Homomorphisms of planar (m, n)-colored-mixed graphs to planar targets

Fabien Jacques and Pascal Ochem ${ }^{\text {a, } 1}$
${ }^{a}$ LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract

An (m, n)-colored-mixed graph $G=\left(V, A_{1}, A_{2}, \cdots, A_{m}, E_{1}, E_{2}, \cdots, E_{n}\right)$ is a graph having m colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints. A homomorphism from an (m, n)-colored-mixed graph G to another (m, n)-colored-mixed graph H is a morphism $\varphi: V(G) \rightarrow V(H)$ such that each edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). An (m, n)-colored-mixed graph T is said to be $P_{g}^{(m, n)}$-universal if every graph in $P_{g}^{(m, n)}$ (the planar (m, n)-colored-mixed graphs with girth at least g) admits a homomorphism to T.

We show that planar $P_{g}^{(m, n)}$-universal graphs do not exist for $2 m+n \geqslant 3$ (and any value of g) and find a minimal (in the number vertices) planar $P_{g}^{(m, n)}$-universal graphs in the other cases.

1. Introduction

The concept of homomorphisms of (m, n)-colored-mixed graph was introduced by J. Nesětřil and A. Raspaud [1] in order to generalize homomorphisms of k-edge-colored graphs and oriented graphs.

An (m, n)-colored-mixed graph $G=\left(V, A_{1}, A_{2}, \cdots, A_{m}, E_{1}, E_{2}, \cdots, E_{n}\right)$ is a graph having m colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints and we do not allow loops. The case $m=0$ and $n=1$ corresponds to simple graphs, $m=1$ and $n=0$ to oriented graphs and $m=0$ and $n=k$ to k-edge-colored graphs. For the case $m=0$ and $n=2$ (2-edge-colored graphs) we refer to the two types of edges as blue and red edges.

A homomorphism from an (m, n)-colored-mixed graph G to another (m, n)-colored-mixed graph H is a mapping $\varphi: V(G) \rightarrow V(H)$ such that every edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). If G admits a homomorphism to H, we say that G is H-colorable since this homomorphism can be seen as a coloring of the vertices of G using the vertices of H as colors. The edges and arcs of H (and their colors) give us the rules that this coloring must follow. Given a class of graphs \mathcal{C}, a graph is \mathcal{C}-universal if for every graph $G \in \mathcal{C}$ is H-colorable. The class $P_{g}^{(m, n)}$ contains every planar (m, n)-colored-mixed graph with girth at least g. Graph $\overrightarrow{C_{6}^{2}}$ is the graph with vertex set $\{0,1,2,3,4,5\}$ such that $u v$ is an arc if and only if $v-u \equiv 1(\bmod 6)$ or $v-u \equiv 2(\bmod 6)$.

In this paper, we consider some planar $P_{g}^{(m, n)}$-universal graphs with few vertices. They are depicted in Figures 1 and 2. The known results about this topic are as follows.

Theorem 1.

1. K_{4} is a planar $P_{3}^{(0,1)}$-universal graph. This is the four color theorem.
2. K_{3} is a planar $P_{4}^{(0,1)}$-universal graph. This is Grötzsch's Theorem [2].
3. $\overrightarrow{C_{6}^{2}}$ is a planar $P_{16}^{(1,0)}$-universal graph [3].
[^0]Our first result shows that, in addition to the case of $(0,1)$-graphs covered by Theorems 1.1 and 1.2 , our topic is actually restricted to the cases of oriented graphs (i.e., $(m, n)=(1,0))$ and 2-edge-colored graphs (i.e., $(m, n)=(0,2)$).
Theorem 2. For every $g \geqslant 3$, there exists no planar $P_{g}^{(m, n)}$-universal graph if $2 m+n \geqslant 3$.
As Theorems 1.1 and 1.2 show for $(0,1)$-graphs, there might exist a trade-off between minimizing the girth g and the number of vertices of the universal graph, for a fixed pair (m, n). For oriented graphs, Theorem 1.3 tries to minimize the girth. For oriented graphs and 2-edge-colored graphs, we choose instead to minimize the number of vertices of the universal graph.

Theorem 3.

1. \vec{T}_{5} is a planar $P_{28}^{(1,0)}$-universal graph on 5 vertices.
2. T_{6} is a planar $P_{22}^{(0,2)}$-universal graph on 6 vertices.

The following results shows that Theorem 3 is optimal in terms of the number of vertices of the universal graph.

Theorem 4.

1. For every $g \geqslant 3$, there exists an oriented bipartite cactus graph (i.e., K_{4}^{-}minor-free graph) with girth at least g and oriented chromatic number at least 5.
2. For every $g \geqslant 3$, there exists a 2-edge-colored bipartite outerplanar graph (i.e., $\left(K_{4}^{-}, K_{2,3}\right)$ minor-free graph) with girth at least g that does not map to a planar graph with at most 5 vertices.

