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1. INTRODUCTION

One way to represent a graph G is the intersection representation. That is, one

assigns a set to each vertex of G, such that v is adjacent to w if and only if their

assigned sets meet. A t-interval representation is such an assignment, in which

each set consists of at most t closed intervals. The interval number of G, denoted

by iðGÞ, is the least integer t for which a t-representation of G exists.

Furthermore, a representation is displayed if each set in the representation has

an open interval disjoint from the other sets. Such an interval is called a displayed

segment. We wish to establish bounds on the interval number of a graph G if

certain subgraphs are forbidden in G. Theorem 1.3 is a small improvement of

Theorem 1.1, if the graphs have some additional structure, while the other

theorems give bounds on the interval number if certain graphs are not present as

induced subgraphs.

A. The Degree Bound

Theorem 1.1 [8]. If G is a graph with maximum degree d, then iðGÞ �
d1

2
ðd þ 1Þe.
This upper bound is sharp, as it was shown by Griggs and West in [8]. We

spell out their result in a little different, but equivalent form. A representation is

depth-two, if every point of the line is covered by at most two intervals.

Theorem 1.2 [8]. If a graph G has a depth-two t interval representation, then

t � dðeðGÞ þ 1Þ=vðGÞe.
Thus the equality is attained for example by d-regular, triangle-free graphs,

since the interval representations of those are always depth-two. The original

proof of Theorem 1.1 was greatly simplified in [11] and [18]. However, the

following statement of [11] turned out to be false.

Claim 1.1 [11]. If a graph G with maximal degree d has no d-regular, K3-free

component, then iðGÞ � d1
2
de.

In the next section, we give a counterexample that motivated the following

definitions. First of all, let us call a graph G even if all its degrees are even.
If x is a cut-vertex of G, and the vertices of G� x can be partitioned into two

non-empty sets A and B such that G has no edges joining A and B, and x has an

even number of neighbors in each of A and B, then the operation of replacing G

with two subgraphs of G induced by A [ fxg and B [ fxg is called an even split

of G, and fxg is the pivot vertex of the split. An even decomposition of G is a set

of graphs which can be obtained from G by repeated even splits.

A connected graph H is rich if it contains a triangle TH that after deleting the

edges of TH , the remaining graph has at most two non-trivial components. Note

that the triangle TH is not necessarily unique.

242 JOURNAL OF GRAPH THEORY



Finally for an even graph G a rich decomposition is such an even de-

composition in which the arising components (blocks) are all rich. With these

notions we can spell out the correct characterization of extremal graphs.

Theorem 1.3. Let G be a connected graph of maximal degree d ¼ 2k. Then G

has a k-interval representation if and only if either G is not 2k-regular or G has a

rich decomposition.

B. Small Forbidden Subgraphs

Most of the classical results on the interval number were upper bounds for a

general graph G, in terms of some monotone increasing function of G. (See for

example [2,8,12,15]. It is also possible to derive bounds that are smaller for

denser graphs. See in [3] that iðGÞ � d
ffiffiffiffiffiffiffiffiffiffi
eð�GGÞ

p
=2e þ oðnÞ, where n and eð�GGÞ are

the number of vertices and edges of the complement of G, respectively.

Such bounds have also been studied for special families of graphs, like as

chordal graphs, where the interval number is bounded by a function of the clique

number. We continue this direction for other classes of perfect graphs using the

independence number.

We refer to [4] as a vast collection of facts on special graphs, but also try to

spell out some facts about them that we use.

A graph G is triangulated or chordal if for n � 4 it does not contain an induced

Cn, a circuit of length n. A special class of chordal graphs is the family of the split

graphs, where the vertex set of a split graph can be partitioned into two parts,

an independent set and a clique.

A graph G is a comparability graph if there is a partial order P on its vertices

such that vertices u and v form an edge in G if and only if u and v are comparable

in P. Let !ðGÞ and �ðGÞ denote the clique number and the independence number

of G, respectively. For a graph G, let �ðGÞ be the chromatic number of G, that is

the smallest number k such that the vertex set of G can be partitioned into k

independent sets.

