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Abstract

A graph is (k1, k2)-colorable if it admits a vertex partition into a graph with
maximum degree at most k1 and a graph with maximum degree at most k2.
We show that every (C3, C4, C6)-free planar graph is (0, 6)-colorable. We also
show that deciding whether a (C3, C4, C6)-free planar graph is (0, 3)-colorable
is NP-complete.
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1. Introduction

A graph is (k1, k2)-colorable if it admits a vertex partition into a graph with
maximum degree at most k1 and a graph with maximum degree at most k2.
Choi, Liu, and Oum [2] have established that there exist exactly two minimal
sets of forbidden cycle lengths such that every planar graph is (0, k)-colorable
for some absolute constant k.

• Planar graphs without odd cycles are bipartite, that is, (0, 0)-colorable.

• Planar graphs without cycles of length 3, 4, and 6 are (0, 45)-colorable.

The aim of this paper is to improve this last result. Notice that forbidding
cycles of length 3, 4, and 6 as subgraphs or as induced subgraphs result in the
same graph class. For every n > 3, we denote by Cn the cycle on n vertices. So
we are interested in the class C of (C3, C4, C6)-free planar graphs.

We prove the following two theorems in the next two sections.

Theorem 1. Every graph in C is (0, 6)-colorable.

Theorem 2. For every k > 1, either every graph in C is (0, k)-colorable, or
deciding whether a graph in C is (0, k)-colorable is NP-complete.

In addition, we construct a graph in C that is not (0, 3)-colorable in Section 4.
This graph and Theorem 2 imply the following.

1This work is supported by the ANR project HOSIGRA (ANR-17-CE40-0022).
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Corollary 3. Deciding whether a graph in C is (0, 3)-colorable is NP-complete.

The (0, k)-colorability of planar graphs with given girth has been investi-
gated.

• Planar graphs with girth at least 11 are (0, 1)-colorable [4].

• Planar graphs with girth at least 8 are (0, 2)-colorable [1].

• Planar graphs with girth at least 7 are (0, 4)-colorable [1].

These graph classes are subclasses of C.
Since we deal with (0, k)-colorings for some k > 2, we denote by the letter 0

the color of the vertices that induce the independent set and we denote by the
letter k the color of the vertices that induce the graph with maximum degree k.

2. Proof of Theorem 1

The proof uses the discharging method. For every plane graph G, we denote
by V (G) the set of vertices of G, by E(G) the set of edges of G, and by F (G)
the set of faces of G.

For all d, let us call a vertex of a graph G of degree d, at most d, and at
least d a d-vertex, a d−-vertex, and a d+-vertex, respectively. For all vertex v,
a d-neighbor, a d−-neighbor, and a d+-neighbor of v is a neighbor of v that is a
d-vertex, a d−-vertex, and a d+-vertex, respectively. For all d, let us call a face
of G of degree d, at most d, and at least d a d-face, a d−-face, and a d+-face,
respectively. For a set S of vertices, an S-vertex is a vertex that belongs to S,
and an S-neighbor of a vertex v is a neighbor of v that belongs to S. For a set S
of vertices, let G[S] denote the graph induced by S, and G− S = G[V (G) \ S].
For convenience, we will denote G− v for G− {v}.

Let us de�ne the partial order �. Let n3(G) be the number of 3+-vertices
in G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if one of the
following conditions holds:

• |V (G1)| < |V (G2)| and n3(G1) = n3(G2).

• n3(G1) < n3(G2).

Note that the partial order � is well-de�ned and is a partial linear extension of
the subgraph poset.

We suppose for contradiction thatG is a graph in C that is not (0, 6)-colorable
and is minimal according to �. Let n denote the number of vertices, m the
number of edges, and f the number of faces of G. For every vertex v, the degree
of v in G is denoted by d(v). For every face α, the degree of α, denoted by d(α),
is the length of a boundary walk of the face. More generally, when counting the
number of edges of a certain type in a face, we will always count twice the edges
that are only in this face.

Let us �rst prove some results on the structure of G, and then we will prove
that G cannot exist, thus proving the theorem.
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Lemma 4. G is connected.

Proof. If G is not connected, then every connected component of G is smaller
than G and thus admits a (0, 6)-coloring. The union of these (0, 6)-colorings
gives a (0, 6)-coloring of G, a contradiction.

