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a b s t r a c t

An oriented clique, or oclique, is an oriented graph G such that its oriented chromatic
number χo(G) equals its order |V (G)|. We disprove a conjecture of Duffy, MacGillivray,
and Sopena [Oriented colourings of graphs with maximum degree three and four, Duffy
et al. (2019) by showing that for maximum degree 4, the maximum order of an oclique
is equal to 12. For maximum degree 5, we prove that the maximum order of an oclique
is between 16 and 18. In the same paper, Duffy et al. also proved that the oriented
chromatic number of connected oriented graphs with maximum degree 3 and 4 is at
most 9 and 69, respectively. We improve these results by showing that the oriented
chromatic number of non-necessarily connected oriented graphs with maximum degree
3 (resp. 4) is at most 9 (resp. 26). The bound of 26 actually follows from a general result
which determines properties for a target graph to be universal for graphs of bounded
maximum degree. This generalization also allows us to get the upper bound of 90 (resp.
306, 1322) for the oriented chromatic number of graphs with maximum degree 5 (resp.
6, 7).

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Oriented graphs are directed graphs with neither loops nor opposite arcs. Unless otherwise specified, the term graph
refers to oriented graph in the sequel.

For a graph G, we denote by V (G) its set of vertices and by A(G) its set of arcs. For two adjacent vertices u and v, we
denote by −→uv the arc from u to v, or simply uv whenever its orientation is not relevant (therefore, uv =

−→uv or uv =
−→
vu).

Given two graphs G and H , a homomorphism from G to H is a mapping ϕ : V (G) → V (H) that preserves the arcs, that
is,

−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever −→xy ∈ A(G).
An oriented k-coloring of G can be defined as a homomorphism from G to H , where H is a graph with k vertices. The

existence of such a homomorphism from G to H is denoted by G → H . The vertices of H are called colors, and we say
that G is H-colorable. The oriented chromatic number of a graph G, denoted by χo(G), is defined as the smallest number
of vertices of a graph H such that G → H . If F is a family of oriented graphs, then χo(F) denotes the maximum of χo(G)
over all G ∈ F .
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The notion of oriented coloring introduced by Courcelle [5] has been studied by several authors and the problem
of bounding the oriented chromatic number has been investigated for various graph classes: outerplanar graphs (with
given minimum girth) [18,20], 2-outerplanar graphs [9,16], planar graphs (with given minimum girth) [1–4,14,16,17,19],
graphs with bounded maximum average degree [3,4], graphs with bounded degree [7,11,23], graphs with bounded
treewidth [15,20,21], Halin graphs [8], and graph subdivisions [25]. A survey on the study of oriented colorings has been
done by Sopena in 2001 and recently updated [22].

For bounded degree graphs, Kostochka et al. [11] proved as a general bound that graphs with maximum degree ∆ have
oriented chromatic number at most 2∆22∆. They also showed that, for every ∆, there exists graphs with maximum degree
∆ and oriented chromatic number at least 2∆/2. For low maximum degrees, specific results are only known for graphs with
maximum degree 3 and 4. Sopena [20] proved that graphs with maximum degree 3 have an oriented chromatic number
at most 16 and conjectured that any such connected graphs have an oriented chromatic number at most 7. The upper
bound was later improved by Sopena and Vignal [23] to 11. Recently, Duffy et al. [7] proved that 9 colors are enough
for connected graphs with maximum degree 3. They proved in the same paper that connected graphs with maximum
degree 4 have oriented chromatic number at most 69. Lower bounds are given by Duffy et al. [7] who exhibit a graph
with maximum degree 3 (resp. 4) and oriented chromatic number 7 (resp. 11). Note that the above-mentioned conjecture
of Sopena is thus best possible. In each of the above cases, the lower bound is achieved by presenting an oclique. An oclique,
or oriented clique, is an oriented graph G such that χo(G) = |V (G)|.

Theorem 1 ([10]). An oriented graph is an oclique if and only if any two vertices are connected by a directed path of length 1
or 2.

In their paper, Duffy et al. proved the following upper bound on maximum size of an oclique with maximum degree ∆.

Theorem 2 ([7]). Every oclique with maximum degree ∆ has at most
⌊

(∆+1)2+1
2

⌋
vertices.

The theorem gives the upper bound 8 (resp. 13, 18) for ∆ = 3 (resp. ∆ = 4, ∆ = 5). They improved the above general
result for ∆ = 3 by showing that the largest number of vertices in a subcubic oclique is 7. They also prove that there
exists an oclique of size 11 with maximum degree ∆ = 4. Moreover they conjectured that the maximum order of an
oclique with maximum degree ∆ = 4 is 11.

In this paper, we first improve the known upper bounds for graphs with low maximum degree. Second, we consider
ocliques of maximum degree 4 and 5, and disprove the above-mentioned conjecture of Duffy et al. [7].