Most probably, Theorem 3 is not optimal in terms of girth. The following constructions give lower bounds on the girth.

Theorem 5.

1. There exists an oriented bipartite 2-outerplanar graph with girth 14 that does not map to $\overrightarrow{T_{5}}$.
2. There exists a 2-edge-colored planar graph with girth 11 that does not map to T_{6}.
3. There exists a 2-edge-colored bipartite planar graph with girth 10 that does not map to T_{6}.

Figure 1: The $P_{28}^{(1,0)}$-universal graph $\overrightarrow{T_{5}}$.

Figure 2: The $P_{22}^{(0,2)}$-universal graph T_{6}.

Next, we obtain the following complexity dichotomies:

Theorem 6.

1. For any fixed girth $g \geqslant 3$, either every graph in $P_{g}^{(1,0)}$ maps to \vec{T}_{5} or it is NP-complete to decide whether a graph in $P_{g}^{(1,0)}$ maps to $\overrightarrow{T_{5}}$. Either every bipartite graph in $P_{g}^{(1,0)}$ maps to $\overrightarrow{T_{5}}$ or it is NP-complete to decide whether a bipartite graph in $P_{g}^{(1,0)}$ maps to $\overrightarrow{T_{5}}$.
2. Either every graph in $P_{g}^{(0,2)}$ maps to T_{6} or it is NP-complete to decide whether a graph in $P_{g}^{(1,0)}$ maps to T_{6}. Either every bipartite graph in $P_{g}^{(0,2)}$ maps to T_{6} or it is NP-complete to decide whether a bipartite graph in $P_{g}^{(1,0)}$ maps to T_{6}.

Finally, we can use Theorem 6 with the non-colorable graphs in Theorem 5.

Corollary 7.

1. Deciding whether a bipartite graph in $P_{14}^{(1,0)}$ maps to \vec{T}_{5} is NP-complete.
2. Deciding whether a graph in $P_{11}^{(0,2)}$ maps to T_{6} is NP-complete.
3. Deciding whether a bipartite graph in $P_{10}^{(0,2)}$ maps to T_{6} is NP-complete.

A 2-edge-colored path or cycle is said to be alternating if any two adjacent edges have distinct colors.

Proposition 8 (folklore).

- Every planar simple graph on n vertices has at most $3 n-6$ edges.
- Every planar simple graph satisfies $(\operatorname{mad}(G)-2) \cdot(g(G)-2)<4$.

2. Proof of Theorem 3

We use the discharging method for both results in Theorem 3. The following lemma will handle the discharging part. We call a vertex of degree n an n-vertex and a vertex of degree at least n an n^{+}-vertex. If there is a path made only of 2 -vertices linking two vertices u and v, we say that v is a weak-neighbor of u. If v is a neighbor of u, we also say that v is a weak-neighbor of u. We call a (weak-)neighbor of degree n an n-(weak-)neighbor.

Lemma 9. Let k be a non-negative integer. Let G be a graph with minimum degree 2 such that every 3-vertex has at most k 2-weak-neighbors and every path contains at most $\frac{k+1}{2}$ consecutive 2-vertices. Then $\operatorname{mad}(G) \geqslant 2+\frac{2}{k+2}$. In particular, G cannot be a planar graph with girth at least $2 k+6$.

Proof. Let G be as stated. Every vertex has an initial charge equal to its degree. Every 3^{+}-vertex gives $\frac{1}{k+2}$ to each of its 2-weak-neighbors. Let us check that the final charge $\operatorname{ch}(v)$ of every vertex v is at least $2+\frac{2}{k+2}$.

- If $d(v)=2$, then v receives $\frac{1}{k+2}$ from each of its 3-weak-neighbors. Thus $\operatorname{ch}(v)=2+\frac{2}{k+2}$.
- If $d(v)=3$, then v gives $\frac{1}{k+2}$ to each of its 2-weak-neighbors. Thus $c h(v) \geqslant 3-\frac{k}{k+2}=2+\frac{2}{k+2}$.
- If $d(v)=d \geqslant 4$, then v has at most $\frac{k+1}{2}$ 2-weak-neighbors in each of the d incident paths.

Thus $\operatorname{ch}(v) \geqslant d-d\left(\frac{k+1}{2}\right)\left(\frac{1}{k+2}\right)=\frac{d}{2}\left(1+\frac{1}{k+2}\right) \geqslant 2+\frac{2}{k+2}$.
This implies that $\operatorname{mad}(G) \geqslant 2+\frac{2}{k+2}$. Finally, if G is planar, then the girth of G cannot be at least $2 k+6$, since otherwise $(\operatorname{mad}(G)-2) \cdot(g(G)-2) \geqslant\left(2+\frac{2}{k+2}-2\right)(2 k+6-2)=\left(\frac{2}{k+2}\right)(2 k+4)=$ 4, which contradicts Proposition 8.

