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a b s t r a c t

Circle graphs with girth at least five are known to be 2-degenerate [A.A. Ageev, Every circle
graph with girth at least 5 is 3-colourable, Discrete Math. 195 (1999) 229–233]. In this
paper, we prove that circle graphs with girth at least g ≥ 5 and minimum degree at least
two contain a chain of g − 4 vertices of degree two, which implies Ageev’s result in the
case g = 5. We then use this structural property to give an upper bound on the circular
chromatic number of circle graphs with girth at least g ≥ 5 as well as a precise estimate of
their maximum average degree.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

A circle graph is the intersection graph of the chords of a circle. It is not difficult to show that the class of circle graphs
contains all the complete bipartite graphs. This implies that triangle-free circle graphs have arbitrarily large minimum
degree. However, Ageev [1] proved that circle graphs with girth (size of a shortest cycle) at least five have minimum degree
at most two:

Theorem 1 (Ageev [1]). Every circle graph with girth at least five contains a vertex with degree at most two.

In this paper, we prove the following extension of Ageev’s result:

Theorem 2. Every circle graph with girth g ≥ 5 and minimum degree at least two contains a chain of (g − 4) vertices of degree
two.

Ageev [1] uses his structural result to prove that circle graphs with girth at least five have chromatic number at most
three. We can use Theorem 2 to obtain a refinement of this result for circle graphs with larger girth. Instead of considering
the chromatic number of these graphs, we consider their circular chromatic number. For two integers 1 ≤ q ≤ p, a (p, q)-
coloring of a graph G is a coloring c of the vertices of G with colors {0, . . . , p− 1} such that for any pair of adjacent vertices x
and y, we have q ≤ |c(x)− c(y)| ≤ p− q. The circular chromatic number of G is

χc(G) = inf
(

p

q

∣∣∣∣ there exists a (p, q)-coloring of G
)

.

It is known that χ(G) − 1 < χc(G) ≤ χ(G), and so χ(G) = dχc(G)e. The chromatic number can thus be considered as an
approximation of the circular chromatic number.

Using a well-known observation on circular coloring (see e.g. Corollary 2.2 in [2]), the existence of a chain of (g − 4)
vertices of degree two implies the following result:
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Fig. 1. (a) The unique circle representation R6 of C6 . (b) A sub-representation of R6 .

Corollary 1. Every circle graph G with girth g ≥ 5 has circular chromatic number

χc(G) ≤ 2+
1⌊

g−3
2

⌋ .

In Section 4, we study the maximum average degree of a graph G (see e.g. [5]) defined as

mad(G) = max
{
ad(H),H ⊆ G

}
, where ad(H) =

2|E(H)|

|V(H)|
.

For planar graphs, there is a simple relation between girth and maximum average degree: any planar graph G with girth g
is such that mad(G) < 2g/(g − 2). On the other hand, there exists a family (Gn)n≥0 of planar graphs with girth g, such that
mad(Gn)→ 2g/(g − 2) when n→∞. We would like to obtain the same kind of link between the girth and the maximum
average degree of circle graphs. The following corollary is a straightforward consequence of Theorem 2:

Corollary 2. Any circle graph G with girth g ≥ 5 is such that mad(G) < 2+ 2/(g − 4).

Note that Corollary 2 has some implications on the circular choosability of circle graphs. Using Proposition 32(i) in
Section 5.4 of [3], we can prove:

Corollary 3. Every circle graph G with girth g ≥ 5 has circular choice number cch(G) ≤ 2+ 4
g−2 .

To improve Corollary 2, we consider

µg(F ) = sup
{
mad(G) | G ∈ F and G has girth at least g

}
.

For planar graphs, outerplanar graphs, and partial 2-trees this parameter is easy to compute and is known to be always a
rational number. The following theorem shows that this is not the case for the class of circle graphs.

Theorem 3. For every g ≥ 5, µg(Circle ) = 2
√

g−2
g−4 .

In the next section, we give some notation and definitions. We prove Theorem 2 in Section 3 and Theorem 3 in Section 4.