We prove in Section 4 that the oriented chromatic number of graphs with maximum degree 3 is at most 9 (χo(G3) ⩽
9), that is, we remove the condition of connectivity; see Theorem 8. In Section 5, we prove a general result which
determines properties of a target graph to be universal for (non-necessarily connected) graphs of maximum degree ∆ ⩾ 4;
see Theorem 11. As a consequence of this general result, we obtain that the oriented chromatic number of graphs with
maximum degree 4 is at most 26 (χo(G4) ⩽ 26), substantially decreasing the bound of 69 due to Duffy et al. [7]. We also
get that χo(G5) ⩽ 90, χo(G6) ⩽ 306, and χo(G7) ⩽ 1322.

In Section 6, we disprove the conjecture of Duffy et al. [7] by showing that the maximum order of an oclique maximum
degree 4 equals 12 (χo(G4) ⩾ 12). More precisely, we exhibit an oclique of order 12 and maximum degree 4, and show
that there is no such oclique of order at least 13. Similarly in Section 7, we exhibit an oclique of order 16 and maximum
degree 5 (χo(G5) ⩾ 16).

The next two sections will be devoted to define the notation and to present the properties of the target graphs we use
to prove our upper bounds.

2. Notation

In the remainder of this paper, we use the following notions. For a vertex v of a graph G, we denote by N+

G (v) the set of
outgoing neighbors of v, by N−

G (v) the set of incoming neighbors of v and by NG(v) = N+

G (v)∪N−

G (v) the set of neighbors
of v (subscripts are omitted when the considered graph is clearly identified from the context). The degree of a vertex v
(resp. in-degree, out-degree), denoted by d(v) (resp. d−(v), d+(v)), is the number of its neighbors |N(v)| (resp. incoming
neighbors |N−(v)|, outgoing neighbors |N+(v)|). Let G∆ denote the family of oriented graphs with maximum degree ∆. If
two graphs G and H are isomorphic, we denote this by G ∼= H .

3. Paley tournaments and Tromp digraphs

In this section, we describe the general construction of graphs that will be used to prove Theorems 8 and 11, and
present some of their useful properties.

For a prime power p ≡ 3 (mod 4), the Paley tournament QRp is defined as the graph whose vertices are the elements
of the field Fp and such that −→uv is an arc if and only if v − u is a non-zero quadratic residue of Fp. Clearly QRp is vertex-
and arc-transitive.

An orientation n-vector is a sequence α = (α1, α2, . . . , αn) ∈ {−1, 1}n of n elements. An ordered n-clique is a sequence
S = (v1, v2, . . . , vn) of n vertices that induce an n-clique of a graph G. The vertex u is said to be an α-successor of S if for
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Fig. 1. The Tromp graph Tr(G).

any i, 1 ⩽ i ⩽ n, we have −→uvi ∈ A(G) whenever αi = 1 and −→
viu ∈ A(G) otherwise. We say that a graph G has Property Pn,k if,

for every ordered n-clique S of G and any orientation n-vector α, there exist k distinct α-successors of S. Such Properties
Pn,k have been extensively used in many papers dealing with oriented coloring.

Proposition 3. The Paley tournament QRp has Properties P1, p−1
2

and P2, p−3
4
.

Proof. By the vertex-transitivity of QRp, the in-degree of every vertex is equal to its out-degree. This implies that QRp
has Property P1, p−1

2
.

Let us prove that QRp has Property P2, p−3
4
. To do so, by arc-transitivity of QRp, we just have to show that there exist at

least p−3
4 α-successors of the sequence S = (0, 1) for any of the four orientation vector α ∈ {−1, 1}2.

We first need to count the transitive triangles with arcs −→xy , −→yz , and −→xz in QRp. There are p choices for the source vertex
x of a transitive triangle. The number of transitive triangles such that x = 0 is equal to the number of arcs in N+(0), that
is,

((p−1)/2
2

)
=

(p−1)(p−3)
8 . Thus, QRp contains p(p−1)(p−3)

8 transitive triangles.
Considering α = (+1, +1), we can notice that |N+(0) ∩ N+(1)| is the number of transitive triangles such that −→xy =

−→
01.

Since QRp is arc-transitive and contains p(p−1)
2 arcs, |N+(0) ∩ N+(1)| =

p(p−1)(p−3)/8
p(p−1)/2 =

p−3
4 . Similarly for α = (−1, −1) and

α = (+1, −1), considering −→yz =
−→
01 gives |N−(0) ∩ N−(1)| =

p−3
4 and considering −→xz =

−→
01 gives |N+(0) ∩ N−(1)| =

p−3
4 .