Lemma 5. G has no 1-vertex.

Proof. Let v be a 1-vertex and w be the neighbor of v. The graph G− v admits
a (0, 6)-coloring since G − v ≺ G. We get a (0, 6)-coloring G by assigning to v
the color distinct from the color of w, a contradiction.

Lemma 6. Every 7−-vertex of G has an 8+-neighbor.

Proof. Let v be a 7−-vertex with no 8+-neighbors. The graph G − v admits a
(0, 6)-coloring since G− v ≺ G. If there is a neighbor w of v with no neighbor
colored 0, then we color w with 0. Thus, we can assume that every neighbor of
v that is colored k has a neighbor colored 0 in G − v, and thus it has at most
5 neighbors colored k in G − v. Also, we can assume that v has at least one
neighbor colored 0, since otherwise v can be colored 0. Thus, v has at most six
neighbors colored k and v can be colored k, a contradiction.

Lemma 7. Every vertex with degree at least 3 and at most 7 has two 8+-
neighbors.

Proof. Suppose for contradiction that G contains a d-vertex v such that 3 6
d 6 7 and v has at most one 8+-neighbor. By Lemma 6, v has exactly one
8+-neighbor w. Let w1, . . . , wd−1 be the other neighbors of v. Let H be the
graph obtained from G−v by adding d−1 2-vertices v1, . . . , vd−1, such that for
every i ∈ {1, . . . , d− 1}, vi is adjacent to w and wi.

Notice that H ≺ G since n3(H) = n3(G)−1. Moreover, every cycle of length
` in H is associated to a cycle of length ` or `− 2 in G. Therefore H ∈ C, so H
has a (0, 6)-coloring.

If w is colored 0, then every vi is colored k, so coloring v with k leads to a
(0, 6)-coloring of G, a contradiction. Therefore w is colored k.

If at least one of the vi's is colored k, then w has at most �ve neighbors
colored k in G− v. So we assign k to v and 0 to every wi that is not adjacent
to a vertex colored 0. This leads to a (0, 6)-coloring of H. Otherwise, every vi
is colored 0, every wi is colored k, and w is colored k. Thus we assign 0 to v to
obtain a (0, 6)-coloring of G, a contradiction.

Lemma 8. No 3-vertex is adjacent to a 2-vertex.

Proof. Let w be a 3-vertex adjacent to a 2-vertex v, let x1 and x2 be the other
two neighbors of w, and let u be the other neighbor of v. Let H be the graph
obtained from G− {v, w} by adding �ve 2-vertices v1, v2, w1, w2, and x which
form the 8-cycle uv1w1x1xx2w2v2. It is easy to check that H is in C. By
Lemmas 6 and 7, u, x1, and x2 are 8

+-vertices in G and thus are 9+-vertices in
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Figure 1: A special face (left) and a special con�guration (right).

H. Since w is in G but not in H, n3(H) = n3(G)− 1, so H ≺ G. Therefore H
has a (0, 6)-coloring.

Suppose that v1 and v2 are both colored 0. Then w1, w2, and u are colored
k. We color v with 0 and w with k. The number of neighbors of x1 (resp. x2)
colored k in G is at most the number of neighbors of x1 (resp. x2) colored k
in H. Thus we have a (0, 6)-coloring of G, a contradiction. Now we assume
without loss of generality that v1 is colored k. We color w with the color of x
and we color v with k. The number of neighbors of u (resp. x1, x2) colored k in
G is at most the number of neighbors of u (resp. x1, x2) colored k in H. Thus
we have a (0, 6)-coloring of G, a contradiction.

A special face is a 5-face with three 2-vertices and two non-adjacent 8+-
vertices. See Figure 1, left. A special con�guration is three 5-faces sharing a
common 3-vertex adjacent to three 8+-vertices, such that all the other vertices
of these faces are 2-vertices. See Figure 1, right. We say special structure to
refer indi�erently to a special face or to a special con�guration.

Let us de�ne a hypergraph Ĝ whose vertices are the 8+-vertices of G and
whose hyperedges correspond to the sets of 8+-vertices contained in the same
special structure. For every vertex v of Ĝ, let d̂(v) denote the degree of v in Ĝ,
that is the number of hyperedges containing v.