2.1. Proof of Theorem 3.1

We prove that the oriented planar graph $\overrightarrow{T_{5}}$ on 5 vertices from Figure 1 is $P_{28}^{(1,0)}$-universal by contradiction. Assume that G is an oriented planar graphs with girth at least 28 that does not admit a homomorphism to \vec{T}_{5} and is minimal with respect to the number of vertices. By minimality, G cannot contain a vertex v with degree at most one since a $\overrightarrow{T_{5}}$-coloring of $G-v$ can be extended to G. Similarly, G does not contain the following configurations.

- A path with 6 consecutive 2 -vertices.
- A 3-vertex with at least 12 2-weak-neighbors.

Suppose that G contains a path $u_{0} u_{1} u_{2} u_{3} u_{4} u_{5} u_{6} u_{7}$ such that the degree of u_{i} is two for $1 \leqslant i \leqslant 6$. By minimality of $G, G-u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}$ admits a $\overrightarrow{T_{5}}$-coloring φ. We checked on a computer that for any $\varphi\left(v_{0}\right)$ and $\varphi\left(v_{6}\right)$ in $V\left(\vec{T}_{5}\right)$ and every possible orientation of the $7 \operatorname{arcs}$ $u_{i} u_{i+1}$, we can always extend φ into a $\overrightarrow{T_{5}}$-coloring of G, a contradiction.

Suppose that G contains a 3 -vertex v with at least 122 -weak-neighbors. Let u_{1}, u_{2}, u_{3} be the 3^{+}-weak-neighbors of v and let l_{i} be the number of common 2 -weak-neighbors of v and u_{i}, i.e., 2 -vertices on the path between v and l_{i}. Without loss of generality and by the previous discussion, we have $5 \geqslant l_{1} \geqslant l_{2} \geqslant l_{3}$ and $l_{1}+l_{2}+l_{3} \geqslant 12$. So we have to consider the following cases:

- Case 1: $l_{1}=5, l_{2}=5, l_{3}=2$.
- Case 2: $l_{1}=5, l_{2}=4, l_{3}=3$.
- Case 3: $l_{1}=4, l_{2}=4, l_{3}=4$.

By minimality, the graph G^{\prime} obtained from G by removing v and its 2-weak-neighbors admits a \vec{T}_{5}-coloring φ. Let us show that in all three cases, we can extend φ into a \vec{T}_{5}-coloring of G to get a contradiction.

With an extensive search on a computer we found that if a vertex v is connected to a vertex u colored in $\varphi(u)$ by a path made of $l 2$-vertices $(0 \leqslant l \leqslant 5)$ then v can be colored in:

- at least 1 color if $l=0$,
- at least 2 colors if $l=1$,
- at least 2 colors if $l=2$ (the sets $\{c, d, e\}$ and $\{b, c, d\}$ are the only sets of size 3 that can be forbidden from v),
- at least 3 colors if $l=3$,
- at least 4 colors if $l=4$ and
- at least 4 colors if $l=5$ (only the sets $\{b\},\{c\}$, and $\{e\}$ can be forbidden from v).

In Case $1, u_{3}$ forbids at most 3 colors from v since $l_{3}=2$. If it forbids less than 3 colors, we will be able to find a color for v since u_{1} and u_{2} forbid at most 1 color from v. The only sets of 3 colors that u_{3} can forbid are $\{b, c, d\}$ and $\{c, d, e\}$. Since u_{1} and u_{2} can each only forbid b, c or e, we can always find a color for v.

In Case $2, u_{1}$ and u_{2} each forbid at most one color and u_{3} forbids at most 2 colors so there remains at least one color for v.

In Case $3, u_{1}, u_{2}$, and u_{3} each forbid at most one color, so there remains at least two colors for v.

We can always extend φ into a $\overrightarrow{T_{5}}$-coloring of G, a contradiction.
So G contains at most 5 consecutive 2-vertices and every 3 -vertex has at most 112 -weakneighbors. Using Lemma 9 with $k=11$ contradicts the fact that the girth of G is at least 28 .

2.2. Proof of Theorem 3.2

We prove that the 2-edge-colored planar graph T_{6} on 6 vertices from Figure 2 is $P_{22}^{(0,2)}$-universal by contradiction. Assume that G is a 2-edge-colored planar graphs with girth at least 22 that does not admit a homomorphism to T_{6} and is minimal with respect to the number of vertices. By minimality, G cannot contain a vertex v with degree at most one since a T_{6}-coloring of $G-v$ can be extended to G. Similarly, G does not contain the following configurations.

- A path with 5 consecutive 2 -vertices.
- A 3-vertex with at least 9 2-weak-neighbors.