Finally for α = (−1, +1), we have N−(0) ∩ N+(1) = V
(
QRp

)
\ {0, 1,N+(0) ∩ N+(1),N−(0) ∩ N−(1),N+(0) ∩ N−(1)}, so

that |N−(0) ∩ N+(1)| = p − 2 −
3(p−3)

4 =
p+1
4 >

p−3
4 . This proves P2, p−3

4
. □

Paley tournaments will be used as basic brick to build new graphs as explained below. Tromp (unpublished manuscript)
proposed the following construction. Let G be a graph and let G′ ∼= G. The Tromp graph Tr(G) has 2|V (G)|+2 vertices and
is defined as follows:

• V (Tr(G)) = V (G) ∪ V (G′) ∪ {∞, ∞′
}

• ∀u ∈ V (G) :
−→u∞,

−−→
∞u′,

−−→
u′

∞
′,

−−→
∞

′u ∈ A(Tr(G))
• ∀u, v ∈ V (G), −→uv ∈ A(G) :

−→uv,
−→
u′v′,

−→
vu′,

−→
v′u ∈ A(Tr(G))

Fig. 1 illustrates the construction of Tr(G). We can observe that, for every u ∈ V (G) ∪ {∞}, there is no arc between u
and u′. Such pairs of vertices will be called anti-twin vertices, and we denote by at(u) = u′ the anti-twin vertex of u.

In the following, we apply Tromp’s construction to Paley tournaments QRp which produces graphs with interesting
structural properties. First of all, Marshall [12] proved that any Tr(QRp) is vertex-transitive and arc-transitive. He also
prove that any Tr(QRp) is triangle-transitive, meaning that, given two triangles u1u2u3 and v1v2v3 of Tr(QRp) with the same
orientation, there exists an automorphism that maps ui to vi. Second, it is possible to derive Properties Pn,k for Tr(QRp)
knowing those of QRp (see Proposition 4). The authors already studied properties of Tr(QR19) (see [16, Proposition 5]) and
their results can be easily generalized to Tr(QRp):

Proposition 4 ([16]). If QRp has Property Pn−1,k, then Tr(QRp) has Property Pn,k.

Let us now introduce another type of properties. We say that a graph G has Property Cn,k if for every ordered n-clique
v1, v2, . . . , vn of G, we have |

⋃
1⩽i⩽n N

+(vi)| ⩾ k and |
⋃

1⩽i⩽n N
−(vi)| ⩾ k.

Remark 5. Given two integers n and k, a graph having Property Cn,k has Property Cn′,k′ for any n′ and k′ such that n′ ⩾ n
and k′ ⩽ k.
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Proposition 6. The graph Tr(QRp) has Properties C2, 3p+1
2

and C3, 7p+3
4

.

Proof. Recall that Tr(QRp) is built from two copies of QRp, that will be named QRp and QR′
p in the following (see Fig. 1).

In this proof, the in- and out-neighborhood of a vertex v of Tr(QRp) will be denoted by N−(v) and N+(v). The in- and
out-neighborhood of a vertex v in a subgraph H of Tr(QRp) will be denoted by N−

H (v) and N+

H (v).
Given an ordered n-clique v1, v2, . . . , vn of Tr(QRp), if z ∈

⋃
1⩽i⩽n N

+(vi), then at(z) = z ′
∈

⋃
1⩽i⩽n N

−(vi). Thus
|
⋃

1⩽i⩽n N
+(vi)| = |

⋃
1⩽i⩽n N

−(vi)|.

• Let us first consider Property C2, 3p+1
2

. We have to prove that given two adjacent vertices x and y of Tr(QRp), we have

|N+(x) ∪ N+(y)| ⩾ 3p+1
2 .

Since x and y are adjacent, w.l.o.g. x = 0 and y = ∞ by arc-transitivity of Tr(QRp). Then N+(0) ∪ N+(∞) contains:

– N+(∞) =
{
0′, 1′, . . . , (p − 1)′

}
(p vertices);

– Note that N+(0) = N+

QRp (0) ⊎ N+

QR′
p
(0) ⊎ {∞}. Since N+

QR′
p
(0) ⊂ N+(∞) is already counted in the previous point,

we just consider N+

QRp (0) (at least
p−1
2 vertices by Proposition 3) and ∞ (1 vertex);

So that N+(∞) ∪ N+(0) contains at least p +
p−1
2 + 1 =

3p+1
2 vertices and thus Tr(QRp) has Property C2, 3p+1

2
.

• Let us now consider Property C3, 7p+3
4

. We have to prove that given three vertices x, y, and z of Tr(QRp) that form a

triangle, we have |N+(x) ∪ N+(y) ∪ N+(z)| ⩾ 7p+3
4 .