It was shown in [1] that iðGÞ � d!ðGÞ=2e þ 1 for a chordal graph G. An

even better result can be found in [13], that iðGÞ � ð1 þ oð1ÞÞ!ðGÞ=log2 !ðGÞ.
We prove the following bounds on the interval number in terms of the in-

dependence number for graphs in special families of perfect graphs. These results

share the flavor that the bound is smaller for denser graphs.

Theorem 1.4. If G is a graph having no 4-cycle as an induced subgraph, then

iðGÞ � d�ð�GGÞ=2e.

Corollary 1.1. If G is a chordal graph, then iðGÞ � d�ðGÞ=2e.

Theorem 1.5. If G is a split graph, then iðGÞ � ð1 þ oð1ÞÞ�ðGÞ=log2 �ðGÞ,
and there is a sequence of split graphs Gk such that �ðGkÞ ¼ k and

iðGkÞ > ð1=2 þ oð1ÞÞk=log2 k, where k goes to infinity.
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Theorem 1.6. If G is a comparability graph, then iðGÞ � �ðGÞ.
For the complete bipartite graph Km;n, Trotter and Harary [17] proved that

iðKm;nÞ ¼ dðmnþ 1Þ=ðmþ nÞe. For complete multipartite graphs (see [9]),

iðKn1;n2;...Þ ¼ iðKn1;n2
Þ þ 1 (except for certain values), where n1 � n2 � � � �. One

checks that in both cases iðGÞ � dð�ðGÞ þ 1Þ=2e.

Note that Km;n and the complete multipartite graphs are comparability graphs.

We believe a common generalization of these results, that is

Conjecture 1.1. If G is a comparability graph, then iðGÞ � dð�ðGÞ þ 1Þ=2e.

C. Large Forbidden Complete Bipartite Graphs

One may ask, what induced subgraphs force high interval number. For the

random graph Gn;1=2, iðGn;1=2Þ ¼ ð1=2 þ oð1ÞÞn=log2 n holds almost surely [14].

If G contains the complete bipartite graph Kk;k as an induced subgraph, then

iðGÞ � dðk þ 1Þ=2e. The following result roughly states that big induced

complete bipartite graphs are required for high interval number.

Theorem 1.7. Let k be a positive integer. If a graph G does not contain Kk;k as

an induced subgraph, then iðGÞ � ð1 þ oð1ÞÞn=log2 n, where n is the order of G.

Remark. We do not have a matching lower bound here. Standard use of the

probabilistic method (see e.g. [6]) shows the existence of a bipartite Kr;r-free

graph G which has 2n vertices and n2�2=r edges. Applying the formula iðGÞ �
dðeðGÞ þ 1Þ=vðGÞe (see [8]) to G, which is triangle-free, we get that iðGÞ ¼
�ðn1�2=rÞ.

2. COUNTEREXAMPLES TO CLAIM 1

Let H and Q be two triangle-free connected graphs satisfying that there is a

h 2 VðHÞ of degree 2k � 2, a q 2 VðQÞ of degree 2, and all the other vertices are

of degree 2k. (It is easy to see that such graphs exists for k � 2). To construct a

counterexample G for Claim 1, we glue together 2k � 2 copies of H and one copy

of Q as follows. Let h1; h2; . . . ; h2k�2 denote the ‘‘h’’ vertices in the 2k � 2 copies

of H. To get G, we take the copies, and connect for 1 � i � k � 1 the vertices

h2i�1 with h2i, and both with q. Clearly, G is a 2k-regular graph, therefore

iðGÞ � k þ 1. We prove that in fact iðGÞ ¼ k þ 1.

So let us suppose on contrary that G has a k-representation. By Theorem 1.2

the representation must contain three intersecting intervals, since eðGÞ ¼ kvðGÞ,
which can be realized only if the vertices of the intervals span a triangle. In G the

vertex set of each triangle is in the form h2i�1; h2i; q. Without loss of generality,

we may assume that the intervals assigned to h1; h2, and q have common

intersection, and denote the three intersecting intervals by Ih1
; Ih2

, and Iq. It is
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easy to check that the union of two of these intervals must contain the third one.

