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Abstract

Gallucio, Goddyn and Hell proved in 2001 that in any minor-closed class of graphs,
graphs with large enough girth have a homomorphism to any given odd cycle. In this
paper, we study the computational aspects of this problem. Let F be a monotone class
of graphs containing all planar graphs, and closed under clique-sum of order at most two.
Examples of such class include minor-closed classes containing all planar graphs, and such
that all minimal obstructions are 3-connected. We prove that for any k and g, either every
graph of girth at least g in F has a homomorphism to C2k+1, or deciding whether a graph
of girth g in F has a homomorphism to C2k+1 is NP-complete.

We also show that the same dichotomy occurs when considering 3-colorability or acyclic
3-colorability of graphs under various notions of density that are related to a question of
Havel (1969) and a conjecture of Steinberg (1976) about the 3-colorability of sparse planar
graphs.

1 Introduction

Jaeger conjectured in 1988 [23] that for any k ≥ 1, the edges of any 4k-edge-connected graph
can be oriented in the such way that for each vertex v, d+(v) ≡ d−(v) (mod 2k + 1), where
d−(v) and d+(v) denote the in- and out-degree of the vertex v. This conjecture is equivalent
to Tutte’s 3-flow conjecture [38] for k = 1 and implies Tutte’s 5-flow conjecture [37] for k = 2.
Restricted to planar graphs, Jaeger’s conjecture is equivalent to the following statement:

Conjecture 1 (Jaeger, 1988) For any k ≥ 1, every planar graph of girth at least 4k has a
homomorphism to C2k+1.

The case k = 1 is equivalent to the fact that triangle-free planar graphs are 3-colorable,
proved by Grötzsch in 1959 [19], and the remaining cases are open. This result of Grötzsch
led several researchers to investigate other (simple) sufficient conditions for a planar graph
to be 3-colorable. The following question and conjecture are two different approaches in this
direction.
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Problem 2 (Havel, 1969) Is there a constant i such that every planar graph without tri-
angles at distance less than i apart is 3-colorable?

Conjecture 3 (Steinberg, 1976) Every planar graph without cycles of length four and five
is 3-colorable.

While a positive answer to Havel’s problem was recently announced [13] (with a very large
constant), Steinberg’s conjecture is still open. Erdős suggested the following relaxation of this
conjecture: Does there exist a constant C such that the absence in a planar graph of cycles of
length 4 to C guarantees its 3-colorability? Abbott and Zhou [1] proved in 1991 that such a
C exists and C ≤ 11. This result was then sequentially improved [3, 4, 34, 33], until Borodin
et al. proved in 2005 that every planar graph without cycles of length 4 to 7 is 3-colorable [5].

All these problems have the same flavour: they suggest that for various types of coloring,
every planar graph with sufficiently low density can be colored. Here, density should be
understood as a broad notion, depending highly on the problem considered (and which does
not necessarily coincide with the technical definition of density). For instance, in the case of
Havel’s problem, the density would be correlated with the minimum distance between two
triangles: the larger the distance, the lower the density.

Consider the following problem: does a graph G with maximum degree at most ∆ admit
a proper k-coloring? If k ≤ ∆ − 1, then the problem is NP-complete; if k = ∆, then the
problem can be solved in polynomial time using Brooks Theorem (but the answer is not always
positive); and if k ≥ ∆ + 1, then the answer is always positive. Our aim in this paper is to
prove that in each of the problems mentioned above (Havel, Steinberg, Jaeger, and a couple
others), this typically does not happen: the density threshold below which every planar graph
becomes colorable is also a complexity threshold. We will show that in each of the questions
we consider, by decreasing the density the decision problem drops directly from NP-complete
to true always.

As was pointed out by a referee, this kind of complexity jump appears in different contexts.
Let (k, s)-SAT denote the Boolean satisfiability problem restricted to instances with exactly
k variables per clause, and at most s occurrences per variable. Tovey [36] proved that (3, 4)-
SAT is NP-complete, while (3, 3)-SAT is trivial (every instance is satisfiable). This was
generalized by Kratochv́ıl, Savický, and Tuza [25], who proved the existence of a function
f (of exponential order) such that for any k ≥ 3, (k, f(k) + 1)-SAT is NP-complete, while
(k, f(k))-SAT is trivial. The reader is referred to [17] for a more detailed discussion about
these results, together with the precise asymptotics for the function f (which is closely related
to functions appearing in the Lovász Local Lemma).

Structure of the paper In Section 3, we consider the 3-Color Problem. Using the main
result of [13], we prove that there exists an integer d ≥ 4 such that every planar graph without
triangles at distance less than d is 3-colorable, but deciding whether a planar graph without
triangles at distance less than d − 1 is 3-colorable is NP-complete. We also show, using [5],
that there exists an integer i ∈ [5, 7] such that every planar graph without cycles of length 4
to i is 3-colorable, but deciding whether a planar graph without cycles of length 4 to i − 1
is 3-colorable is NP-complete (if Conjecture 3 is true, then i is precisely 5). The reductions
in the proofs of these two results are fairly easy, and can be considered as an introduction to
the reductions of the next sections.
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In Section 4, we consider (1, 0)-coloring of planar graphs. A graph is (1, 0)-colorable if its
vertex set can be partitioned into a stable set and a set inducing a graph with maximum degree
at most one. Glebov and Zambalaeva proved that every planar graph with girth at least 16
is (1, 0)-colorable [18]. The value 16 was later decreased to 14 by Borodin and Ivanova [6],
and very recently to 12 by Borodin and Kostochka [9]. We prove that for any integers d ≥ 3
and g ≥ 6, either every planar graph of girth at least g and maximum degree at most d is
(1, 0)-colorable, or deciding whether a planar graph of girth at least g and maximum degree
at most d is (1, 0)-colorable is NP-complete. We then improve some known constructions of
non-(1, 0)-colorable sparse planar graphs.