We have to consider two cases depending on whether x, y, z form a transitive triangle or x, y, z form a directed
triangle. By triangle-transitivity of Tr(QRp), it suffices to consider the cases x, y, z = 0, 1, ∞ (transitive triangle) and
x, y, z = 0, 1′, ∞ (directed triangle).
Case x, y, z = 0, 1, ∞: Let A = N+(1) \

{
N+(0) ∪ N+(∞)

}
. We clearly have |N+(0) ∪ N+(1) ∪ N+(∞)| =

|N+(0) ∪ N+(∞)| + |A|. Since we already know that |N+(0) ∪ N+(∞)| =
3p+1

2 (see the previous point), let us
focus on the set A. We have N+(1) = N+

QRp (1)⊎N+

QR′
p
(1)⊎{∞}. Since N+

QR′
p
(1) ⊂ N+(∞) and {∞} ⊂ N+(0), we have

A = N+

QRp (1) \
{
N+(0) ∪ N+(∞)

}
. Since vertex ∞ has no out-neighbor in QRp, we have A = N+

QRp (1) \N
+(0), that

corresponds to the set of out-neighbors of 1 in QRp which are not out-neighbors of 0. Since QRp is a tournament,
the vertices which are not out-neighbors of a given vertex are the in-neighbors of this vertex. Therefore, the set
A corresponds to the set of out-neighbors of 1 in QRp which are in-neighbors of 0 and thus A = N+

QRp (1)∩N−(0).
This set has already been considered in the proof of Proposition 3 where we showed that |A| =

p+1
4 .

Therefore, the set N+(0) ∪ N+(1) ∪ N+(∞) contains |N+(0) ∪ N+(∞)| + |A| ⩾ 3p+1
2 +

p+1
4 =

7p+3
4 vertices.

Case x, y, z = 0, 1′, ∞: Note that N+(1′) = N−(1). Thus N+(0) ∪ N+(1′) ∪ N+(∞) = N+(0) ∪ N−(1) ∪ N+(∞). Using
the same kind of arguments as previous case, we get that |N+(0) ∪ N−(1) ∪ N+(∞)| ⩾ 7p+3

4 . □

4. Upper bound of the oriented chromatic number of graphs with maximum degree 3

In this section, we consider graphs with maximum degree 3 and we prove that they all admit a homomorphism to the
same target graph on nine vertices.

Duffy et al. [7] proved that every connected graph with maximum degree 3 has an oriented chromatic number at most
9. To achieve this bound, they use the Paley tournament QR7 which has vertex set V (QR7) = {0, 1, . . . , 6} and −→uv ∈ A(QR7)
whenever v − u ≡ r (mod 7) for r ∈ {1, 2, 4} (see Fig. 2(a)). Here is a quick sketch of their proof. They first consider
2-degenerated graphs with maximum degree 3 (not necessarily connected) and prove the following:

Theorem 7 ([7]). Every 2-degenerate graph with maximum degree 3 which does not contain a 3-source adjacent to a 3-sink
is QR7-colorable.

Then, given a connected graph G with maximum degree 3, they first consider the case where G contains a 3-source. By
removing all 3-sources from G, we obtain a graph G′ that is QR7-colorable by Theorem 7. It is then easy to put back all
the 3-sources and color them with a new color 7. Then, subsequently, they consider the case where G does not contain
3-sources. Removing any arc −→uv from G leads to a graph G′ which admits a QR7-coloring ϕ by Theorem 7. To extend ϕ

to G, it suffices to recolor u and v with two new colors so that ϕ(u) = 7 and ϕ(v) = 8. This gives that G has an oriented
chromatic number at most 9.

The condition of connectivity of G is a necessary condition in their proof. Indeed, given a graph G with maximum
degree 3 which is not connected, we need to remove one arc −→uivi from each 3-regular component Ci of G to get a
2-degenerate graph G′ which is QR7-colorable by Theorem 7. However, to extend the coloring to G using two new colors,
say color 7 for the ui’s and color 8 for the vi’s, the colorings of each component must agree on the neighbors of each ui’s
and on the neighbors of each vi’s, which is not necessarily the case. This potentially leads to different target graphs on
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Fig. 2. The oriented graphs QR7 and T9 .

Fig. 3. Configuration of Theorem 8.

nine vertices for each component. Therefore, even if each component has an oriented chromatic number at most 9, the
whole graph may have an oriented chromatic number strictly greater than 9.

In the following, we prove this is not the case by showing that it is possible to color each component with the same
target graph T9 on nine vertices whose construction is described below. This implies that the condition of connectivity is
no more needed.

The oriented graph T9 is obtained from QR7 (see Fig. 2(a)) by adding two vertices labeled 7 and 8, and the arcs
−→
07,

−→
17,

−→
73,

−→
78, and

−→
8i for every 0 ⩽ i ⩽ 6 (see Fig. 2(b) where the gray part stands for QR7).

We prove the following:

Theorem 8. Every graph with maximum degree 3 admits a T9-coloring and thus χo(G3) ⩽ 9.