If Ih1
� Ih2

[ Iq, then our representation must have a depth-two sub-representation

I1 for H1, using at most k intervals for vertices different from h1, and at

most k � 1 intervals for h1, since Ih2
and Iq isolate Ih1

from IH1
. But applying

Theorem 1.2 to H1 leads to a contradiction, and similarly, the cases of Ih2
� Ih1

[
Iq and Iq � Ih1

[ Ih2
are also impossible.

3. PROOFS

For the sake of completeness we repeat the proof of Theorem 1 and the first part

that of Theorem 1 given in [11]. Note, that the statement of Theorem 1.1 has been

slightly rephrased in order to make its connection to the stronger version of

Theorem 1.3 more apparent.

Theorem 3.1 [modified version of Theorem 1.1]. There is a displayed interval

representation for the graph G such that at most dðdðvÞ þ 1Þ=2e intervals are

assigned to each vertex v, where dðvÞ designates the degree of the vertex v.

A. Proof of Theorem 3.1

A trail W in G is a sequence of vertices W ¼ fv1; v2; . . . ; vlg such that there is an

edge between vi and viþ1 for each i ¼ 1, 2; . . ., t � 1, and all these edges are

distinct. Let us partition the edges of G into the minimum number of edge-

disjoint trails fWigji¼1. Now represent the trail Wi ¼ ðvi1; vi2; . . . ; vitðiÞÞ for

1 � i � j, assigning an Iip interval to the vertex vip such that two intervals

intersect if and only if the corresponding vertices are consecutive in the trail Wi.

This procedure leads to a displayed interval representation of G. Since a vertex

v can be an endvertex of the trails at most twice, if v is represented by k intervals,

then dðvÞ � 2ðk � 2Þ þ 2 ¼ 2k � 2. Hence,

1

2
ðdðvÞ þ 1Þ

� �
� 1

2
ð2k � 2 þ 1Þ

� �
¼ k � 1

2

� �
¼ k: &

B. Proof of Theorem 1.3

First, we show that if a connected graph G has maximum degree 2k and

iðGÞ ¼ k þ 1, then G must be 2k-regular. Let G be a graph with iðGÞ ¼ k þ 1 and

maximal degree 2k. Consider the set of all partitions of the edge set of G into

minimum number of edge-disjoint trails. Let us choose among these partitions a

partition fWigji¼1 which also minimizes the size of the set Q of vertices occurring

k þ 1 times in the walks fWigji¼1. The interval-representation of G is the same as

in the proof of Theorem 1.1.:
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If Q ¼ ;, we are done. For an x 2 Q there exists a p 2 f1; . . . ; jg such that

x ¼ v p
1; x ¼ v p

tð pÞ and x 62 Wl for all l 6¼ p. The last statement follows from the

minimality of j, since in case of x ¼ vls 2 Wl we could replace the trails Wp and

Wl by the trail

W� ¼ ðvl1; vl2; . . . ; vls; v
p
2; . . . ; v

p

tð pÞ; v
l
sþ1; . . . ; v

l
tðlÞÞ:

For any vertex y ¼ v p
s 6¼ x from Wp, we can transform the trail Wp into the trail

W�
p ¼ ðv p

s ; v
p
s�1; . . . ; v

p
1; v

p

tð pÞ�1
; v p

tð pÞ�2
; . . . ; v p

s Þ:

That is, by the minimality of Q, y occurs in the trails fWigi6¼p [ fW�
pg k þ 1

times. Then again, all neighbors of y are in Wp. That is the vertex set of Wp is a

2k-regular component of G. But G is connected and 2k-regular, hence VðGÞ ¼
Wp.

In order to finish the proof of Theorem 1.3, we need to show that for a 2k-

regular graph G the assumptions iðGÞ � k and G has a rich decomposition are

equivalent. We state Theorem 1.3 in a stronger form:

Stronger version of Theorem 1.3. If G is an even graph, then there is a

interval representation of G assigning at most dðvÞ=2 intervals to each vertex v if

and only if G has a rich decomposition.

First, we assume that G has a rich decomposition. It is enough to prove the

statement for the blocks of the rich decomposition of G, since putting together

their representation we get the stated representation for G.