In Section 5, we study the acyclic coloring of planar graphs. A graph is acyclically k-
colorable if it admits a proper k-coloring in which every cycle contains at least three colors. A
celebrated result of Borodin is that planar graphs are acyclically 5-colorable. He also proved
that planar graphs with girth at least seven are 3-colorable [11]. Using this result, we show
that there exists g ∈ [5, 7], such that every planar graph of girth at least g is acyclically 3-
colorable, but deciding whether a planar graph of girth at least g−1 is acyclically 3-colorable
is NP-complete.

In Section 6, we investigate homomophisms to odd cycles. A homomorphism from a graph
G to a graph H is a mapping h : V (G) → V (H) that preserves the edges, i.e. if uv is an edge
of G, then h(u)h(v) is an edge of H. Using [10], we show that for every k ≥ 2 there exists an
integer g = g(k), with 4k ≤ g ≤ 1

3(20k − 2), such that every planar graph of girth at least g
has a homomorphism to C2k+1, but determining whether a planar graph of girth g − 1 has a
homomorphism to C2k+1 is NP-complete. If Conjecture 1 is true, then g(k) = 4k.

For the sake of clarity, all the results mentioned above are stated in the context of planar
graphs. We will indeed prove that the dichotomy results still hold if instead of planar graphs
we consider any monotone family F containing all planar graphs, and closed under small
clique-sum. As will be proved in the next section, examples of such classes include Kn-minor
free graphs (n ≥ 5), graphs with no subdivision of Kn (n ≥ 5), and graphs with Colin de
Verdière parameter at most k, for some k ≥ 3 (for instance, linklessly embeddable graphs).

2 Nice classes

For k ≥ 0, a graph obtained from the disjoint union of two graphs G1 and G2 by identifying a
k-clique of G1 with a k-clique of G2 is called a k-clique-sum of G1 and G2. A small clique-sum
is a k-clique-sum with 0 ≤ k ≤ 2.

A class of graphs containing all planar graphs is nice if it is closed under subgraphs and
small clique-sums. The purpose of this section is to identify several important graph classes
fitting this description. It is easy to remark that for any k ≥ 4, the class of graphs with
chromatic number at most k is nice (using the Four Color Theorem, such a class contains all
planar graphs). Similarly, using a famous result of Borodin, it follows that for any k ≥ 5, the
class of graphs with acyclic chromatic number at most k is a nice class.

One of our main motivations is the result of Gallucio et al. [15] stating that in minor-
closed families, high-girth graphs are almost bipartite. Hence, it is crucial to understand
which minor-closed classes are nice.

Lemma 4 A minor-closed class F containing all planar graphs is nice if and only if all
minimal forbidden minors of F are 3-connected.
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Proof. Assume first that all minimal forbidden minors of F are 3-connected, and let
G1, G2 ∈ F be such that a small clique-sum G of G1 and G2 is not in F . Consider a minor-
minimal minor H of G that is not in F . Since G1, G2 ∈ F , H is neither a minor of G1, nor a
minor of G2. Hence, H is not 3-connected, a contradiction.

Assume now that F is nice. Let H be a minor-minimal graph such that H 6∈ F . If H
contains a clique-cutset of size at most two (in particular, H can be disconnected), then it
is a small clique-sum of graphs from F (since H is minor-minimal), so H must be in F ,
a contradiction. So H contains no clique-cutset of size at most two, which implies that H
is 2-connected. Assume now that H contains two non-adjacent vertices u, v whose removal
disconnects H, and let H1, . . . , Hk be the graphs induced by each component together with
u and v. Observe that H + uv is the clique-sum of the graphs (Hi + uv)1≤i≤k on a clique of
size two, and all the Hi’s are minors of H. Since H is minor-minimal, all the Hi’s are in F
and then H + uv and H are also in F , a contradiction. It follows that H is 3-connected. �

A minor-monotone graph invariant, usually denoted by µ, was introduced by Colin de
Verdière in 1990 [12]. It relates to the maximal multiplicity of the second largest eigenvalue
of the adjacency matrix of a graph, in which the diagonal entries can take any positive
value and the entries corresponding to edges can take any nonnegative values (a technical
assumption, called the Strong Arnold Property, has to be added to avoid degenerate cases,
but we omit the details). For a graph invariant f and an integer ℓ, let F(f, ℓ) be the set of
graphs G with f(G) ≤ ℓ. It was proved by Colin de Verdière that F(µ, 1) is the set of linear
forests, F(µ, 2) is the set of outerplanar graphs, and F(µ, 3) is the set of planar graphs. It
follows from [27] and [32] that µ(G) ≤ 4 if and only if G is linklessly embeddable in R

3. A
direct consequence of a result of van der Holst et al. [22] is that for any ℓ ≥ 3, F(µ, ℓ) is
closed under small clique-sums. Since F(µ, 3) is the set of planar graphs, we have that for
any ℓ ≥ 3, F(µ, ℓ) is a nice class.