2. Notation

Let C denote the unit circle, and let us take the clockwise orientation as the positive orientation of C. Let {x0, . . . , xk−1} ⊂ C,
we say that (x0, . . . , xk−1) are in cyclic order if the minimum between the sum of the length of the arcs −−→xixi+1, 0 ≤ i ≤ k− 1,
and the sum of the length of the arcs−−→xi+1xi, 0 ≤ i ≤ k− 1, is equal to one, where i is taken modulo k. A pair {x, y} of elements
of C is called a chord of C with endpoints x and y. Two chords {x1, y1} and {x2, y2} intersect if (x1x2y1y2) are in cyclic order,
otherwise they are said to be parallel.

All graphs considered in this paper are simple: they do not have any loop nor parallel edges. We call a k-vertex (resp.
≤k-vertex, ≥k-vertex) a vertex of degree k (resp. at most k, at least k).

By definition, every circle graph G with set of vertices V(G) = {v1, . . . , vn} admits a representation C = {{x1, y1}, . . . ,
{xn, yn}} such that for all i, j, vi and vj are adjacent inG if and only if the chords {xi, yi} and {xj, yj} intersect in C. We only consider
representations in which endpoints and intersection points of chords are all distinct. A representation C ′ obtained from C
only by removing chords is called a sub-representation of C. Observe that if C is a representation of G, a sub-representation
of C corresponds to an induced subgraph of G.

Remark that in general, circle graphs do not have a unique representation. However, cycles are uniquely representable;
Fig. 1 depicts the unique representation of a cycle, and a sub-representation of this representation.

3. Proof of Theorem 2

Let G = (V, E) be a circle graph with girth g ≥ 5 and minimum degree at least two, and let C = {{x1, x
′

1}, . . . , {xn, x
′

n}} be a
circle representation of G. We first decompose the chords of C into two sets, using the following rule: color each chord {y, y′}
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Fig. 2. A chain of t ≥ g − 4 vertices of degree two in G.

blue if there exists two chords {x, x′} and {z, z′}, such that (xyzz′y′x′) are in order around the circle. Otherwise color the chord
red. Let CR (resp. CB) be the representation induced by the red (resp. blue) chords and GR (resp. GB) be the corresponding
graph. We first prove the following lemma.

Lemma 1. CR is a sub-representation of the representation of a cycle.

Proof. Assume that GR contains a ≥3-vertex v, adjacent to x, y, and z in GR. Since g ≥ 5, the graph G does not contain any
triangle, and so {x, y, z} is an independent set. This implies that the three corresponding red chords are parallel, which
contradicts the definition of a red chord.

Hence, GR has maximum degree two. Suppose now that GR contains a cycle. Then if there exists a vertex which is not in
the cycle, the corresponding chord, as well the chords corresponding to two non-adjacent vertices of the cycle, are parallel
(recall that the cycle has length at least five, since g ≥ 5). This contradicts the definition of a red chord. So GR is either a cycle
or a union of disjoint paths.

Suppose now that CR is not a sub-representation of a cycle. Then GR is necessarily a union of disjoint paths, and two of
them are not in cyclic order in CR. This also contradicts the definition of a red chord, so CR is a sub-representation of the
representation of a cycle. �

Observe that each blue chord {x, y} induces two arcs −→xy and −→yx on the circle. We denote by A1 the set of such arcs.
Similarly, two intersecting blue chords {u, v} and {x, y} induce four consecutive arcs whose lengths add up to one, say without
loss of generality−→ux ,−→xv ,−→vy , and−→yu . We denote by A2 the set of all such arcs.

For any arc −→xy of the circle, we define ρ(−→xy) as the number of red chords having both endpoints in −→xy . We consider the
integer t = min{ρ(−→xy),−→xy ∈ A1 ∪A2,ρ(

−→xy) > 0}.
If there is no blue chord in our decomposition, then G is either a cycle or a union of paths, and thus contains a ≤1-vertex

or g adjacent 2-vertices. So we can assume from now on that GB is non-empty. Observe that for any blue chord {x, y}, we
have ρ(−→xy) > 0 and ρ(−→yx) > 0 since otherwise {x, y}would be red. Hence, the integer t exists. We now consider two cases,
depending on whether the minimum is reached by two intersecting chords or by a single chord.