Having a rich component H, we can represent the edges of the triangle TH by

using three overlapping intervals, one for each vertices of TH . However, it is

crucial to put such two intervals to the two sides of that sub-representation which

would fall into different non-trivial components after deleting the edges of TH .

Now to represent the non-trivial components of HnTH , we use the ideas of

Theorem 1.1. Since such a component is an even graph, it has an Eulerian circuit.

We make a trail out of that circuit by starting it and finishing it with a vertex of

TH . Then we represent these (at most two) trails, and identify one of their end

interval with the appropriate interval representing TH .

To prove the other direction, we assume that G is connected and that G has a

representation assigning at most dðvÞ=2 intervals to each vertex v. Then there is a

point which is the element of at least three intervals. (Imagine that we draw the

intervals one by one. If there is no such a point, then every new interval may

represent at most two units of the degree sum of G (or with other words, at most

one edge). Since the first drawn interval does not represent any edges, there would

not be enough edges represented.) We call these three intervals Ix, Iy, and Iz, and

the vertices that associated to those are x, y and z, respectively. (Note that

TG :¼ fx; y; zg is a triangle.)
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If the deletion of the edges of the triangle TG leaves one or two connected non-

trivial components, then the whole G itself is a rich component.

Let us examine the case when deleting the edges of TG leaves three non-trivial

components. Let us observe that one of those intervals is in the union of the other

two; say Ix � Iy [ Iz. At this case the vertex x can serve as the pivot vertex for an

even split, A is the component containing the whole triangle TG, B is the one

containing only x. Now A is a rich component, since the deletion of the edges

of TG leaves only two components. Let us consider the intervals representing B.

Since Ix cannot intersect any of those intervals, and dBðxÞ ¼ dGðxÞ � 2, there

must be three intervals among those intervals such that their intersection is

not empty, and a triangle TB of B corresponds to this. Now we can repeat the

argument above, proving either B is a rich component with TB, or we can proceed

by induction. &

Remark. The stronger form of Theorem 1.3 holds for general simple graphs;

one just have to write ddðvÞ=2e instead of dðvÞ=2 in the statement. The way of

proof is standard: join a new vertex x to G, and connect it to all vertices of odd

degree.

C. An Application

It was shown in [15] that iðGÞ � 3 for any planar graph G. By the help of

Theorem 3 we can point out an interesting special case.

Theorem 3.2. If G is a planar graph with maximum degree at most 4, then

iðGÞ � 2.

Proof. One can assume that G is connected. If G is not 4-regular, then

applying Theorem 1.3 the statement follows. Thus, in the rest of the proof we can

assume that G is 4-regular.

Since G is planar, the Euler formula nðGÞ þ lðGÞ ¼ eðGÞ þ 2 holds, where

nðGÞ, lðGÞ and eðGÞ are the number of vertices, faces, and edges, respectively.

G must contain a triangle, since otherwise the Euler formula would give that

eðGÞ � 2nðGÞ � 4, while the 4-regularity implies that eðGÞ ¼ 2nðGÞ. Our aim is

to show that G has a rich decomposition, and finish the proof by the use of

Theorem 1.3. If there is a triangle such that its deletion leaves at most two non-

trivial components, then G is a rich component itself. Let us assume that the

deletion of the edges of any triangle leaves exactly three non-trivial components.

The numbers of vertices in the non-trivial components vary; let T be a triangle

such that one of these components, say H, is the smallest possible.

Of course eðHÞ � 2nðHÞ � 4, since H is planar and H cannot contain a

triangle. On the other hand one vertex of H has degree 2 and all the others have

degree 4, giving us the equality 2nðHÞ ¼ eðGÞ þ 1, which is a contradiction. It

means that there must be a triangle such that the deletion of its edges results in

less than three non-trivial components, that is G has a rich decomposition. &
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4. PROOF OF THEOREM 1.4

Proof of Theorem 1.4. The idea of the proof is to partition the vertex set of G

into �ð�GGÞ cliques C1; . . . ;C�ð�GGÞ, then represent the edges in the cliques and

between the cliques. Let C1 and C2 be two arbitrary cliques of that partition. Since

G is C4-free, the vertices of C1 ¼ fx1; . . . ; xlg can be ordered in such a way that

N2ðx1Þ � N2ðx2Þ � � � � � N2ðxlÞ, where N2ðxÞ denotes the vertices of C2

neighboring to x. To represent the edges in and between C1 and C2 it suffices

to draw two piles of intervals containing only one interval per vertex. (The bigger

the neighborhood of a vertex, the longer the interval that is assigned to it. The

picture illustrates the representation the edges between two five-element cliques

when jN2ðxiÞj ¼ jN2ðxiþ1Þj þ 1.)