Suppose that G contains a path $u_{0} u_{1} u_{2} u_{3} u_{4} u_{5} u_{6}$ such that the degree of u_{i} is two for $1 \leqslant i \leqslant 5$. By minimality of $G, G-u_{1}, u_{2}, u_{3}, u_{4}, u_{5}$ admits a T_{6}-coloring φ. We checked on a computer that for any $\varphi\left(v_{0}\right)$ and $\varphi\left(v_{6}\right)$ in $V(T)$ and every possible colors of the 6 edges $u_{i} u_{i+1}$, we can always extend φ into a T_{6}-coloring of G, a contradiction.

Suppose that G contains a 3 -vertex v with at least 9 2-weak-neighbors. Let u_{1}, u_{2}, u_{3} be the 3^{+}-weak-neighbors of v and let l_{i} be the number of common 2 -weak-neighbors of v and u_{i}, i.e., 2 -vertices on the path between v and l_{i}. Without loss of generality and by the previous discussion, we have $4 \geqslant l_{1} \geqslant l_{2} \geqslant l_{3}$ and $l_{1}+l_{2}+l_{3} \geqslant 9$. So we have to consider the following cases:

- Case 1: $l_{1}=3, l_{2}=3, l_{3}=3$.
- Case 2: $l_{1}=4, l_{2}=3, l_{3}=2$.
- Case 3: $l_{1}=4, l_{2}=4, l_{3}=1$.

By minimality of G, the graph G^{\prime} obtained from G by removing v and its 2 -weak-neighbors admits a T_{6}-coloring φ. Let us show that in all three cases, we can extend φ into a T_{6}-coloring of G to get a contradiction.

With an extensive search on a computer we found that if a vertex v is connected to a vertex u colored in $\varphi(u)$ by a path P made of $l 2$-vertices $(0 \leqslant l \leqslant 4)$ then v can be colored in:

- at least 1 color if $l=0$ (the sets a, c, d, e, f and b, c, d, e, f of colors are the only sets of size 5 that can be forbidden from v for some $\varphi(u) \in T$ and edge-colors on P),
- at least 2 colors if $l=1$ (the sets a, b, c, f and b, c, e, f are the only sets of size 4 that can be forbidden from v),
- at least 3 colors if $l=2$ (the sets b, c, f, c, e, f and d, e, f are the only sets of size 3 that can be forbidden from v),
- at least 4 colors if $l=3$ (the set c, b is the only set of size 2 that can be forbidden from v), and
- at least 5 colors if $l=4$ (the sets c and f are the only sets of size 1 that can be forbidden from v).

Suppose that we are in Case 1. Vertices u_{1}, u_{2}, and u_{3} each forbid at most 2 colors from v since $l_{1}=l_{2}=l_{3}=3$. Suppose that u_{1} forbids 2 colors. It has to forbid colors c and f (since it is the only pair of colors that can be forbidden by a path made of 32 -vertices). If u_{2} or u_{3} also forbids 2 colors, they will forbid the exact same pair of colors. We can therefore assume that they each forbid 1 color from v. There are 6 available colors in T_{6}, so we can always find a color for v and extend φ to a T_{6}-coloring of G, a contradiction. We proceed similarly for the other two cases.

So G contains at most 4 consecutive 2 -vertices and every 3 -vertex has at most 82 -weakneighbors. Then Lemma 9 with $k=8$ contradicts the fact that the girth of G is at least 22 .

3. Proof of Theorem 4.1

We construct an oriented bipartite cactus graph with girth at least g and oriented chromatic number at least 5 . Let g^{\prime} be such that $g^{\prime} \geqslant g$ and $g^{\prime} \equiv 4(\bmod 6)$. Consider a circuit $v_{1}, \cdots, v_{g^{\prime}}$. Clearly, the oriented chromatic number of this circuit is 4 and the only tournament on 4 vertices it can map to is the tournament $\overrightarrow{T_{4}}$ induced by the vertices a, b, c, and d in $\overrightarrow{T_{5}}$. Now we consider the cycle $C=w_{1}, \cdots, w_{g^{\prime}}$ containing the arcs $w_{2 i-1} w_{2 i}$ with $1 \leqslant i \leqslant g^{\prime} / 2, w_{2 i+1} w_{2 i}$ with $1 \leqslant i \leqslant$ $g^{\prime} / 2-1$, and $w_{g^{\prime}} w_{1}$.

Suppose for contradiction that C admits a homomorphism φ such that $\varphi\left(w_{1}\right)=d$. This implies that $\varphi\left(w_{2}\right)=a, \varphi\left(w_{3}\right)=d, \varphi\left(w_{4}\right)=a$, and so on until $\varphi\left(w_{g^{\prime}}\right)=a$. Since $\varphi\left(w_{g^{\prime}}\right)=a$ and $\varphi\left(w_{1}\right)=d, w_{g^{\prime}} w_{1}$ should map to $a d$, which is not an arc of \vec{T}_{4}, a contradiction.