Proof. It is sufficient to show that every connected graph G with maximum degree 3 admits a T9-coloring. We consider
the following cases.

• We suppose that G is 2-degenerate or G contains a 3-source. Let G′ be the oriented graph obtained from G
by removing every 3-source. Since G′ is 2-degenerate and contains no 3-source, G′ admits a QR7-coloring ϕ
by Theorem 7. We extend ϕ to a T9-coloring of G by setting ϕ(u) = 8 for every 3-source u of G (indeed, the vertex
8 of T9 dominates all the vertices of QR7).

• We suppose that G is 3-regular and contains no 3-source. Notice that G necessarily contains a vertex v of out-degree
two. Let u denote the in-neighbor of v. Since u is not a 3-source, it has an in-neighbor u1. Let u2 denote the neighbor
of u distinct from u1 and v (see Fig. 3). We consider the graph G′ obtained from G by removing the arc −→uv . Since G′

is 2-degenerate and contains no 3-source, G′ admits a QR7-coloring ϕ by Theorem 7.

– If G (or equivalently G′) contains the arc −→uu2, then we necessarily have ϕ(u1) ̸= ϕ(u2). If
−−−−−−→
ϕ(u1)ϕ(u2) ∈ A(QR7)

(resp.
−−−−−−→
ϕ(u2)ϕ(u1) ∈ A(QR7)), we recolor G′ so that ϕ(u1) = 1 (resp. ϕ(u1) = 0) and ϕ(u2) = 3 by the arc-

transitivity of QR7. It can be easily checked that we can extend ϕ to a T9-coloring of G by setting ϕ(u) = 7 and
ϕ(v) = 8.

– If G contains −→u2u, then by the arc-transitivity of QR7, we can assume that {ϕ(u1), ϕ(u2)} ⊆ {0, 1}. Again, ϕ can
be extended to T9-coloring of G by setting ϕ(u) = 7 and ϕ(v) = 8. □

5. Upper bound of the oriented chromatic number of graphs with maximum degree at least 4

In this section, we consider graphs with maximum degree at least 4.
Duffy et al. [7] recently proved that every connected graph with maximum degree 4 has an oriented chromatic number

at most 69. To prove their result, they first consider the case of 3-degenerate graphs with maximum degree 4 and prove
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that they admit a homomorphism to the Paley tournament QR67 on 67 vertices. Then they show how to extend such a
67-coloring to connected graphs with maximum degree 4 using two more colors, leading to a 69-coloring.

We propose a general result which determines properties of a target graph to be universal for graphs of maximum
degree ∆ ⩾ 4. As for graphs with maximum degree 3 (see Section 4), the condition of connectivity is not needed. In
particular, our general result substantially decreases the bound of 69 colors for graphs with maximum 4 due to Duffy
et al. [7] to 26 colors.

Lemma 9. Let Tr(QRp) be a graph with Property Pn,k. Let ϕ be a Tr(QRp)-coloring of a graph G. If u ∈ V (G) has degree at
most n, then there exists at least k possible colors for u that leave unchanged ϕ(v) for v ̸= u. Moreover, these k colors induce
a clique of Tr(QRp).

Proof. Let us show that the proof can be reduced to the case where ϕ(N(u)) induces a clique of Tr(QRp). Let ui denote
the ith neighbor of u. If ϕ(ui) = ϕ(uj) for some i < j, then G contains either −→uui and

−→uuj or
−→uiu and −→uju. Thus, the coloring

constraints on u due to the arcs uui and uuj are the same. Similarly, if ϕ(ui) = at(ϕ(uj)), then w.l.o.g. G contains −→uiu and
−→uuj. Thus, the coloring constraints on u due to the arcs −→uiu and −→uuj are the same. In both cases, the coloring constraints
on u are unchanged by removing the arc uuj.

So we can assume that ϕ(ui) /∈
{
ϕ(uj), at(ϕ(uj))

}
for every 1 ⩽ i < j ⩽ d(u). Thus, ϕ(N(u)) induces a clique of Tr(QRp)

of size d(u) and the result holds by definition of the Property Pn,k. □

Theorem 10. Let ∆ ⩾ 3. If Tr(QRp) has Properties P∆−1,∆−2 and C
∆−2,n− n−1

∆−1
, where n = |Tr(QRp)| = 2p + 2, then every

(∆ − 1)-degenerate graph with maximum degree ∆ admits a Tr(QRp)-coloring.

Proof. Let G be a minimal counter-example to Theorem 10. By definition, G contains a k-vertex u with k ⩽ ∆ − 1. Let
v1, v2, . . . , vk be the neighbors of u.