Following the introduction of Colin de Verdière’s parameter, van der Holst et al. [21]
defined a new minor-monotone parameter, called λ, and proved that λ is preserved by the
clique-sum operation. They also proved that F(λ, 1) is the set of forests, F(λ, 2) is the set
of K4-minor free graphs, and F(λ, 3) is the set of graphs that can be obtained from planar
graphs by taking clique-sums and subgraphs. As previously, this shows that for any ℓ ≥ 3,
the class F(λ, ℓ) is a nice class. The definition of λ was then extended by Edmonds et al. [14]
to a new minor-monotone graph parameter λ′, satisfying λ′(G) ≥ λ(G) for any graph G, and
having the same properties as the properties of λ mentioned above. It is not known whether
there exists a graph G such that λ′(G) < λ(G), so these two parameters might very well be
equal. Anyway, again, we have that for any ℓ ≥ 3, the class F(λ′, ℓ) is a nice class.

Observe that the proof of Lemma 4 is still valid if minor is replaced by topological minor
in the statement of the lemma. Hence, for any n ≥ 5, the class of graphs with no subdivision
of Kn is nice.

3 The 3-Color Problem

For two graphs G and H(u, v), where u and v are two distinct vertices of H(u, v), we denote
by G⊕H(u, v) a graph constructed as follows: For every vertex x of G, we take dG(x) − 1
copies Hx

1 (u, v), · · · , H
x
dG(x)−1(u, v) of H(u, v) and identify the vertex v of Hx

i (u, v) with the

vertex u of Hx
i+1 for 1 ≤ i ≤ dG(x) − 2. The vertices u of Hx

i (u, v) for 1 ≤ i ≤ dG(x) − 1
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Figure 1: An example of construction of G⊕H(u, v).

together with the vertex v of Hx
dG(x)−1(u, v) are called the duplicates of x. For every edge

xy in G, we add an edge between one duplicate of x and one duplicate of y. An example of
construction of G⊕H(u, v) is depicted in Figure 1. By the definition of a nice class, if G is
planar and H(u, v) + uv is in a nice class F , then we can choose G⊕H(u, v) to be also in F .

For an integer i ≥ 4, let Ci denote the class of graphs with no cycle of length 4 to i.

Theorem 5 For every nice class F and integer i ≥ 4, either every graph in F ∩ Ci is 3-
colorable, or deciding whether a graph in F ∩ Ci is 3-colorable is NP-complete.

Proof. Suppose there exist non 3-colorable graphs in F ∩ Ci, and consider such a graph
H ′ that is minimal with respect to the number of edges. Let H∗(u, v) be the graph obtained
from H ′ by removing the edge uv. The graph H∗(u, v) is thus 3-colorable. Moreover, every
3-coloring of H∗(u, v) is such that u and v have the same color, otherwise H ′ would be
3-colorable.

We take ℓ = ⌊i/3⌋ copies (H∗
t (u, v))1≤t≤ℓ of H

∗(u, v) and identify the vertex v of H∗
t (u, v)

with the vertex u of H∗
t+1(u, v) for every 1 ≤ t ≤ ℓ − 1. We thus obtain a graph H(u, v)

having the same property as H∗(u, v), except that u and v are now at distance at least ⌊i/3⌋
apart. Note that H(u, v) + uv ∈ F , since this graph can be obtained from a cycle (of length
ℓ + 1) by replacing precisely ℓ edges by copies of H∗(u, v), in other words we start with a
planar graph, make ℓ clique-sums with H ′, and then remove ℓ edges, so the obtained graph
is still in F .

We prove the NP-completeness using a reduction from Planar 3-Colorability, i.e., the
problem of deciding whether a planar graph is 3-colorable, which is NP-complete [16]. Given
an instance G of Planar 3-Colorability, we construct a graph G∗ = G⊕H(u, v) ∈ F∩Ci.

Notice that G∗ can be chosen to be in F , since H(u, v) + uv ∈ F . Moreover, G∗ has no
cycle of length 4 to i: by the definition of H(u, v), the vertices u and v are at distance at
least ⌊i/3⌋ apart, so any cycle in G∗ originating from a cycle in G must have length at least
3 ⌊i/3⌋ + 3 ≥ i + 1. In a 3-coloring of G∗, all the duplicates of a vertex of G must get the
same color, so G is 3-colorable if and only if G∗ is 3-colorable. �

Recall that Borodin et al. [5] proved that every planar graph in C7 is 3-colorable. Moreover,
there exist planar graphs in C4 that are not 3-colorable [35]. We can then deduce the following
corollary:

Corollary 6 There exists an integer i ∈ [5, 7] such that every planar graph in Ci is 3-colorable,
but deciding whether a planar graph in Ci−1 is 3-colorable is NP-complete.

Let i be an integer and let Ti denote the class of graphs with no triangles at distance less
than i apart.
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Theorem 7 For every nice class F and integer i, either every graph in F ∩Ti is 3-colorable,
or deciding whether a graph in F ∩ Ti is 3-colorable is NP-complete.

Proof. We use the same construction and reduction as in the proof of Theorem 5. Suppose
that H ′ is a non 3-colorable graph in F ∩ Ti that is minimal with respect to the number of
edges. Let uv be an edge in H ′ that is contained in a triangle if H ′ does contain a triangle
and any edge otherwise. The graph H(u, v) is obtained from H ′ by removing the edge uv.
Notice that u and v are at distance at least i from all the triangles in H(u, v). Hence, the
graph G∗ = G⊕H(u, v) ∈ F has no triangle at distance less than i apart. As previously, G∗

is 3-colorable if and only if G is 3-colorable. �

Using a construction of Aksionov and Mel’nikov [2] and the main result of [13], Theorem 7
has the following corollary.