Lemma 9. Let α be a special structure, with the notation of Figure 1. Consider

a (0, 6)-coloring of α. We can change the color of the xi's, yi's, and u such that

the vi's have no more neighbors colored k than before, and for all i, if vi is
colored k, then vi has a neighbor colored 0 in α.

Proof. If all of the vi's are colored 0, then there is nothing to do. If they are
all colored k, then we assign 0 to u. If one of the vi's, say v0, is colored 0 and
another one, say v1, is colored k, then u and x0 are colored k and we assign 0
to y0. Moreover, if α is a special con�guration and v2 is colored k, then y2 is
colored k and we assign 0 to x2.

Lemma 10. For every vertex v in Ĝ, d(v)− d̂(v) > 7.
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Proof. Let v be a vertex that does not satisfy the lemma, i.e. such that d(v)−
d̂(v) 6 6. Since v is an 8+-vertex in G, d̂(v) > 2. Let α be a special structure

incident to v in Ĝ. We use the notation of Figure 1, with say v = v0. The
graph G − x0 is smaller than G, thus it admits a (0, 6)-coloring. Since G does
not admit a (0, 6)-coloring, v0 is colored k and y0 is colored 0. By Lemma 9,
we can assume that v0 has a neighbor colored 0 in each of its special structures
distinct from α. Since y0 is colored 0, v1 is colored k. If α is a special face, or if
v2 is colored k, then we assign 0 to u. If α is a special con�guration and v2 is
colored 0, then x2 is colored k and we assign 0 to y2. In both cases, v = v0 has
at least d̂(v) neighbors colored 0. Thus v has at most d(v)− d̂(v) 6 6 neighbors
colored k and we can assign k to x0, a contradiction.

Lemma 11. Every component of Ĝ has at least one vertex v such that d(v)−
d̂(v) > 8.

Proof. Suppose the lemma is false, and let C be a component of Ĝ that does
not satisfy the lemma. If C has only one vertex, then this vertex is an 8+-
vertex, which satis�es d(v)− d̂(v) > 8. Therefore C has at least one hyperedge,
which corresponds to a special structure α of G. By Lemma 10, every vertex
of C satis�es d(v) − d̂(v) = 7. We use the notation of Figure 1. The graph
G− {x0, y0} is smaller than G, thus it admits a (0, 6)-coloring. Since G admits
no (0, 6)-coloring, v0 and v1 are colored k. If α is a special con�guration and v2
is colored 0, then x2 and y1 are colored k and we can color y2 and x1 with 0.
Otherwise, we can color u with 0.

Note that v0 and v1 both have six neighbors colored k, otherwise we could
color x0 or y0 with color k and the other one with color 0. By Lemma 9, we
can assume that every vi that is colored k has at least one neighbor colored 0
in each of its special structures besides α. Therefore if we can alter the coloring
such that v0 or v1, say v0, has two neighbors with color 0 in α, then it satis�es
d(v0)− d̂(v0) > 8, a contradiction. Therefore if α is a special con�guration and
v2 is colored k, then as u is colored 0, x1 and y2 are colored k and cannot be
recolored to 0, and thus x2 and y1 are colored 0 and cannot be recolored to k.
Hence, in that case, v2 has six neighbors in k, and thus d(v2) − d̂(v2) > 9, a
contradiction.

Thus, for every vi, either vi is colored 0 or vi has no neighbor colored 0
outside of its special structures and at most one neighbor colored 0 in each
special structure besides α.

We uncolor u and all the xi's and yi's, and let H be equal to G where u,
the xi's, and the yi's are removed. By symmetry, we only consider the vertex
v0. The following procedure either assigns 0 to v0 or ensures that v0 has two
neighbors colored 0 in one of its special structures:

• For each special structure β containing v0 and completely contained in
H, we use the notation of Figure 1, keeping the same vertex for v0, but
changing the other ones for the vertices in β, and do the following:
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� By Lemma 9, we can assume that every vi colored k has a neigh-
bor colored 0 in each of its special structures that are completely
contained in H.