Our cactus graph is then obtain from the circuit $v_{1}, \cdots, v_{g^{\prime}}$ and g^{\prime} copies of C by identifying every vertex v_{i} with the vertex w_{1} of a copy of C. This cactus graph does not map to $\overrightarrow{T_{4}}$ since one of the v_{i} would have to map to d and then the copy of C attached to v_{i} would not be \vec{T}_{4}-colorable.

4. Proof of Theorem 4.2

We construct a 2-edge-colored bipartite outerplanar graph with girth at least g that does not map to a 2-edge-colored planar graph with at most 5 vertices. Let g^{\prime} be such that $g^{\prime} \geqslant g$ and $g^{\prime} \equiv 2(\bmod 4)$. Consider an alternating cycle $C=v_{0}, \cdots, v_{g^{\prime}-1}$. For every $0 \leqslant i \leqslant g^{\prime}-3$, we add $g^{\prime}-2$ 2-vertices $w_{i, 1}, \cdots, w_{i, g^{\prime}-2}$ that form the path $P_{i}=v_{i} w_{i, 1} \cdots w_{i, g^{\prime}-2} v_{i+1}$ such that the edges of P_{i} get the color distinct from the color of the edge $v_{i} v_{i+1}$. Let G be the obtained graph. The 2-edge-colored chromatic number of C is 5 . So without loss of generality, we assume for contradiction that G admits a homomorphism φ to a 2-edge-colored planar graph H on 5 vertices. Let us define $\mathcal{E}=\bigcup_{i \text { even }} \varphi\left(v_{i}\right)$ and $\mathcal{O}=\bigcup_{i \text { odd }} \varphi\left(v_{i}\right)$. Since C is alternating, $\varphi\left(v_{i}\right) \neq \varphi\left(v_{i+2}\right)$ (indices are modulo g^{\prime}). Since $g^{\prime} \equiv 2(\bmod 4)$, there is an odd number of v_{i} with an even (resp. odd) index. Thus, $|\mathcal{E}| \geqslant 3$ and $|\mathcal{O}| \geqslant 3$. Therefore we must have $\mathcal{E} \cap \mathcal{O} \neq \emptyset$.

Notice that every two vertices v_{i} and v_{j} in G are joined by a blue path and a red path such that the lengths of these paths have the same parity as $i-j$. Thus, the blue (resp. red) edges of H must induce a connected spanning subgraph of H. Since $|V(H)|=5, H$ contains at least 4 blue (resp. red) edges. Since red and blue edges play symmetric roles in G and since $|E(H)| \leqslant 9$ by Proposition 8, we assume without loss of generality that H contains exactly 4 blue edges. Moreover, these 4 blue edges induce a tree. In particular, the blue edges induce a bipartite graph which partitions $V(H)$ into 2 parts. Thus, every v_{i} with even index is mapped into one part of $V(H)$ and every v_{i} with odd index is mapped into the other part of $V(H)$. So $\mathcal{E} \cap \mathcal{O}=\emptyset$, which is a contradiction.

5. Proof of Theorem 2

Let T be a $P_{g}^{(m, n)}$-universal planar graph for some g that is minimal with respect to the subgraph order.

By minimality of T, there exists a graph $G \in P_{g}^{(m, n)}$ such that every color in T has to be used at least once to color G. Without loss of generality, G is connected, since otherwise we can replace G by the connected graph obtained from G by choosing a vertex in each component of G and identifying them. We obtain a graph G^{\prime} from G as follows:

For each edge or arc $u v$ in G, we keep $u v$ in G^{\prime} and we add $4 m+n$ paths starting at u and ending at v made of vertices of degree 2 :

- For each type of edge, we add a path made of $g-1$ edges of this type.
- For each type of arc, we add two paths made of $g-1$ arcs of this type such that the paths alternate between forward and backward arcs. We make the paths such that u is the tail of the first arc of one path and the head of the first arc of the other path.
- Similarly, for each type of arc we add two paths made of g arcs of this type such that the paths alternate between forward and backward arcs. We make the paths such that u is the tail of the first arc of one path and the head of the first arc of the other path.

Notice that G^{\prime} is in $P_{g}^{(m, n)}$ and thus admits a homomorphism φ to T. Since G is a connected subgraph of G^{\prime} and every color in T has to be used at least once to color G, we can find for each pair of vertices $\left(c_{1}, c_{2}\right)$ in T and each type of edge a path $\left(v_{1}, v_{2}, \cdots, v_{l}\right)$ in G^{\prime} made only of edges
of this type such that $\varphi\left(v_{1}\right)=c_{1}$ and $\varphi\left(v_{l}\right)=c_{2}$.
This implies that for every pair of vertices $\left(c_{1}, c_{2}\right)$ in T and each type of edge, there exists a walk from c_{1} to c_{2} made of edges of this type. Therefore, for $1 \leqslant j \leqslant n$, the subgraph induced by $E_{j}(T)$ is connected and contains all the vertices of T. So $E_{j}(T)$ contains a spanning tree of T. Thus T contains at least $|V(T)|-1$ edges of each type.