Corollary 8 There exists an integer i ≥ 4 such that any planar graph in Ti is 3-colorable,
but deciding whether a planar graph in Ti−1 is 3-colorable is NP-complete.

4 (1, 0)-coloring of graphs

The girth of a graph G is the length of a shortest cycle of G. Let Cg,d denote the class of
planar graphs with girth at least g and maximum degree at most d.

Borodin and Ivanova [6] proved that every planar graph with girth at least 14 is (1, 0)-
colorable. In this section we prove the following theorem:

Theorem 9 Let g ≥ 6 and d ≥ 3 be integers. Either every graph in Cg,d is (1, 0)-colorable,
or deciding whether a graph in Cg,d is (1, 0)-colorable is NP-complete.

Proof. Consider a (1, 0)-coloring c of a graph. For convenience, we will say that a vertex v
has the color 10 if c(v) = 1 and none of its neighbors is colored with 1; a vertex has the color
11 if itself and one of its neighbors are colored with 1.

Suppose there exists a graph G with girth at least g ≥ 6 that is not (1, 0)-colorable, and
take such a graph G with the minimum number of edges. One can easily observe that G
has minimum degree at least 2. It is well-known that planar graphs with girth at least 6 are
2-degenerate, so G contains a vertex u of degree 2. Assume that u is adjacent to the vertices
v and w. By minimality of G, G \ u admits a (1, 0)-coloring, and in any such coloring φ we
have either φ(v) = 0 and φ(w) = 11 or the converse. Let H(t) be the graph obtained from
G as follows: we add a vertex t adjacent to u only and then we subdivide once the edges uv,
uw and ut (see Figure 2). By the remark above H(t) has a (1, 0)-coloring and in any such
coloring φ we have φ(u) = 11 and φ(t) = 10.

An instance of 3-SAT is said planar if its variable-clause graph is planar. We reduce our
problem from Planar 3-SAT, which was proved to be NP-complete by Lichtenstein [26].
Consider an instance I of Planar 3-SAT. We construct a graph HI and prove that it is
(1, 0)-colorable if and only if I is satisfiable. To each variable x of I we associate the graph Hx

depicted in Figure 3, where each vertex drawn with a black square is identified with the vertex
t of some copy of H(t). Using the properties of H(t) it follows that in any (1, 0)-coloring of
Hx, either all the black vertices labelled x are colored 0 and the black vertices labelled x have
color 11, or vice-versa.
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wv
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11 011

10t

Figure 2: The graph H(t) forcing color 10 on the vertex t of degree one.

10 10 10 10 10 10

x x x
10 10 10

x x

x xx

xx xx

Figure 3: The graph Hx associated to a variable x.

For each clause x′ ∨ y′ ∨ z′ where x′, y′, z′ are literals of the variables x, y, z, we consider
a copy Tu,v,w of the graph depicted in Figure 4, and identify u with a black vertex labelled
x′ in Hx, v with a black vertex labelled y′ in Hy, and w with a black vertex labelled z′ in
Hz. This can be done in such way that the graph HI obtained is planar. Since black vertices
have degree two in each Hx, the maximum degree of HI does not exceed that of G. Also,
we can make sure that the girth of HI is at least the girth of G by insisting that for any
variable x, any two vertices of Hx that have been identified with an endpoint of some graph
Tu,v,w lie sufficiently far appart in Hx (say at distance at least g). Notice that the color of
a black vertex is either 0 or 11. Notice also that the graph Tu,v,w has the property that the
only coloring of u, v, w with colors 0 and 11 that does not extend to a (1, 0)-coloring of Tu,v,w

is the coloring where u, v, w are colored 11.

Suppose first that I is satisfiable. For each variable x of I, we color the vertices of Hx

as follows: if the value of x is true, we assign color 0 to each vertex of Hx labelled by x and
color 1 to each vertex labelled by x. If the value of x is false, we assign color 1 to each
vertex of Hx labelled by x, and color 0 to each vertex labelled by x. By the satisfiability of
I and the remarks above, such a coloring extends to a (1, 0)-coloring of HI .

u

v w

Figure 4: The graph Tu,v,w has the property that all colorings of u, v, w except φ(u) = φ(v) =
φ(w) = 11 extend to a (1, 0)-coloring of the whole graph.
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(a)

e1

b1

e0

c0

d1

b0
c1a0 a1

d0

(b)

Figure 5: A non-(1, 0)-colorable planar graph with girth 7 and maximum degree 3.

Conversely, suppose that HI has a (1, 0)-coloring φ. A variable x is assigned the value
true if and only if a vertex labelled by x in Hx has color 0 in φ. By the previous remarks,
this definition is consistent. Suppose now that there exists a clause c that is not satisfied.
By definition, it means that there is a copy of Tu,v,w in which φ(u) = φ(v) = φ(w) = 11, a
contradiction. Hence, I is satisfiable. �

Corollary 10 Deciding whether a planar graph of girth at least 7 and maximum degree at
most 3 is (1, 0)-colorable is NP-complete.