� Suppose that one of the 8+-vertices of β distinct from v0, say v1,
has two neighbors colored 0 in a special structure distinct from β or
a neighbor colored 0 outside of its special structures. Since d(v1) −
d̂(v1) = 7, v1 has at most �ve neighbors colored k outside of β if β is
a special face, and at most four neighbors colored k outside of β if β
is a special con�guration. We assign k to y0 and 0 to x0. If v2 exists
and is colored 0, then we assign 0 to y2, and otherwise we assign 0 to
u. Now v0 has two neighbors colored 0 in β. We end the procedure.

� We uncolor the 7−-vertices of β and remove them from H.

� For every 8+-vertex w 6= v0 in β colored k, we apply the procedure
with w instead of v0. Now w is colored 0 or has two neighbors colored
0 in the same special structure.

� We add back to H the 7−-vertices of β. If v0 is colored 0, then we
give them color k if they are adjacent to a vertex colored 0 and we
assign them 0 otherwise, and we end the procedure. If β is a special
face and v1 is colored k, or if β is a special con�guration and v1 and
v2 are colored k, then we color u and x0 with 0, we color the other
2-vertices with k, and we end the procedure. Suppose β is a special
con�guration, either v1 or v2, say v1, is colored k, and the other one
is colored 0. We assign 0 to x0, x1, and y2, and k to u, y0, y1, and
x1, and we end the procedure. Now all of the vi's distinct from v0
are colored 0. We color x0 and y2 (if it exists) with 0 and we color
the other 7− vertices in β with color k.

• Now in each special structure containing v0 and completely contained in
H, all of the 8+-vertices distinct from v0 are colored 0. We assign 0 to v0
and k to all of the neighbors of v0.

Let us prove that the previous procedure terminates. It always calls itself
recursively on a graph with fewer vertices, thus the number of nested iterations
is bounded by the order of the initial graph. Furthermore, each iteration of the
procedure only does a bounded number of calls to the procedure (at most two).
That proves that the procedure terminates.

In the end, if one of the vi's is colored k, then it has at most �ve neighbors
colored k outside of α if α is a special face, and at most four neighbors colored
k outside of α if α is a special structure. If every vi is colored k, then color u
with color 0 and the other 7−-vertex of α with color k. Otherwise, assign k to
u, and do the following:

• If every vi is colored 0, then assign k to the xi's and the yi's.

• If α is a special face and one of the vi's, say v0, is colored 0 whereas the
other one is colored k, then assign k to x0 and 0 to y0.
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• If α is a special con�guration, then assign k to the yi's, and for all i ∈
{0, 1, 2}, if vi is colored k, then assign 0 to xi, and if vi is colored 0 then
assign k to xi.

In all cases, we get a (0, 6)-coloring of G, a contradiction.

For each component C of Ĝ, we choose a vertex v in C such that d(v)−d̂(v) >
8 as the root of C. We set that v sponsors all of its special structures. While
there is a special structure α in C that has no sponsor, we choose a vertex
in one such special structure that is also in a special structure that is already
sponsored and we designate it to sponsor α. Since C is connected, each of its
special structures gets a sponsor. Moreover, every vertex in C other than v is
incident to at least one special structure that it does not sponsor.

Discharging procedure

For all d, we assign the weight d− 4 to every d-vertex and d-face of G. Thus
every face and every 4+-vertex has non-negative initial weight.

We apply the following discharging procedure.

1. Every 8+-vertex gives weight 1
2 to each of its 7−-neighbors, to each spe-

cial face it sponsors, and to the 3-vertex of each special con�guration it
sponsors. Additionally, for every edge vw where v and w are 8+-vertices,
v and w each give 1

4 to each of the faces containing the edge vw, and 1
4

more to the face containing vw if there is only one face containing vw.

2. For each 3+-vertex v with degree at most 7 in G, v gives 1
2 to each of its

2-neighbors. Moreover, v gives 1
2 to every 5-face that is incident to v, to

two 8+-vertices adjacent to v, and to two 2-vertices.

3. For each face f , we consider a boundary walk of the face, and consider
the vertices of this boundary walk in order. Each time a 3+-vertex v with
degree at most 7 appears in this boundary walk, right after or right before
an 8+-vertex, f gives 1

4 to v (only once even if it is both right before an
8+-vertex and right after an 8+-vertex). Note that this means that f may
give several times to the same vertex if it appears several times in the
boundary walk.