Suppose first that the neighborhood of u contains an arc and assume w.l.o.g. that this arc is −−→v1v2. The graph G′ obtained
from G by removing the arc uv1 admits a Tr(QRp)-coloring ϕ by minimality of G. The degree of v1 is at most ∆−1 in G′, so
by Lemma 9 and Property P∆−1,∆−2, there exists a set S of ∆−2 available colors for v1. Since S is a clique, S cannot contain
both a color c and at(c). Thus, we can assign to v1 a color in S that is distinct from ϕ(vi) and at(ϕ(vi)) for every 3 ⩽ i ⩽ k
because there are at most ∆ − 3 values of i and |S| ⩾ ∆ − 2. Note that we necessarily have {ϕ(v2), at(ϕ(v2))} ∩ S = ∅

since −−→v1v2 is an arc of G′.
Now ϕ is such that ϕ(v1) /∈ {ϕ(vi), at(ϕ(vi))} for every 2 ⩽ i ⩽ k. Using arguments along the lines of the proof of

Lemma 9, ϕ can be extended to G by recoloring u using Property P∆−1,∆−2.
Assume now that the neighborhood of u contains no arc. The graph G′ obtained from G by removing the vertex u admits

a Tr(QRp)-coloring ϕ by minimality of G. The degree of v1 in G′ is at most ∆ − 1. By Lemma 9 and Property P∆−1,∆−2,
we have ∆ − 2 possible colors for v1 and these ∆ − 2 colors induce a clique. By Property C

∆−2,n− n−1
∆−1

, given these ∆ − 2

possible colors for v1, there are at least n −
n−1
∆−1 choices of colors for u. Thus v1 forbids at most n−1

∆−1 colors for u.
Since the neighborhood of u contains no arc, the previous arguments hold for each vi independently. That is, every

vi forbids at most n−1
∆−1 colors for u. Therefore, at most k n−1

∆−1 ⩽ n − 1 colors are forbidden. So there exists at least one
available color for u and ϕ can be extended to a Tr(QRp)-coloring of G, a contradiction. □

To achieve our bounds on oriented chromatic number, we construct the graph Tr∗(QRp) on 2p + 4 vertices by adding
two vertices t0 and t1 such that t0 is a twin vertex of vertex 0 (i.e. a vertex with the same neighborhood as vertex 0) and
t1 is a twin vertex of vertex 1. We finally add the arc −→t1t0.

Theorem 11. Every graph with maximum degree ∆ ⩾ 4 admits a Tr∗(QRp)-coloring where Tr(QRp) is a Tromp graph with
Properties P∆−1,∆−2 and C

∆−2,2p+2− 2p+1
∆−1

.

Proof. Since Tr(QRp) is a subgraph of Tr∗(QRp), it remains to prove that every connected ∆-regular graph H admits a
Tr∗(QRp)-coloring.

Let H ′
= H \

{−→uv}
where −→uv is any arc of H . By Theorem 10, H ′ admits a Tr(QRp)-coloring ϕ. By vertex-transitivity of

Tr(QRp), we may assume that ϕ(v) = 0. By Property P∆−1,∆−2 of Tr(QRp), we have ∆ − 2 available colors c1, c2, . . . , c∆−2
for u. Note that, given 1 ⩽ i < j ⩽ ∆ − 2, we necessarily have ci ̸= at(cj). We thus recolor u with one of the ci’s so that
ϕ(u) /∈

{
0, 0′

}
since ∆ ⩾ 4. Therefore, ϕ(u)ϕ(v) is an arc of Tr(QRp).

If
−−−−−→
ϕ(u)ϕ(v) is an arc of Tr(QRp), then ϕ is a Tr(QRp)-coloring of H and thus a Tr∗(QRp)-coloring of H . Therefore,

−−−−−→
ϕ(v)ϕ(u)

is an arc of Tr(QRp). By arc-transitivity of Tr(QRp), we may assume that ϕ(u) = 1. We recolor u and v so that ϕ(u) = t1
and ϕ(v) = t0. Since each ti is a twin vertex of vertex i in Tr∗(QRp) and

−→t1t0 is an arc Tr∗(QRp), it is easy to verify that ϕ
is now a Tr∗(QRp)-coloring of H . □

The Properties Pn,k of Paley tournaments QRp can be expressed by a formula for n ⩽ 2 (see Proposition 3). For higher
values of n, there is no known formula. The Properties Pn,k of QRp that we have computed for small values of p and
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Fig. 4. 4-regular oclique on 12 vertices.

the program that we used can be found at http://www.lirmm.fr/~ochem/target/. For our purpose, we are interested in
Properties of the form Pn,n.

Proposition 12. The smallest Paley tournament with Property P2,2 (resp. P3,3, P4,4, P5,5) is QR11 (resp. QR43, QR151, QR659).

Determining more of such properties would be possible with more computing power and time. Note that Paley
tournament QR151 has in fact Property P5,6 and there exist no smaller Paley tournament with Property P5,5.

As a corollary of Propositions 4 and 12, we get the following.