Proof. Borodin et al. [8] provided a non-(1, 0)-colorable planar graph with girth 7 and
maximum degree 7. To get our result, we construct a non-(1, 0)-colorable planar graph with
girth 7 and maximum degree 3 (see Figure 5). First check that in any (1, 0)-coloring of
the graph depicted in Figure 5(a), the endpoints of a thick edge cannot be both colored
1. Consider now a (1, 0)-coloring of the graph depicted in Figure 5(b), where thick edges
corresponding to copies of the graph of Figure 5(a) have been represented. Because of the
thick edge a0a1, we may assume by symmetry that a0 is colored 0. Then b1 is colored 1, b0 is
colored 0 (because of the thick edge b0b1), c1 is colored 1, c0 is colored 0 (because of the thick
edge c0c1), d1 is colored 1, d0 is colored 0 (because of the thick edge d0d1), e1 is colored 1, e0
is colored 0 (because of the thick edge e0e1). This is a contradiction since b0 and e0 cannot
both get color 0. �

We now present a planar graph G with girth 9 and maximum degree 4 that is not (1, 0)-
colorable. Figure 6 describes the construction of G; in this figure, a black vertex has no other
neighbor than the ones already represented while a white vertex may have other neighbors.

Let us first consider the graph Hx,y depicted in Figure 6(a). It is easy to check that if x
and y are colored 1 and are adjacent to a vertex (not represented in Figure 6(a)) colored 1
(i.e. x and y are colored 11), then one cannot extend this partial coloring to a (1, 0)-coloring
of Hx,y.

Then consider the graph Jx,y depicted in Figure 6(b). Since x and y are adjacent, they
cannot be both colored with color 0. Suppose they are both colored with color 1. Since they
are adjacent, they are colored 11. This implies that the vertices x1 and y1 are colored with
color 1. It follows from the previous paragraph that one of z1, z3, say z1, is colored 0. Thus
z2 is colored 1 and z3 is colored 0. Therefore, x2 and y′2 are colored 1. By symmetry, x′2 and
y2 are also colored 1. Thus x2 and y2 are colored 11 and then Hx2,y2 is not (1, 0)-colorable.
Consequently, any (1, 0)-coloring of Jx,y forces x and y to have distinct colors.
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(a) The graph Hx,y

Hx1,y1

Hx2,y2

Hx3,y3

x1 y1
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z1 z2

y′2
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x3 y3

z3

Jx,yx y

(b) The graph Jx,y

y5 y6
Jy5,y6

Jy1,y2

y7

y8

y4

y3

Jy3,y4 Jy7,y8

xy2 y1

x

Kx

(c) The graph Kx

KyKx Kz

zyx

(d) The graph G

Figure 6: The construction of a non-(1, 0)-colorable planar graph with girth 9 and maximum
degree 4.

Consider now the graph Kx depicted in Figure 6(c). Suppose that x has color 0. Then
each yi is colored i (mod 2), which is a contradiction since x and y8 are adjacent. Thus x
must be colored 1 in any (1, 0)-coloring of Kx.

Finally, consider the graph G depicted in Figure 6(d). It is easy to check that G has
maximum degree 4 and girth 9. It is clear that one of the vertices x, y, or z has to be colored
with color 0, say x. This is a contradiction since x is colored 1 in any (1, 0)-coloring of Kx.

Corollary 11 Deciding whether a planar graph of girth at least 9 and maximum degree at
most 4 is (1, 0)-colorable is NP-complete.

Note that unlike the other results of this paper, Theorem 9 cannot be safely generalized
to nice classes of graphs. The reason is that the proof requires the 2-degeneracy of a minimal
counterexample, which is not guaranteed in a nice class even if the girth is large enough.

5 Acyclic 3-coloring

For a graph G and a graph H(u, v) with two specific vertices u and v, we define the graph
G⊖H(u, v) as the graph obtained from G and |E(G)| copies (He(u, v))e∈E(G) of H(u, v) by
doing the following: For every edge xy of G, remove xy, and identify x and y with the vertices
u and v of Hxy(u, v), respectively. In other words, G⊖H(u, v) is obtained by replacing every
edge of G by a copy of H(u, v). Note that if G is planar and H(u, v)+uv is in a nice class F ,
then the graph G⊖H(u, v) is also in F . Remark also that given an orientation of the edges
of G, the construction of G⊖H(u, v) defines a unique graph.

Borodin et al. [11] proved that planar graphs of girth at least 5 (resp. 7) are acyclically
4-colorable (resp. acyclically 3-colorable). Moreover, deciding whether a bipartite planar
graph with maximum degree 4 is acyclically 3-colorable is NP-complete [30]. However, it
is not known whether there exists a planar graph of girth at least 5 that is not acyclically
3-colorable. So the maximum acyclic chromatic number of a planar graph of girth 5 or 6 is
not known, and is either 3 or 4. In this section, we prove the following:
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Theorem 12 Let F be a nice class and g ≥ 5 be an integer. Either every graph in F of girth
at least g is acyclically 3-colorable, or deciding whether a graph from F of girth at least g is
acyclically 3-colorable is NP-complete.

Proof. Suppose there exist graphs in F of girth at least g that are not acyclically 3-
colorable, and consider such a graph H ′ that is minimal with respect to the number of
edges. Let H(u, v) be the graph obtained from H ′ by removing the edge uv. Notice that the
distance in H(u, v) between u and v is at least g− 1. Since H(u, v) is acyclically 3-colorable,
by minimality of H ′, every acyclic 3-coloring of H(u, v) corresponds to one of the cases below
(up to permutation of colors):

• coloring A0: u and v are colored 0 and there is no 2-colored path between u and v.