4. Each 5-face gives 1
4 to each of its 2-vertices with no 2-neighbor and 5

8 to
its 2-vertices with a 2-neighbor.

5. Each 7+-face gives 3
4 to each of its 2-vertices that belong to a 5-face and

have no 2-neighbors, 7
8 to each of its 2-vertices that belong to a 5-face

and have a 2-neighbor, 1
2 to each of its 2-vertices that do not belong to a

5-face and have no 2-neighbors, and 3
4 to each of its 2-vertices that do not

belong to a 5-face and have a 2-neighbor. If a 2-vertex is incident to only
one face, then it receives twice the corresponding value from that face.

Let ω be the initial weight distribution, and let ω′ be the �nal weight distri-
bution, after the discharging procedure.
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Lemma 12. Every vertex v satis�es ω′(v) > 0.

Proof. Let v be a vertex of degree d. We have ω(v) = d− 4.

• Suppose that d > 8. The vertex v gives 1
2 to each of its 7−-neighbors

and 1
4 two times for each of its 8+-neighbors in Step 1, for a total of d

2 .

As d > 8, we have ω(v) = d − 4 > d
2 , therefore if v sponsors no special

structure, then ω′(v) = d− 4− d
2 > 0.

Suppose v sponsors a special structure. If v sponsors all of its special
structures, then v is the root of its component in Ĝ, thus d − d̂(v) > 8,

and thus ω′(v) = d − 4 − d̂(v)
2 − d

2 = d − d̂(v) − 4 − d−d̂(v)
2 > 0. If

v does not sponsor all of its special structures, then d − d̂(v) > 7, and

ω′(v) = d− 4− d̂(v)−1
2 − d

2 = d− d̂(v)− 7
2 −

d−d̂(v)
2 > 0.

• Suppose that 4 6 d 6 7. By Lemma 7, v has at least two 8+-neighbors.
The vertex v only gives weight in Step 2. Moreover, it gives 1

2 to each of
its 2-neighbors plus 1

2 for each pair of consecutive 8+-vertices in Step 2.

If v has only 8+-neighbors, then it receives d
2 in Step 1, and gives at most

d
2 in Step 2, so ω′(v) > ω(v) = d − 4 > 0. Suppose v has at least one
7−-neighbor. Let d′ > 2 be the number of 8+-neighbors of v. The vertex
v receives d′

2 in Step 1. It gives at most d−d′
2 to the 2-vertices and at most

d′−1
2 to the faces for a total of at most d−d′

2 + d′−1
2 = d

2 −
1
2 in Step 2. It

receives at least d′

4 in Step 3. We have ω′(v) > d − 4 − d
2 + 3d

′

4 + 1
2 > 0,

since d′ > 2 and d > 4.

• Suppose that d = 3. By Lemma 7, v has at least two 8+-neighbors, and
by Lemma 8, v has no 2-neighbors. If v has exactly two 8+-neighbors,
then it receives 1 in Step 1, gives 1

2 in Step 2, and receives 3
4 in Step 3,

therefore ω′(v) > 1
4 > 0. If v has three 8+-neighbors, then v receives 3

2
in Step 1 and an additional 3

4 in Step 3, and it gives at most 1 in Step 2
unless it is in a special con�guration, in which case it gives at most 3

2 in
Step 2 and receives 2 in Step 1. Therefore if v has three 8+-neighbors,
then ω′(v) > 1

4 > 0.

• Suppose that d = 2. Notice that v cannot be in two 5-faces, since otherwise
G would contain C6 or C4.

� If v is in a 5-face and adjacent to another 2-vertex, then it receives
1
2 from its 8+-neighbor in Step 1, 5

8 from its 5-face in Step 4, and 7
8

from its other face in Step 5.

� If v is in a 5-face and adjacent to no other 2-vertex, then it receives
1 from its 3+-neighbors in Steps 1 and 2, 1

4 from its 5-face in Step 4,
and 3

4 from its other face in Step 5.

� If v is not in a 5-face and is adjacent to another 2-vertex, then it
receives 1

2 from its 8+-neighbor in Step 1, and 3
2 from its faces in

Step 5.
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� If v is not in a 5-face and adjacent to no other 2-vertex, then it
receives 1 from its 3+-neighbors in Steps 1 and 2, and 1 from its
faces in Step 5.

