07.09.12.19 15.35.45.48.53 16.21.27.36.46 04.05.17.20.22

(0,1,29) 14.24.31.39.40 11.32.33.34.38 02.08.10.13.37 06.18.23.30.50
03.07.09.12.25 15.19.41.45.48 04.17.20.22.26 05.16.21.27.36

(0,1,36) 11.14.24.31.32 34.39.40.43.55 08.10.42.47.50 02.06.13.18.23
07.09.15.19.35 03.12.25.41.45 16.17.20.21.27 04.05.22.26.28

7



(0,1,46) 11.24.31.34.39 14.32.33.38.40 10.18.30.37.42 02.06.08.13.23
19.25.41.45.48 03.07.09.12.15 05.17.20.21.26 04.16.22.28.36

(0,1,49) 14.24.32.33.34 11.31.38.39.43 08.13.23.30.37 02.06.10.18.47
03.45.48.51.57 07.09.12.15.19 04.20.21.22.27 05.16.17.26.36

(0,1,50) 14.24.31.33.34 11.32.39.40.44 02.23.30.47.52 06.08.10.13.18
09.15.25.35.41 03.07.12.19.48 04.05.21.22.28 16.17.20.26.27
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