• coloring A1: u and v are colored 0 and there is a path colored 0, 1 between u and v,
but no path colored 0, 2 between these two vertices.

• coloring A2: u and v are colored 0 and there are a path colored 0, 1 and a path colored
0, 2 between u and v.

• coloring B: u is colored 0, v is colored 1, and there is a path colored 0, 1 between u and
v.

Now H(u, v) admits at least one of the acyclic 3-coloring above, so H(u, v) is exactly of one
of the following type:

• type A0: H(u, v) admits colorings A0, possibly A1, possibly A2, but no coloring B.

• type A1: H(u, v) admits colorings A1, possibly A2, but no coloring A0 or B.

• type A2: H(u, v) only admits colorings A2.

• type B: H(u, v) only admits colorings B.

• type A0B: H(u, v) admits colorings A0 and B, possibly A1, and possibly A2.

• type A1B: H(u, v) admits colorings A1 and B, possibly A2, but no coloring A0.

• type A2B: H(u, v) admits colorings A2 and B, but no coloring A0 or A1.

For each of these types, we prove the NP-completeness:

• type A0: The reduction is from Planar 3-Colorability. Given an instance G of
Planar 3-Colorability, the graph G⊕H(u, v) is in F and has the same girth as
H(u, v) (recall that ⊕ was defined in Section 3). Moreover, G⊕H(u, v) has an acyclic
3-coloring if and only if G has a 3-coloring.

• type A1: We construct the graph K(u, v) from two copies H1(u, v1) and H2(u2, v) of
H(u, v) by identifying v1 with u2 (we put the two copies in series). Any acyclic 3-
coloring of K is such that u, v1 and v get the same color, say 0. We can color K(u, v)
such that there is no path colored 0, 2 between u and v1 in H1(u, v1), and such that
there is no path colored 0, 1 between u2 and v in H2(u2, v). This way, there is no
2-colored path between u and v in K(u, v). The acyclic 3-coloring properties of K(u, v)
are thus of type A0, we can thus use the same reduction as for type A0 using K(u, v)
instead of H(u, v). Note that K(u, v) + uv is clearly in F , so G⊕K(u, v) ∈ F .

10



• type A2: The reduction is from Planar Acyclic 3-Colorability. Given an instance
G of Planar Acyclic 3-Colorability, the graph G⊕H(u, v) is in F and has the
same girth as H(u, v). Moreover, G⊕H(u, v) has an acyclic 3-coloring if and only if G
has an acyclic 3-coloring, since any alternating cycle in G would result in an alternating
cycle in G⊕H(u, v).

• type B: The reduction is from Planar Acyclic 3-Colorability. Given an instance
G of Planar Acyclic 3-Colorability, the graph G⊖H(u, v) is in F and has the
same girth as H(u, v). Moreover, G⊖H(u, v) has an acyclic 3-coloring if and only if G
has an acyclic 3-coloring.

• type A0B: We construct the graph K(u, v) from two copies of H(u, v) by identifying the
vertex u (resp. v) of each copy (we put the two copies H(u, v) in parallel). Consider an
acyclic 3-coloring of K(u, v), and suppose u and v get distinct colors, say respectively 0
and 1. Then both copies of H(u, v) have a acyclic 3-coloring B. So both copies contain
a path colored 0, 1 between u and v, which creates a 2-colored cycle in K(u, v), a
contradiction. So u and v must get the same color. Moreover, there exists an acyclic 3-
coloring of K(u, v) with no 2-colored path between u and v. Observe that K(u, v)+uv ∈
F , since this graph is the clique-sum of two copies ofH(u, v)+uv. Moreover, the coloring
properties of K(u, v) are of type A0, we can thus use the same reduction as for type A0

using K(u, v) instead of H(u, v).

• type A1B: We use the same construction of K(u, v) as in the previous case. Again, u
and v must get the same color, say 0 (otherwise we find a 2-colored cycle). Moreover,
each copy of H(u, v) contains at least one 2-colored path between u and v. Thus K(u, v)
is acyclically 3-colorable if and only if there exists a path colored 0, 1 in one copy and a
path colored 0, 2 in the other copy. The coloring properties of K(u, v) are thus of type
A2, we can thus use the same reduction as for type A2 using K(u, v) instead of H(u, v).

• type A2B: We construct the graph K(u, v) from three copies H1(u, v), H2(u2, v2), and
H3(u3, v3) of H(u, v) by identifying v with u2, v2 with u3, and v3 with u. Suppose
H1(u, v) is colored A2. Then u and v get the same color, say 0. If u3 gets color 0, then
we have cycles colored 0, 1 and cycles colored 0, 2 in K(u, v). If u3 gets a color distinct
from 0, say 1, then we have a cycle colored 0, 1 in K(u, v). So each copy of H(u, v) must
be colored B, which means that u, v, and u3 get distinct colors. In this case K(u, v) is
indeed acyclically 3-colorable as we do not create any alternating cycle. The coloring
properties of K(u, v) are thus of type B, so we can use the same reduction as for type
B using K(u, v) instead of H(u, v). It is clear that K(u, v) + uv ∈ F , so it follows that
G⊖K(u, v) ∈ F .