Corollary 13. The Tromp graph Tr(QR11) (resp. Tr(QR43), Tr(QR151), Tr(QR659)) has Property P3,2 (resp. P4,3, P5,4, P6,5).

As corollaries of Remark 5, Proposition 6, Theorem 11 and Corollary 13, we obtain the following four results. We give
a proof of the last one (Corollary 17), and the other three corollaries follow the same arguments.

Corollary 14. Every graph G ∈ G4 admits a Tr∗(QR11)-coloring. Thus, χo(G4) ⩽ 26.

Corollary 15. Every graph G ∈ G5 admits a Tr∗(QR43)-coloring. Thus, χo(G5) ⩽ 90.

Corollary 16. Every graph G ∈ G6 admits a Tr∗(QR151)-coloring. Thus, χo(G6) ⩽ 306.

Corollary 17. Every graph G ∈ G7 admits a Tr∗(QR659)-coloring. Thus, χo(G7) ⩽ 1322.

Proof. Let ∆ = 7. By Proposition 6, the graph Tr(QR659) has Property C3, 7p+3
4

= C3,1154. By Remark 5, it thus has Property
C5,1101 = C

∆−2,2p+2− 2p+1
∆−1

. By Corollary 13, it also has Property P6,5 = P∆−1,∆−2. The graph Tr(QR659) verifies the hypothesis
of Theorem 11, and thus every graph with maximum degree 7 admits a Tr∗(QR659)-coloring. □

6. Oclique with maximum degree 4

Lemma 18. There is an oclique of order 12 with maximum degree ∆ = 4.

Proof. Consider the oriented graph presented on Fig. 4. The graph consists of two directed cycles: (v0, v1, v2, v3, v4, v5)
and (u5, u4, u3, u2, u1, u0). These two cycles are connected by the arcs −→

viui and
−−−−−−−→u(i+3) mod 6vi for every 0 ⩽ i ⩽ 5. The graph

is vertex-transitive. By Theorem 1, it is enough to find a directed 2-path between v0 and every vertex not adjacent to v0:
v0 → v1 → v2, v0 → u0 → v3, v4 → v5 → v0, v0 → v1 → u1, u2 → v5 → v0, u4 → u3 → v0, v0 → u0 → u5. □

Lemma 19. Suppose that G is an oclique of maximum degree ∆ ⩾ 2 and order

n =

⌊
(∆ + 1)2 + 1

2

⌋
.

Then:

• Every two vertices are connected by only one directed path of length at most 2.
• For every vertex v:

– either degin(v) =
⌊

∆
2

⌋
and degout (v) =

⌈
∆
2

⌉
,

– or degout (v) =
⌊

∆
2

⌋
and degin(v) =

⌈
∆
2

⌉
.

http://www.lirmm.fr/~ochem/target/
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Fig. 5. Unique triangle-free 4-regular graph with 13 vertices and diameter 2.

Proof. The number of directed paths of length 1 is at most ∆·n
2 . Each vertex v ∈ V (G) is the midpoint of degin(v) ·degout (v)

directed paths of length 2, so we have∑
v∈V (G)

degin(v) · degout (v) (⋆)

directed paths of length 2 in the graph.
First, suppose that ∆ is even. Then n =

(∆+1)2+1
2 and the sum (⋆) achieves the maximum value of ∆2

·n
4 if and only if

degin(v) = degout (v) =
∆
2 for every vertex v. Hence, we have at most ∆·n

2 +
∆2

·n
4 directed paths of length at most 2, and

this maximal value is equal to
(n
2

)
, that is the number of all pairs of vertices. Hence, if every pair of vertices is connected

by a path of length 1 or two, then every vertex has in-degree and out-degree equal to ∆
2 , and every two vertices are

connected by only one directed path of length at most 2.
If ∆ is odd, then n =

(∆+1)2
2 and the sum (⋆) achieves the maximum value of (∆2

−1)·n
4 if and only if for every vertex v,

• either degin(v) =
⌊

∆
2

⌋
and degout (v) =

⌈
∆
2

⌉
,

• or degout (v) =
⌊

∆
2

⌋
and degin(v) =

⌈
∆
2

⌉
.

Hence, there are at most ∆·n
2 +

(∆2
−1)·n
4 directed paths of length at most 2. Again, this maximal value is equal to

(n
2

)
. □

Corollary 20. The underlying graph of oclique on n =

⌊
(∆+1)2+1

2

⌋
vertices and maximum degree ∆ is triangle free.

Now, we shall prove that there is no oclique with maximum degree ∆ = 4 and order n =

⌊
(∆+1)2+1

2

⌋
= 13. In [13]

authors described a method to generate regular graphs of given girth (length of shortest cycle). Using this generator we
can generate 4-regular graphs on 13 vertices with girth at least 4 (triangle-free).2 Only one of these graphs has diameter
2, namely, the graph G13

= (Z13, E), where (u, v) ∈ E ⇐⇒ (v − u) ∈ {−1, 1, −5, 5}, see Fig. 5. All arithmetic in G13 is
made modulo 13. Hence, only an orientation of G13 can be an oclique with ∆ = 4 and n = 13.