Similarly, we can find for each pair of vertices $\left(c_{1}, c_{2}\right)$ in T and each type of arc a path of even length $\left(v_{1}, v_{2}, \cdots, v_{2 l-1}\right)$ in G^{\prime} made only of arcs of this type, starting with a forward arc and alternating between forward and backward arcs such that $\varphi\left(v_{1}\right)=c_{1}$ and $\varphi\left(v_{l}\right)=c_{2}$. We can also find a path of the same kind with odd length.

This implies that for every pair of vertices $\left(c_{1}, c_{2}\right)$ in T and each type of arc there exist a walk of odd length and a walk of even length from c_{1} to c_{2} made of arcs of this type, starting with a forward arc and alternating between forward and backward arcs. Let p be the maximum of the length of all these paths. Given one of these walks of length l, we can also find a walk of length $l+2$ that satisfies the same constraints by going through the last arc of the walk twice more. Therefore, for every $l \geqslant p$, every pair of vertices $\left(c_{1}, c_{2}\right)$ in T, and every type of arc, it is possible to find a homomorphism from the path P of length l made of arcs of this type, starting with a forward arc and alternating between forward and backward arcs to T such that the first vertex is colored in c_{1} and the last vertex is colored in c_{2}.

We now show that this implies that $\left|A_{j}(T)\right| \geqslant 2|V(T)|-1$ for $1 \leqslant j \leqslant m$. Let P be a path $\left(v_{1}, v_{2}, \cdots, v_{p}, v_{p+1}\right)$ of length p starting with a forward arc and alternating between forward and backward arcs of the same type. We color v_{1} in some vertex c of T. Let C_{i} be the set of colors in which vertex v_{i} could be colored. We know that $C_{1}=c$ and C_{2} is the set of direct successors of c. Set C_{3} is the set of direct predecessors of vertices in C_{2} so $C_{1} \subseteq C_{3}$ and, more generally, $C_{i} \subseteq C_{i}+2$. Let $u v$ be an arc in T. If $u \in C_{i}$ with i odd, then $v \in C_{i+1}$. If $v \in C_{i}$ with i even then $u \in C_{i+1}$. We can see that $u v$ is capable of adding at most one vertex to a C_{i} (and every C_{j} with $j \equiv i \bmod 2$ and $i \leqslant j$. We know that $C_{p+1}=V(T)$ hence T contains at least $2|V(T)|-1$ arcs of each type.

Therefore, the underlying graph of T contains at least $m(2|V(T)|-1)+n(|V(T)|-1)=$ $(2 m+n)|V(T)|-m-n$ edges, which contradicts Proposition 8 for $2 m+n \geqslant 3$.

6. Proof of Theorem 5.1

We construct an oriented bipartite 2-outerplanar graph with girth 14 that does not map to $\overrightarrow{T_{5}}$.
The oriented graph X is a cycle on 14 vertices v_{0}, \cdots, v_{13} such that the tail of every arc is the vertex with even index, except for the arc $\overrightarrow{v_{13} \vec{v}_{0}}$. Suppose for contradiction that X has a $\overrightarrow{T_{5}}$-coloring h such that no vertex with even index maps to b. The directed path $v_{12} v_{13} v_{0}$ implies that $h\left(v_{12}\right) \neq h\left(v_{0}\right)$. If $h\left(v_{0}\right)=a$, then $h\left(v_{1}\right) \in\{b, c\}$ and $h\left(v_{2}\right)=a$ since $h\left(v_{2}\right) \neq b$. By contagion, $h\left(v_{0}\right)=h\left(v_{2}\right)=\cdots=h\left(v_{12}\right)=a$, which is a contradiction. Thus $h\left(v_{0}\right) \neq a$. If $h\left(v_{0}\right)=c$, then $h\left(v_{1}\right)=d$ and $h\left(v_{2}\right)=c$ since $h\left(v_{2}\right) \neq b$. By contagion, $h\left(v_{0}\right)=h\left(v_{2}\right)=\cdots=h\left(v_{12}\right)=c$, which is a contradiction. Thus $h\left(v_{0}\right) \neq c$. So $h\left(v_{0}\right) \notin\{a, b, c\}$, that is, $h\left(v_{0}\right) \in\{d, e\}$. Similarly, $h\left(v_{12}\right) \in\{d, e\}$. Notice that \vec{T}_{5} does not contain a directed path $x y z$ such that x and z belong to $\{d, e\}$. So the path $v_{12} v_{13} v_{0}$ cannot be mapped to $\overrightarrow{T_{5}}$. Thus X does not have a $\overrightarrow{T_{5}}$-coloring h such that no vertex with even index maps to b.