�

We immediately have the following corollary:

Corollary 13 There exists an integer g ∈ [5, 7] such that every planar graph of girth at least
g is acyclically 3-colorable and Acyclic 3-Colorability is NP-complete for planar graphs
of girth g − 1.

Recall that Ci is the class of graphs with no cycle of length 4 to i.

11



21 1
2 2

00

21 1
2 2

00

21 1
2 2

00

1

0

u

v

Figure 7: The edge-gadget H(u, v) in Corollary 15.

Theorem 14 Let F be a nice class and i ≥ 5 be an integer. Either every graph in F ∩ Ci
is acyclically 3-colorable, or deciding whether a graph in F ∩ Ci is acyclically 3-colorable is
NP-complete.

Proof. Suppose there exist graphs in F ∩ Ci that are not acyclically 3-colorable, and
consider such a graph H ′ that is minimal with respect to the number of edges.

We first show that H ′ contains an edge that does not belong to a triangle. We use a
result of Xu [39] that every maximal acyclically k-colorable graph with n vertices has exactly
(k − 1)(n− k

2 ) edges. So, every minimally non acyclically 3-colorable graph has most 2n− 2
edges and is thus 3-degenerate. By minimality, H ′ is 2-connected, so H ′ contains a vertex x
of degree 2 or 3. If H ′ contains a vertex x of degree 2, then by minimality x is not contained
in a triangle, so the edges incident to x do not belong to a triangle. If H ′ contains a vertex
x of degree 3, then the graph induced by the neighbors of x contains at most one edge since
otherwise H ′ would contain a 4-cycle, x is thus incident to at least one edge that does not
belong to a triangle.

Let H(u, v) be the graph obtained from H ′ by removing an edge uv that is not contained
in a triangle. Notice that the distance in H(u, v) between u and v is at least i. This ensures
that we can now use the same proof as for Theorem 12. �

Corollary 15 There exists an integer i ∈ [6, 11] such that every planar graph in Ci is acycli-
cally 3-colorable and Acyclic 3-Colorability is NP-complete for planar graphs in Ci−1.

Proof. For the upper bound, Borodin and Ivanova [7] proved that graphs in C11 are
acyclically 3-choosable, and thus acyclically 3-colorable. For the lower bound, it is easy
to check that the graph H(u, v) depicted in Figure 7 has no acyclic 3-coloring such that
c(u) = c(v). Then, the graph H ′ = K4 ⊖H(u, v) is clearly not acyclically 3-colorable. �

6 Mapping graphs to odd cycles

A homomorphism from a graph G to a graphH is a mapping h : V (G) → V (H) that preserves
the edges, i.e. if uv is an edge of G, then h(u)h(v) is an edge of H. If such a mapping exists,
then we say that G is H-colorable.

It was proved in [15] that for any proper minor-closed class F , and any integer k there
exists an integer g such that any graph G ∈ F with girth at least g has a homomorphism to
C2k+1. We prove the following:
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Theorem 16 For every nice class F and every integers g ≥ 3 and k ≥ 2, either every graph
in F of girth at least g is C2k+1-colorable, or deciding whether a graph in F of girth at least
g is C2k+1-colorable is NP-complete.

Proof. Assume that there exists a graph in F with girth at least g having no homomorphism
to C2k+1. To prove that it is NP-complete to determine whether a graph in F with girth at
least g is C2k+1-colorable, we use a reduction from Planar C2k+1-Coloring, the problem
of deciding whether a planar graph is C2k+1-colorable, which is NP-complete [28].

Assume we are given a graph H(u, v) such that H(u, v) + uv ∈ F (to be constructed
later) of girth g, with two specific vertices u and v having the following property: H(u, v)
has a homomorphism to C2k+1, and in any such homomorphism h, u and v have the same
image, i.e., h(u) = h(v). As in Section 3, observe that by putting sufficiently many copies of
H(u, v) in series, we can obtain a new graph playing the role of H(u, v) such that the distance
between u and v is at least g/3.

Now take an instance G of Planar C2k+1-Coloring and consider G∗ = G⊕H(u, v) ∈ F
(recall that ⊕ was defined in Section 3). We claim that G∗ has girth at least g, and is C2k+1-
colorable if and only if G is C2k+1-colorable.

First, observe that a cycle in G∗ comes either from a cycle in H(u, v) and then its length
is at least g, or from a cycle in G and then its length is at least 3(g/3 + 1) > g. Now assume
that there is a homomorphism from G∗ to C2k+1. By the definition of H(u, v), for any edge xy
of G, all the duplicates of x (resp. y) have the same image, and the two images are adjacent
on the cycle C2k+1. Hence, G

∗ is C2k+1-colorable if and only if G is C2k+1-colorable.

It remains to prove that a graph H(u, v) with the required properties exists assum-
ing that there exists a graph in F of girth g with no homomorphism to C2k+1. Let H ′

be such a graph with the minimum number of edges. Let e = uv be any edge of H ′,
and let H−(u, v) be the graph obtained from H ′ by removing e. The graph H−(u, v) is
in F and has girth at least g, so by minimality of H ′ the graph H−(u, v) has a homo-
morphism to C2k+1. For such a homomorphism h and any two vertices x, y of H−(u, v)
we denote by dh(x, y) the distance between h(x) and h(y) in C2k+1. We define the set
S = {dh(u, v) |h is a homomorphism from H−(u, v) to C2k+1}. Observe that S is non-empty
and S ⊆ {0, . . . , k} \ {1}. Indeed, S does not contain 1 since it would imply that H ′ admits
a homomorphism to C2k+1. We consider two cases, depending on the presence of an odd
element in S.