Case 1: The minimum t > 0 is reached by two intersecting blue chords, say {x, x′} and {y, y′}, and for every blue chord
{u, v}, we have ρ(−→uv) 6= t. Let us assume without loss of generality that t = ρ(−→xy). According to the clockwise order, we
denote by {x1, x

′

1}, . . . {xt, x
′

t} the red chords having both endpoints in −→xy (see Fig. 2(a)). Observe that every blue chord has
at most one endpoint in−→xy , since otherwise we would have a blue chord {u, v}with 1 ≤ ρ(−→uv) ≤ t, which would contradict
the hypothesis.

We first prove that the graph induced by the chords {xi, x′i} (1 ≤ i ≤ t) is a path. If this is not the case, then for some
i the chords {xi, x′i} and {xi+1, x

′

i+1} do not intersect. Then either one of them corresponds to a ≤1-vertex, or each of them
intersects a blue chord. Such a blue chord also intersects {x, x′} or {y, y′}, since it has only one endpoint in−→xy . This contradicts
the minimality of t.

We now prove that the arc
−−−→
x2x
′

t−1 does not contain any endpoint of a blue chord. Observe that if the arc contains the
endpoint u of a blue chord, then there exists 1 ≤ i ≤ t − 2 such that u ∈

−−→
x′ixi+2, since otherwise this would create a triangle.

If such an endpoint u exists, the related blue chord along with {x, x′} or {y, y′} contradicts the minimality of t.
Hence, the vertices corresponding to {xi, x′i} (2 ≤ i ≤ t − 1) are a chain of (t − 2) 2-vertices in G. Since G does not

contain any 1-vertex, the chord {x1, x
′

1} intersects a chord {u, u′} distinct from {x2, x
′

2}. Such a chord may be blue or red,
but by the minimality of t it cannot intersect {y, y′}. So the chord {u, u′} has to intersect {x, x′} and since g ≥ 4, exactly
one such {u, u′} exists. Similarly, {xt, x′t} intersects exactly one chord distinct from {xt−1, x

′

t−1}, say {v, v′}, and {v, v′} also
intersects {y, y′}. Thus the vertices corresponding to {xi, x′i} (1 ≤ i ≤ t) form a chain of t 2-vertices in G. Since the chords
{x, x′}, {u, u′}, {x1, x

′

1}, . . . , {xt, x
′

t}, {v, v
′
}, {y, y′} correspond to a cycle in G, we have t ≥ g − 4.

Case 2: The minimum t > 0 is reached by a blue chord {x, y}. The proof is the same as the previous one, except that we
obtain a chain of (g − 3) 2-vertices instead of (g − 4) 2-vertices (see Fig. 2(a)).

4. Proof of Theorem 3

Let us first give a construction to prove the lower bound. For every g ≥ 5, we construct a family
(
Qg,t

)
t≥0 of circle graphs

with girth g such that Qg,0 = Cg (the cycle on g vertices) and Qg,t+1 is obtained by adding chords to the representation of Qg,t .
A k-region is a region inside the circle, which is incident to the circle and to exactly k chords. Note that in any Qg,t , every

k-region is either a 2- or a 3-region. The representation of Qg,t+1 is obtained from the representation of Qg,t by adding (g−4)
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Fig. 3. From Qg,t to Qg,t+1 .

Fig. 4. Examples.

Fig. 5. The matrix Mg and the eigenvector V .

chords and two half-chords in any 2-region, and (g− 5) chords and two half-chords in any 3-region (see Fig. 3, where thick
chords correspond to chords of Qg,t , and thin chords correspond to chords added to form Qg,t+1).