Consider now the path P on 7 vertices p_{0}, \cdots, p_{6} with the $\operatorname{arcs} \overrightarrow{p_{1} p_{0}}, \overrightarrow{p_{1} p_{2}}, \overrightarrow{p_{3} p_{2}}, \overrightarrow{p_{4} p_{3}}, \overrightarrow{p_{5} p_{4}}$, $\overrightarrow{p_{5} p_{6}}$. It is easy to check that there exists no $\overrightarrow{T_{5}}$-coloring h of P such that $h\left(p_{0}\right)=h\left(p_{6}\right)=b$.

We construct the graph Y as follows: we take 8 copies of X called $X_{\text {main }}, X_{0}, X_{2}, X_{4}, \cdots, X_{12}$. For every couple $(i, j) \in\{0,2,4,6,8,10,12\}^{2}$, we take a copy $P_{i, j}$ of P, we identify the vertex p_{0} of $P_{i, j}$ with the vertex v_{i} of $X_{\text {main }}$ and we identify the vertex p_{6} of $P_{i, j}$ with the vertex v_{j} of H_{i}.

So Y is our oriented bipartite 2-outerplanar graph with girth 14. Suppose for contradiction that Y has a $\overrightarrow{T_{5}}$-coloring h. By previous discussion, there exists $i \in\{0,2,4,6,8,10,12\}$ such that the vertex v_{i} of $X_{\text {main }}$ maps to b. Also, there exists $j \in\{0,2,4,6,8,10,12\}$ such that the vertex v_{j} of X_{i} maps to b. So the corresponding path $P_{i, j}$ is such that $h\left(p_{0}\right)=h\left(p_{6}\right)=b$, a contradiction. Thus Y does not map to $\overrightarrow{T_{5}}$.

7. Proof of Theorem 5.2

We construct a 2-edge-colored 2-outerplanar graph with girth 11 that does not map to T_{6}. We take 12 copies X_{0}, \cdots, X_{11} of a cycle of length 11 such that every edge is red. Let $v_{i, j}$ denote the $j^{\text {th }}$ vertex of X_{i}. For every $0 \leqslant i \leqslant 10$ and $0 \leqslant j \leqslant 10$, we add a path consisting of 5 blue edges between $v_{i, 11}$ and $v_{j, i}$.

Notice that in any T_{6}-coloring of a red odd cycle, one vertex must map to c. So we suppose without loss of generality that $v_{0,11}$ maps to c. We also suppose without loss of generality that $v_{0,0}$ maps to c. The blue path between $v_{0,11}$ and $v_{0,0}$ should map to a blue walk of length 5 from c to c in T_{6}. Since T_{6} contains no such walk, our graph does not map to T_{6}.

8. Proof of Theorem 5.3

We construct a 2-edge-colored bipartite 2-outerplanar graph with girth 10 that does not map to T_{6}. By Theorem 4.2, there exists a bipartite outerplanar graph M with girth at least 10 such that for every T_{6}-coloring h of M, there exists a vertex v in M such that $h(v)=c$.

Let X be the graph obtained as follows. Take a main copy Y of M. For every vertex v of Y, take a copy Y_{v} of M. Since Y_{v} is bipartite, let A and B the two independent sets of Y_{v}. For every vertex w of A, we add a path consisting of 5 blue edges between v and w. For every vertex w of B, we add a path consisting of 4 edges colored (blue, blue, red, blue) between v and w.

Notice that X is indeed a bipartite 2-outerplanar graph with girth 10 . We have seen in the previous proof that T_{6} contains no blue walk of length 5 from c to c. We also check that T_{6} contains no walk of length 4 colored (blue, blue, red, blue) from c to c. By the property of M, for every T_{6}-coloring h of X, there exist a vertex v in Y and a vertex w in Y_{v} such that $h(v)=h(w)=c$. Then h cannot be extended to the path of length 4 or 5 between v and w. So X does not map to T_{6}.

9. Proof of Theorem 6.1

Let g be the largest integer such that there exists a graph in $P_{g}^{(1,0)}$ that does not map to $\overrightarrow{T_{5}}$. Let $G \in P_{g}^{(1,0)}$ be a graph that does not map to \vec{T}_{5} and such that the underlying graph of G is minimal with respect to the homomorphism order.

Let G^{\prime} be obtained from G by removing an arbitrary arc $v_{0} v_{3}$ and adding two vertices v_{1} and v_{2} and the $\operatorname{arcs} v_{0} v_{1}, v_{2} v_{1}, v_{2} v_{3}$. By minimality, G^{\prime} admits a homomorphism φ to $\overrightarrow{T_{5}}$. Suppose for contradiction that $\varphi\left(v_{2}\right)=c$. This implies that $\varphi\left(v_{1}\right)=\varphi\left(v_{3}\right)=d$. Thus φ provides a $\overrightarrow{T_{5}}$-coloring of G, a contradiction. So $\varphi\left(v_{2}\right) \neq c$ and, similarly, $\varphi\left(v_{2}\right) \neq e$.