If S contains an odd element, then let i be minimal such that 2i + 1 ∈ S. Consider the
graph Ho(x, y) of Figure 8, left. It is obtained from a star with three leaves x, y, z and two
copies of H−(u, v) by subdividing 2i−1 times the edge containing z, identifying x and z with
the vertices u and v of the first copy of H−(u, v), respectively, and z and y with the vertices
u and v of the second copy of H−(u, v). By the definition of S, any mapping from x and
y to any vertex v of C2k+1, and from z to a vertex at distance 2i + 1 from v on the cycle
can be extended to a homomorphism from Ho(x, y) to C2k+1, so Ho(x, y) is C2k+1-colorable.
Now consider any homomorphism h from Ho(x, y) to C2k+1. Since there is a path of length
2i+ 1 between x and z in Ho(x, y), the distance between h(x) and h(z) in C2k+1 is odd and
at most 2i+1. Hence, by the minimality of i, the distance between h(x) and h(z) is precisely
2i+1. Similarly, the distance between h(y) and h(z) is 2i+1. Since there is a path of length
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Figure 8: One of these two graphs has a homomorphism to C2k+1 and in any such homomor-
phism h, we have h(x) = h(y).

(number of edges) two between x and y and 4i+2 ≤ 2k, we have h(x) = h(y). Hence, we can
use Ho(x, y) to play the role of H(u, v) in this case.

Otherwise all the elements of S are even. Let i be maximal such that 2i ∈ S. Consider
the graph He(x, y) of Figure 8, right. It is obtained from C4 ⊖H−(u, v) by adding a path
of length 2k − 4i + 1 between two opposite vertices of the original four cycle (recall that ⊖
was defined in Section 5). By the definition of S, any mapping from x and y to any vertex
v of C2k+1, and from z and z′ to the two vertices at distance 2i from v on the cycle can be
extended to a homomorphism from He(x, y) to C2k+1, so He(x, y) is C2k+1-colorable. Now
consider any homomorphism h from He(x, y) to C2k+1. By the definition of S, the distances
between h(x) and h(z), h(z′) are both even, and at most 2i. So any path between z and z′

going through x is mapped to an even path of length at most 4i. Since there is an odd path
of length 2k− 4i+1 between z and z′ in He(x, y), the image of any cycle going through x, z,
and z′ is C2k+1 and by maximality of i, h(z) and h(z′) are at distance precisely 2i from x and
at distance 2k − 4i + 1 from each other. By symmetry, we have h(x) = h(y) and the graph
He(x, y) can be used to play the role of H(u, v). This concludes the proof, since Ho(x, y)+xy
and He(x, y) + xy are in F by the definition of a nice class. �

It follows from the main result of [15] that Theorem 16 has the following corollary:

Corollary 17 For every nice minor-closed class F and integer k ≥ 2 there exists an integer
g = g(F , k), such that every graph of F of girth at least g is C2k+1-colorable, but determining
whether a graph of F of girth g − 1 is C2k+1-colorable is NP-complete.

An unpublished construction of DeVos (see [10]) together with a result of Borodin et
al. [10] imply that Theorem 16 also has the following corollary:

Corollary 18 For every k ≥ 2 there exists an integer g = g(k), with 4k ≤ g ≤ 1
3(20k − 2),

such that every planar graph of girth at least g is C2k+1-colorable, but determining whether a
planar graph of girth g − 1 is C2k+1-colorable is NP-complete.

The odd-girth of a graph G is the size of a smallest odd cycle in G. In 2000, Klostermeyer
and Zhang [24] proposed the following strengthening of Conjecture 1:

14



Conjecture 19 For any k ≥ 1, every planar graph of odd-girth at least 4k + 1 is C2k+1-
colorable.

We can prove the following theorem:

Theorem 20 For every nice class F and every integers g ≥ 1 and k ≥ 2, either every graph
in F of odd-girth at least 2g + 1 is C2k+1-colorable, or deciding whether a graph in F of
odd-girth at least 2g + 1 is C2k+1-colorable is NP-complete.

Proof. The proof follows exactly the same arguments as the proof of Theorem 16. The
only thing that has to be checked is that if G is planar and H(u, v) ∈ F with odd-girth
2g + 1 is such that u and v are on the same face and at distance at least 1

3(2g + 1) apart in
H(u, v), then G∗ = G⊕H(u, v) (which can be chosen to be in F , as observed previously)
has odd-girth at least 2g + 1. Indeed, an odd cycle in G∗ originates either from an odd cycle
in H(u, v), in which case its length is at least 2g + 1, or from a cycle in G, in which case its
length is at least 3× (2g + 1)/3 = 2g + 1 in G∗. �

The construction of DeVos mentioned previously, together with a result of Zhu [41] imply
that Theorem 20 has the following corollary:

Corollary 21 For every k ≥ 2 there exists an integer g = g(k), with 2k ≤ g ≤ 4k − 2, such
that every planar graph of odd-girth at least 2g+1 is C2k+1-colorable, but determining whether
a planar graph of odd-girth 2g − 1 is C2k+1-colorable is NP-complete.

Youngs [40] has constructed non 3-colorable projective planar graphs with arbitrarily large
odd-girth, so Corollary 21 does not extend to nice classes containing all projective planar
graphs.
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