In all cases, v receives 2 over the procedure, and thus ω′(v) = 2−4+2 = 0.

Lemma 13. Every face α satis�es ω′(α) > 0.

Proof. Let α be a face of degree d. We have ω(α) = d− 4.

• Suppose d = 5. If α is a special face, then it receives 1
2 in Step 1 and gives

1
4 + 2 · 58 = 3

2 in Step 4.

If α has no two consecutive 2-vertices, then it gives at most 1
4 to its 7−-

neighbors at Steps 3 and 4, and does not actually give anything unless one
of its vertices is an 8+-vertex, and thus gives at most 1 overall.

If α has two consecutive 2-vertices and its three other vertices are 8+-
vertices, then it receives 1 in Step 1 and gives at most 2 · 5

8 = 5
4 6 2

overall.

The only remaining case is when α has, in this consecutive order, two
2-vertices, an 8+-vertex, a 3+-vertex with degree at most 7, and another
8+-vertex. In this case, α receives 1

2 in Step 2, and gives 2 · 58 + 1
4 = 3

2
over Steps 3 and 4.

In all cases, ω′(α) > 1− 1 = 0.

• Suppose d = 7. Note that if there are two adjacent 2-vertices in α, then
these two vertices are not in a 5-face, otherwise there would be a cycle
of length 6 in G. The face α has an initial charge of 3, gives at most 3

4
to its 7−-vertices that are adjacent to an 8+-vertex in α, and nothing to
its other vertices. There can be at most four of these vertices. Therefore
ω′(α) > 3− 4 · 34 = 0.

• Suppose d = 8. Note that at most one pair of adjacent 2-vertices is in a
5-face, otherwise there would be a cycle of length 6 in G. The face α has
an initial charge of 4, gives at most 7

8 to its 7−-vertices that are adjacent
to an 8+-vertex in α, and nothing to its other vertices. There can be at
most �ve of these vertices, and at most two are given 7

8 , the other being
given at most 3

4 . Therefore ω
′(α) > 4− 2 · 78 − 3 · 34 = 0.

• Suppose d = 9. Note that at most two pairs of adjacent 2-vertices are in a
5-face, otherwise there would be a cycle of length 6 in G. The face α has
an initial charge of 5, gives at most 7

8 to its 7−-vertices that are adjacent
to an 8+-vertex in α, and nothing to its other vertices. There can be at
most six of these vertices, at most four are given 7

8 , and the others are
given at most 3

4 . Therefore ω
′(α) > 5− 4 · 78 − 2 · 34 = 0.
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• Suppose d > 10. The face α has an initial charge of d− 4, gives at most 7
8

to its 7−-vertices that are adjacent to an 8+-vertex in α, and nothing to
its other vertices. There can be at most d− 4 of these vertices, therefore
ω′(α) > d− 4− (d− 4) · 78 > 0.

By Euler's formula, since G is connected by Lemma 4 and has at least one
vertex, n + f − m = 2. The initial weight of the graph is

∑
v∈V (G) ω(v) +∑

α∈F (G) ω(α) =
∑
v∈V (G)(d(v) − 4) +

∑
α∈F (G)(d(α) − 4) =

∑
v∈V (G) d(v) +∑

α∈F (G) d(α) − 4n − 4f = 4m − 4n − 4f = −8 < 0. Therefore the initial
weight of the graph is negative, thus the �nal weight of the graph is negative.
Since by Lemmas 12 and 13, the �nal weight of every face and every vertex is
non-negative, we get a contradiction. This completes the proof of Theorem 1.

3. Proof of Theorem 2

Recall that we have to prove that for every k > 1, either every graph in C
is (0, k)-colorable, or deciding whether a graph in C is (0, k)-colorable is NP-
complete.

Claim 14. We can assume that k > 3.

Proof. Both (0, 1)-colorability and (0, 2)-colorability are NP-complete for C since
(0, 1)-colorability is NP-complete for planar graphs with girth 9 [3] and (0, 2)-
colorability is NP-complete for planar graphs with girth 7 [5].