Any 2-region in Qg,t produces in Qg,t+1 a face F of size g, (g − 3) vertices (2(g − 3) half-chords), (g − 2) edges, (g − 3)
2-regions, and (g − 2) 3-regions. Any 3-region in Qg,t produces in Qg,t+1 a face F of size g, (g − 4) vertices, (g − 3) edges,
(g − 4) 2-regions, and (g − 3) 3-regions.

We now consider the vector Vg,t =
t(n,m, R2, R3) whose components are respectively the number of vertices, edges,

2-regions, and 3-regions of Qg,t . By construction, we have that Vg,t+1 = MgVg,t , where Mg is the matrix given in Fig. 5.
The limit of the average degree ad(Qg,t) of Qg,t when t → ∞ can be obtained from the unique eigenvector V , given in

Fig. 5, associated to the largest eigenvalue g − 3+
√

(g − 2)(g − 4) of Mg . We thus obtain:

µg ≥ lim
t→∞

ad(Qg,t) = 2 ·
g − 2+ (g − 3)

√
(g − 2)/(g − 4)

g − 3+
√

(g − 2)(g − 4)
= 2

√
g − 2
g − 4

.

Observe that the graphs Qg,t with t ≥ 1 are circle graphs with girth g ≥ 5 that contain neither ≤1-vertices nor chains of
(g − 3) 2-vertices (see Fig. 4 for an example with g = 5), which proves that Theorem 2 is optimal in a certain way. Remark
also that for any g ≥ 5, Qg,t contains Kt+3 as a minor: Qg,0 can be contracted into K3, and if Qg,t contains a Kt+3 minor, then the
cycle we add to obtain Qg,t+1 can be contracted into a dominating vertex, which gives a Kt+4 minor.

We now prove the upper bound by contradiction. Since circle graphs of girth at least g are closed under taking induced
subgraphs, it is sufficient to prove that every circle graph G with girth g at least five has average degree ad(G) < 2

√
g−2
g−4 .

Let G be a circle graph and C be a circle representation of G. We denote by R(C) the planar graph constructed as follows:

• the vertex set of R(C) is the set of crossings of chords in C,
• two distinct vertices are adjacent in R(C) if and only if they correspond to consecutive crossings of a same chord in C.

Observe that the construction above clearly gives a natural planar embedding of R(C). In the following, we only consider
this precise planar embedding. Note that R(C) has maximum degree four.

Let us consider a fixed integer g ≥ 5 and a circle graph G1 with girth at least g, such that ad(G1) > 2
√

g−2
g−4 , and such that

G1 is minimal with this property. That is, for any circle graph H with girth at least g and such that |V(H)| < |V(G1)|, we have
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Fig. 6. From C1 to C2 .

ad(H) < 2
√

g−2
g−4 . Observe that by minimality, G1 does not contain any ≤1-vertex, since otherwise by removing it we would

obtain a smaller graph with larger average degree. Note also that G1 is connected.
Let C1 be a representation of G1. If the outerface of the planar embedding of R(C1) contains a 4-vertex, we apply the

following operation on C1, which gives a new representation C2 and a new circle graph G2 with girth g. Let u denote a 4-
vertex on the outerface of R(C1). It corresponds to an edge between two vertices v1 and v2 of G1, represented by two crossing
chords c1 and c2 in C1. Since u is a 4-vertex in R(C1), the chords c1 and c2 respectively cross two chords c′1 and c′2 as depicted
in Fig. 6. Let v′1 and v′2 be the vertices of G1 associated to c′1 and c′2. Since u is on the outerface of R(C1), v′1 and v′2 are not
adjacent in G1. Hence, we can add a path of g − 4 chords between c′1 and c′2, as depicted in Fig. 6. Let C2 denote the new
representation, and G2 be the associated circle graph. The g − 4 vertices added to G1 to obtain G2 form a cycle of length
exactly g in G2 containing v1, v2, v′1, and v′2. Note that the number of 4-vertices on the outerface of the plane graph associated
to the representation decreases by one after at most two iterations of this process.

Let n1 and m1 denote respectively the number of vertices and edges of G1. By Corollary 2, we have that ad(G1) < 2 · g−3
g−4 .