Lemma 21. No orientation of G13 is an oclique.

Proof. Suppose, for a contradiction, that there is an orientation of G13 which is an oclique. By Lemma 19, every vertex
of this orientation has in-degree and out-degree equal to 2, and every two vertices are connected by only one directed
path of length at most 2. Vertex 0 is connected to vertex 2 only by one path of length at most 2, namely 0–1–2. Without
loss of generality assume that those edges are oriented: 0 → 1 → 2. Furthermore, there is only one path going from 1
to 3, namely the one going through vertex 2. Hence, there is the arc 2 → 3 and so on, we show that there is the cycle
0 → 1 → 2 → · · · → 12 → 0. Edges which are not oriented so far also form the cycle 0, 5, 10, 2, 7, 12, 4, 9, 1, 6, 11, 3, 8.

Similarly as above also this cycle must be oriented in one direction. Hence, either every edge of the cycle goes from
x to x + 5, or every edges of the cycle goes from x + 5 to x. However, these two cases are isomorphic via the mapping
x → 8 · x, so we only consider the former orientation. Then we have two directed paths between 0 and 6, namely via 1
or via 5. A contradiction. □

Thus, we have proved the following theorem:

Theorem 22. The maximum order of an oclique with maximum degree ∆ = 4 is 12.

2 There are 31 such graphs which can be found at http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html.

http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html
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Fig. 6. 5-regular oclique on 16 vertices.

Corollary 23. χo(G4) ≥ 12.

7. Oclique with maximum degree 5

Lemma 24. There is an oclique with maximum degree 5 and order 16.

Proof. Consider the graph presented in Fig. 6. The graph is constructed from the oriented 4-regular oclique G on 12
vertices presented in Fig. 4 by adding four vertices x1, x2, x3, x4. These vertices form the cycle x1 → x4 → x3 → x2 → x1
and there are arcs:

•
−−→x2v0,

−−→x2v2,
−−→x2v4,

•
−−→x4v1,

−−→x4v3,
−−→x4v5,

•
−−→u0x1,

−−→u2x1,
−−→u4x1,

•
−−→u1x3,

−−→u3x3,
−−→u5x3.

We will show that any two vertices in G are connected by a path of length at most 2. Since new vertices form the oriented
cycle C4, there are paths between these vertices. It is easy to find all other directed paths. For example, paths connecting
x2 and all other vertices are as follows:

• x2 → vi for i ∈ {0, 2, 4},
• x2 → vi → vi+1 mod 6 for i ∈ {1, 3, 5},
• x2 → vi → ui for i ∈ {0, 2, 4},
• ui → x3 → x2 for i ∈ {1, 3, 5}. □

From Lemma 24 and Theorem 2 we have the following:

Corollary 25. The maximum order of oclique with maximum degree 5 is between 16 and 18.

Corollary 26. χo(G5) ⩾ 16.

8. Discussion

Our attempts to construct an oclique based on the construction of the oriented 4-regular oclique on 12 vertices (see
Fig. 4) lead to a linear estimation in terms of ∆. However, we can obtain a lower bound confirming that the maximum
order of oclique is quadratic.

Lemma 27. For every ∆, there exists an oclique of maximum degree ∆ and order ∆2

7 + O(∆).
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Proof. The postage stamp problem3 asks, given integers h and k, for a set of integers V = {v1, v2, . . . , vk} that maximizes
the smallest integer PSP(h, k) that cannot be written as the sum of at most h (not necessarily distinct) elements of V . In the
context of ocliques, we are interested in the case of h = 2 stamps, which corresponds to directed paths of length at most
2. Using a set V corresponding to the value of PSP(2, k), we construct the circulant oriented graph Gk on n = 2PSP(2, k)−1
vertices g0, . . . , gn−1 and the arcs −−−→gigi+vj such that 0 ⩽ i < n, 1 ⩽ j ⩽ k, and indices are taken modulo n. By the properties
of V , there exists a directed path of length at most 2 in Gk from g0 to every vertex gi with 1 ⩽ i ⩽ PSP(2, k) − 1. Now
since Gk is circular, Gk is an oclique. Also, Gk is ∆-regular with ∆ = 2k. We use the bound PSP(2, k) ⩾ 2

7k
2
+ O(k) [24] to

obtain |V (Gk)| = 2PSP(2, k) − 1 ⩾ 2 ×
2
7k

2
+ O(k) =

∆2

7 + O(∆). □

Finally, Duffy proves in a recent preprint [6] that the oriented chromatic number of a connected cubic graph is at
most 8.
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