Certainly, we can use both ends of these intervals (the left ends of those

assigned to C1 and the right ends of those assigned to C2). One can think of this as

a generalization of the proof of Theorem 1, where the ‘‘degree’’ of each clique is

not more than �ð�GGÞ � 1. More exactly, we consider an Eulerian trail (or circuit)

containing all edges of the complete graph on �ð�GGÞ vertices, and draw the

consecutive piles according to their appearance in that Eulerian trail. The number

of piles we need to draw for any clique C is at most d�ð�GGÞ=2e. Since fCig�ð
�GGÞ

i¼1 is a

partition of the vertex set of G, d�ð�GGÞ=2e is also an upper bound on the number of

intervals that are used for any vertex in the representation. &

Proof of Corollary 1.1. First we need recall some basic facts about perfect

graphs, see the details in [4]. Chordal and comparability graphs are perfect.

A graph G is perfect iff for every induced subgraph H � G it holds that

!ðHÞ ¼ �ðHÞ. The complement of a perfect graph is perfect (this is the

celebrated Perfect Graph Theorem).

A chordal graph G is induced C4-free, and since it is perfect we have

�ð�GGÞ ¼ �ðGÞ and Theorem 4 applies, giving Corollary 1.1.

5. PROOF OF THEOREM 1.5

For any k positive integer, we define the universal split graph Gk.

The vertex set of Gk is indexed by the numbers f1; . . . ; kg ¼ A, and the non-

empty subsets of f1; . . . ; kg. There are no edges inside A, while VðGkÞnA is a

clique. Furthermore a vertex i 2 A is connected to a vertex indexed by S � A if

and only if i 2 S. A graph H is essential if NðxÞ 6¼ NðyÞ for x 6¼ y 2 VðHÞ. Gk

contains every connected essential split graph H of independence number k as an
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induced subgraph, and also �ðGkÞ ¼ k. To conclude the proof it is enough to

show that ð1=2 � oð1ÞÞk=log2 k � iðGkÞ � ð1 þ oð1ÞÞk=log2 k. (If a split graph H

is not essential, then we may represent the biggest induced essential subgraph

H� of it, and take a copy of the intervals of x 2 VðH�Þ for a y 62 VðH�Þ if

NðxÞ ¼ NðyÞ.)
We start with the proof of the upper bound. Let us divide A into blocks of size

t ¼ log2 k � log2log2 k. For each subset of a block we secure an unused part of

the line, and place small disjoint intervals for each element of the subset. This

way we use up not more than 2t � k=ð2 log2kÞ intervals per vertex. To represent

the edges between A and a vertex x of the clique on VðGkÞnA, we use one interval

per block, putting a long interval under the intervals corresponding to the subset

A \ NðxÞ. Finally we represent the edges of the clique by one interval per vertex.

This procedure uses only maxð2t�1; k=tÞ þ 1 intervals per vertex. Since any

essential split graph H is an induced subgraph of Gk, if k ¼ �ðHÞ, we have

completed the first part of proof.

Next we show that iðGkÞ � ð1=2 � oð1ÞÞk=log2 k. Because VðGkÞ � A is a

clique and A is an independent set we may assume that in a t-representation of Gk

there are exactly t intervals corresponding to each vertex of A, and all of those are

single points of the line, which set is denoted by A:
Clearly, jAj ¼ kt. Let Ix be the set of intervals representing vertex x. If x 62 A,

then A \ Ix consists of at most t consecutive segments of A. This means,

the number of such sets is not more than
Pt

l¼1
ktþ1

2l

� �
. (Indeed, a consecutive

sequence of points is determined by its endpoints that we can choose among the

points of A without repetition. However, degenerated segments may occur, that is

why we have to make the summation from l ¼ 1 to l ¼ t.)