This implies that ad(G2) = 2 · m1+g−3
n1+g−4 > 2 · m1

n1
= ad(G1). Thus the average degree increases during this operation.

We repeat this operation until we obtain a circle graph G with girth g having a representation C such that the outerface
of the planar embedding of R(C) does not contain any 4-vertex. The consequence of the previous observation is that
ad(G) > ad(G1) > 2

√
g−2
g−4 . Let n and m be the number of vertices and edges of G. This implies in particular that:√

g − 2
g − 4

n < m. (1)

Let N, M, and F denote respectively the number of vertices, edges, and faces of R(C). Since a crossing in C corresponds to
both an edge in G and a vertex in R(C), we have:

N = m. (2)

We can write Euler’s formula for the planar embedding of R(C) as follows:

M + 2 = F + N. (3)

Let Nd denote the number of d-vertices in R(C). Since G1 does not contain any ≤1-vertex, and no new ≤1-vertex is created
during the transformation, the graph G does not contain any ≤1-vertex either. This implies in particular that R(C) does not
contain ≤1-vertices. Thus, the degree of a vertex in R(C) is at least 2 and at most 4 and we have:

N = N2 + N3 + N4. (4)

The sum of vertex degrees is equal to twice the number of edges in R(C):

2N2 + 3N3 + 4N4 = 2M. (5)

Any chord in a representation of G corresponding to some vertex v ∈ G contains (deg(v) − 1) edges of R(C). Since∑
v∈G(deg(v)− 1) = 2m− n, we have:

2m− n = M. (6)

Note that the outerface of R(C) contains every 2-vertex, every 3-vertex, and no 4-vertex of R(C). Moreover, R(C) cannot
contain a face of degree strictly less than g, since otherwise G would contain a cycle of length strictly less than g. We thus
obtain a lower bound on the sum of degrees of the faces of R(C), which is equal to twice the number of edges in R(C):

g(F − 1)+ N2 + N3 ≤ 2M. (7)

Let us decompose the chords of C into blue and red chords as done in the proof of Theorem 2. Using the previous notation,
CB is the sub-representation of C induced by the blue chords and GB is the corresponding circle graph. Note that GB is a proper
induced subgraph of G1 and G. We thus have:

ad
(
GB
)
=

2(m− N2 − N3)

n− N2
< 2

√
g − 2
g − 4

<
2m
n
= ad (G) .
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This implies that 2(N2+N3)
N2

> 2m
n
> 2

√
g−2
g−4 , which gives:

(√
g − 2
g − 4

− 1
)
N2 < N3. (8)

The combination (g−4)× (1)+ (g−4)
(

2
√

g−2
g−4 − 1

)
× (2)+ g× (3)+2(g−2)

(
1−

√
g−4
g−2

)
× (4)+ 1

2 (g−2)
(

1−
√

g−4
g−2

)
×

(5)+
√

(g − 2)(g − 4)× (6)+ (7)+ 1
2 (g − 4)

(√
g−2
g−4 − 1

)
× (8) gives g < 0, a contradiction.

The idea of the proof is to obtain a contradiction using Euler’s Formula applied to the planar graph associated to a
representation of the circle graph. Then we used a computer algebra system to ensure that the set of inequalities has no
solution and also to find the positive weights appearing in the combination above.

5. Perspectives

In the present paper, we study the structure of sparse circle graphs. The opposite problem of studying the structure of
dense circle graphs seems much harder. For example, the relation between the clique number of circle graphs and their
chromatic number is not precisely established. Kostochka and Kratochvíl [4] proved that every circle graph with clique
number ω has chromatic number at most 2ω+6, but this is still far from the lower bound of Ω(ω logω).

Note that the upper bound of 2ω+6 even holds for polygon-circle graphs, a superclass of circle graphs, defined as the
intersection class of chords and convex polygons of the circle. The size of this class is known to be much larger, but we
suspect that polygon-circle graphs with girth at least five behave like circle graphs with girth at least five. It would be
interesting to see if the results of the present paper extend to the class of polygon-circle graphs.
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