Let k > 3 be a �xed integer. Suppose that there exists a graph in C that
is not (0, k)-colorable. We consider such a graph Hk that is minimal according
to �.

Claim 15. The graph Hk contains a 2-vertex.

Proof. By adapting the proofs of Lemmas 4, 5, and 6, we obtain that the min-
imum degree of Hk is at least two and every (k + 1)−-vertex in Hk is adjacent
to a (k + 2)+-vertex. In particular, since k > 3, every 3-vertex is adjacent
to a 5+-vertex. Suppose for contradiction that Hk contains no 2-vertex. We
consider the discharging procedure such that the initial charge of every vertex
is equal to its degree and every 5+-vertex gives 1

3 to every adjacent 3-vertex.
Then the �nal charge of a 3-vertex is at least 3 + 1

3 = 10
3 , the �nal charge of

a 4-vertex is 4 > 10
3 , and the �nal charge of a d-vertex with d > 5 is at least

d − d × 1
3 = 2d

3 > 10
3 . This implies that the maximum average degree of Hk is

at least 10
3 , which is a contradiction since Hk is a planar graph with girth at

least 5. Thus, Hk contains a 2-vertex.

By Claim 15, Hk contains a 2-vertex v adjacent to the vertices u1 and u5.
By minimality of Hk, Hk − v is (0, k)-colorable, every (0, k)-coloring of Hk − v
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is such that u1 and u5 get distinct colors, and the vertex in {u1, u5} that is
colored k has exactly k neighbors that are colored k.

Consider the graph H ′k obtained from Hk − v by adding three 2-vertices u2,
u3, and u4 which form a path u1u2u3u4u5. Notice that H ′k is (0, k)-colorable
and that every (0, k)-coloring of H ′k is such that u3 is colored k and is adjacent
to exactly one vertex colored k. It is easy to see that H ′k is in C.

We are ready to prove that deciding whether a graph in C is (0, k)-colorable
is NP-complete. The reduction is from the NP-complete problem of deciding
whether a planar graph with girth at least 9 is (0, 1)-colorable [3]. Given an
instance G of this problem, we construct a graph G′ ∈ C, as follows. For every
vertex v in G, we add k−1 copies of H ′k and we add an edge between v and the
vertex u3 of each of these copies. Notice that G′ is in C since G′ is planar and
every cycle of length at most 8 is contained in a copy of H ′k which is in C. Notice
that a (0, 1)-coloring of G can be extended to a (0, k)-coloring of G′. Conversely,
a (0, k)-coloring of G′ induces a (0, 1)-coloring of G. So G is (0, 1)-colorable if
and only if G′ is (0, k)-colorable.

4. A graph in C that is not (0, 3)-colorable

Consider the graph Fx,y depicted in Figure 2. Suppose for contradiction that
Fx,y admits a (0, 3)-coloring such that all the neighbors of x and y are colored
0 (the white vertices in the picture). Then the neighbors of those white vertices
are colored k. We consider the 8 big vertices. Each of them is colored k and is
adjacent to two vertices colored k. For every pair of adjacent red vertices, at
least one of them is colored k. Since there are 9 pairs of adjacent red vertices,
at least 9 red vertices are colored k. Notice that every red vertex is adjacent to
a big vertex. By the pigeon-hole principle, at least one of the 8 big vertices is
adjacent to at least two red vertices colored k. This big vertex is thus adjacent
to at least four vertices colored k, which is a contradiction.

In the graph depicted in Figure 3, every dashed line represents a copy of
Fx,y such that the extremities are x and y. Suppose for contradiction that this
(C3, C4, C6)-free planar graph admits a (0, 3)-coloring. Each of the two drawn
edges has at least one extremity colored k. Thus, there exist two vertices u and
v colored k that are linked by 7 copies of Fx,y. Since at most 3 neighbors of u
and at most 3 neighbors of v can be colored k, one of these 7 copies of Fx,y is
such that all the neighbors of x and y are colored 0. This contradiction proves
Theorem 2.

Following the proof above, we see that if we remove the green parts in Fig-
ures 2 and 3, we obtain a planar graph with girth 7 that is not (0, 2)-colorable.
A graph with such properties is already known [5], but this new graph is smaller
(184 vertices instead of 1304) and the proof of non-(0, 2)-colorability is simpler.
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