For distinct vertices x and y, we have A \ Ix 6¼ A \ Iy, which implies that

2k � 1 �
Xt

l¼1

kt þ 1

2l

� �
� t

kt þ 1

2t

� �
:

Applying the inequality a
b

� �
� ðea=bÞb reduces this inequality to t � ð1=2�

oð1ÞÞk=log2 k. &

Note that a very similar argument is used in [13] in order to obtain lower

bounds on the interval number for triangulated graphs.

6. PROOF OF THEOREM 1.6

The proof parallels that of Theorem 1.1, and uses the following lemma.

Lemma 6.1. If the vertex set of a graph G can be partitioned into k cliques such

that the subgraphs induced by any two of those cliques are comparability graphs,

then iðGÞ � k.
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Proof. We imitate the proof of Theorem 1.4. However, the structure of

the neighborhoods is more complicated here. Let C1 ¼ fx1; . . . ; xlg and C2 ¼
fy1; . . . ; ytg be two complete subgraphs of G, spanning a comparability graph.

As C is a clique, its vertices can be linearly ordered, inheriting the order from

a poset realizing the comparability graph. W.l.o.g. the order is x1 � x2 � � � �.
Now N2ðxÞ ¼ N<

2 ðxÞ [ N>
2 ðxÞ, where N<

2 ðxÞ is the set of those vertices in

C2 that are smaller than x in the partial order of the induced subgraph, while

N>
2 ðxÞ is the subset of C2 consisting of the vertices bigger than x. It is easy to

see that

N<
2 ðx1Þ � N<

2 ðx2Þ � � � � � N<
2 ðxlÞ and N>

2 ðx1Þ � N>
2 ðx2Þ � � � � � N>

2 ðxlÞ:

We may represent only one type of those neighborhoods by drawing two piles,

although the free ends of the piles are re-usable again. The representation is

similar to that of Theorem 1.4. We consider an directed Eulerian circuit in the

directed complete graph (i.e., this graph has �ð�GGÞ � ð�ð�GGÞ � 1Þ edges) on �ð�GGÞ
vertices, to which we associate the cliques of G, and we draw piles for a clique at

each occurance of the vertex in the Eulerian circuit that corresponds to it. Now,

for each pair of cliques ðCi; CjÞ we have two pairs of intersecting piles that can

represent both types of neighborhoods, and we get Lemma 6.1. &

Lemma 6.1 implies that the interval number of a comparability graph G is

bounded by the number of cliques needed to cover VðGÞ, that is iðGÞ � �ð�GGÞ.
Since the comparability graphs are perfect, this bound is equals to �ðGÞ, and

Theorem 6 is proved. &

7. PROOF OF THEOREM 1.7

We need a result of Erdős and Hajnal, see [5]. A set L � VðGÞ is homogeneous

if the vertices of L are pairwise adjacent or pairwise non-adjacent. Note that

log n ¼ log2 n in these section.

If a graph G on n vertices does not contain a fixed graph H as an induced

subgraph, then it contains a large homogeneous set, with size at least

expðc
ffiffiffiffiffiffiffiffiffiffiffi
log n

p
=2Þ, where c < 1=jVðHÞj. For any k, if n is big enough, then

expðc
ffiffiffiffiffiffiffiffiffiffiffi
log n

p
=2Þ � log2k n.

We repeatedly use this theorem, always cutting off a big homogeneous set

L from the remaining part of VðGÞ. If L is a clique, we take about

log2 n� log2 log2 n vertices of it, otherwise (i.e., if L is an independent set) we

take a subset of size between log2kþ1
2 n and 2 log2kþ1

2 n. This procedure can go on

until the leftover graph has only oðn=log2 nÞ vertices.

Summing up, the procedure gives a partition of the vertices of G:

VðGÞ ¼ K1 [ � � � [ K‘ [ E1 [ � � � [ Er [ A;
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where

* jAj ¼ oðn=log nÞ,
* each Ki is a clique of size log2 n� 2 log log n,
* each Ej is an independent set such that log2kþ1n � jEjj � 2 log2kþ1.

Now we represent the edges of G step by step, starting by the ones that having

an endpoint in A, then those having one endpoint in [iKi, finally the edges having

both endpoints in [jEj.

First let us create pairwise disjoint displayed intervals for the vertices of A.

For each vertex of G, place a small interval within the displayed intervals for each

of its neighbors in A. This uses at most oðn=log nÞ intervals for each vertex of G,

as jAj ¼ oðn=log2 nÞ.
For the cliques, we construct a Scheinerman-type of displayed system, see [14]

or [3]. For a clique Q of size q, one places 2q�1 intervals per vertex in such a way

that for every subset P of Q there exists an interval IP of the line where intervals

representing P and no other vertices intersect. The use of such system is that one

can represent all edges between a vertex x and Q by only one additional interval

of x, placing that interval into INðxÞ\Q. Since in our case q ¼ log2 n� 2 log2 log2 n,

we have 2q�1 ¼ n=2ðlog2 nÞ
2
.

For each pair ðKi;KjÞ (with i < j) to represent all the edges between Ki and Kj,

we can choose one of them and use only one additional interval for each vertex of

it. We add an interval for the vertices in Ki if j� i � ‘=2; otherwise we add an

interval for the vertices in Kj. That is for each vertex of [iKi the number of

additional intervals will be at most ‘=2, where ‘ is the number of cliques.

This way for each vertex in a clique we use at most

n=ðlog2 nÞ
2 þ ‘=2 þ oðn=log2 nÞ � ð1=2 þ oð1ÞÞn=ðlog2 nÞ

intervals (where the magnitude of the upper bound is coming from

‘ � n=ðlog2 n� 2 log log nÞ).
Finally for a vertex in an independent set we use no more than ‘ � n=

ðlog2 n� log2 log2 nÞ ¼ ð1 þ oð1ÞÞn=log2 nÞ intervals to represent its edges to the

cliques.

Because we have assumed that G is Kk;k-free, the result of Kó́vári, Sós, and

Turán [10] implies that the number of the edges in G joining two independent

sets Ei and Ej is at most 2m2�1=k, where m ¼ maxfjEij; jEjjg. With this, we

can bound the number of edges among the independent sets of the partition.

Since log 2kþ1
2 n � jEjj � 2 log 2kþ1

2 n, we have that r � n=ðlog2 nÞ
2kþ1

and m �
2ðlog2 nÞ

2kþ1
. Thus, the number of edges is no more than

r

2

� 	
2m2�1=k � 4n2

ðlog2 nÞ
2þ1=k

:

In order to represent the edges among all Ej we use the edge-bound theorem

from [2], which states that for a graph G, having e edges, iðGÞ � d
ffiffiffi
e

p
=2e þ 1.
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Combining this bound and the bound on the number of edges in this subgraph

we get a representation of that part of G using only oðn=log2 nÞ intervals per

vertex.

Putting together all these bounds on the representations of the subgraphs of

G yields iðGÞ � n=log2 nþ oðn=log2 nÞ, which proves Theorem 1.7. &

ACKNOWLEDGMENTS

We are very grateful to one of the anonymous referees, whose wise comments

helped us to make the presentation readable.

REFERENCES

[1] T. Andreae, On the interval number of triangulated graph, J Graph Theory

3 (1987), 273–280.

[2] J. Balogh and A. Pluhár, A sharp edge bound on the interval number of a

graph, J Graph Theory 32 (1999), 153–159.

[3] J. Balogh and A Pluhár, On the interval number of dense graphs, Discrete

Math 256 (2002), 423–429.
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[6] P. Erdó́s and J. Spencer, Probabilistic Methods in Combinatorics, Academic

Press, New York, London, 1974.

[7] J. R. Griggs, Extremal Values of the Interval Number of Graph, II, Discrete

Math 28 (1979), 37–47.

[8] J. R. Griggs and D. B. West, Extremal values of the interval number of graph,

I, SIAM J Alg Discrete Meth 1 (1980), 1–8.

[9] L. B. Hopkins, W. T. Trotter, and D. B. West, The interval number of a

complete multipartite graph, Discrete Applied Math 8 (1984), 163–187.
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