Given a set S of vertices of $\overrightarrow{T_{5}}$, we say that we force S if we specify a graph H and a vertex $v \in V(H)$ such that for every vertex $x \in V\left(\overrightarrow{T_{5}}\right)$, we have $x \in S$ if and only if there exists a \vec{T}_{5}-coloring φ of H such that $\varphi(v)=x$. Thus, with the graph G^{\prime} and the vertex v_{2}, we force a non-empty set $\mathcal{S} \subset V\left(\overrightarrow{T_{5}}\right) \backslash\{c, e\}=\{a, b, d\}$.

We use a series of constructions in order to eventually force the set $\{a, b, c, d\}$ starting from \mathcal{S}. Recall that $\{a, b, c, d\}$ induces the tournament \vec{T}_{4}. We thus reduce $\overrightarrow{T_{5}}$-coloring to $\overrightarrow{T_{4}}$-coloring, which is NP-complete for subcubic bipartite planar graphs with any given girth [4].

These constructions are summarized in the tree depicted in Figure 3. The vertices of this forest contain the non-empty subsets of $\{a, b, d\}$ and a few other sets. In this tree, an arc from S_{1} to
S_{2} means that if we can force S_{1}, then we can force S_{2}. Every arc has a label indicating the construction that is performed. In every case, we suppose that S_{1} is forced on the vertex v of a graph H_{1} and we construct a graph H_{2} that forces S_{2} on the vertex w.

Figure 3: Forcing the set $\{a, b, c, d\}$.

- Arcs labelled "out": The set S_{2} is the out-neighborhood of S_{1} in $\overrightarrow{T_{5}}$. We construct H_{2} from H_{1} by adding a vertex w and the arc $v w$. Thus, S_{2} is indeed forced on the vertex w of H_{2}.
- Arcs labelled "in": The set S_{2} is the in-neighborhood of S_{1} in \vec{T}_{5}. We construct H_{2} from H_{1} by adding a vertex w and the arc $w v$. Thus, S_{2} is indeed forced on the vertex w of H_{2}.
- Arc labelled "Z": Let g^{\prime} be the smallest integer such that $g^{\prime} \geqslant g$ and $g^{\prime} \equiv 4(\bmod 6)$. We consider a circuit $v_{1}, \cdots, v_{g^{\prime}}$. For $2 \leqslant i \leqslant g^{\prime}$, we take a copy of H_{1} and we identify its vertex v with v_{i}. We thus obtain the graph H_{2} and we set $w=v_{2}$. Let φ be any T_{6}-coloring of H_{2}. By construction, $\left\{\varphi\left(v_{2}\right), \cdots, \varphi\left(v_{g^{\prime}}\right)\right\} \subset S_{1}=\{a, b, d\}$. A circuit of length $\not \equiv 0(\bmod 3)$ cannot map to the 3 -circuit induced by $\{a, b, d\}$, so $\varphi\left(v_{1}\right) \in\{c, e\}$. If $\varphi\left(v_{1}\right)=c$ then $\varphi\left(v_{2}\right)=d$ and if $\varphi\left(v_{1}\right)=e$ then $\varphi\left(v_{2}\right)=a$. Thus $S_{2}=\{a d\}$.

10. Proof of Theorem 6.2

Let g be the largest integer such that there exists a graph in $P_{g}^{(0,2)}$ that does not map to T_{6}. Let $G \in P_{g}^{(0,2)}$ be a graph that does not map to T_{6} and such that the underlying graph of G is minimal with respect to the homomorphism order.

Let G^{\prime} be obtained from G by subdividing an arbitrary edge $v_{0} v_{3}$ twice to create the path $v_{0} v_{1} v_{2} v_{3}$ such that the edges $v_{0} v_{1}$ and $v_{1} v_{2}$ are red and the edge $v_{2} v_{3}$ gets the color of the original edge $v_{0} v_{3}$. By minimality, G^{\prime} admits a homomorphism φ to T_{6}. Suppose for contradiction that $\varphi\left(v_{1}\right)=f$. This implies that $\varphi\left(v_{0}\right)=\varphi\left(v_{2}\right)=b$. Thus φ provides a T_{6}-coloring of G, a contradiction.

Given a set S of vertices of T_{6}, we say that we force S if we specify a graph H and a vertex $v \in V(H)$ such that for every vertex $x \in V\left(T_{6}\right)$, we have $x \in S$ if and only if there exists T_{6}-coloring φ of H such that $\varphi(v)=x$. Thus, with the graph G^{\prime} and the vertex v_{1}, we force a non-empty set $\mathcal{S} \subset V\left(T_{6}\right) \backslash\{f\}=\{a, b, c, d, e\}$.

Recall that the core of a graph is the smallest subgraph which is also a homomorphic image. We say that a subset S of $V\left(T_{6}\right)$ is good if the core of the subgraph induced by S is isomorphic to the graph T_{4} which is a a clique on 4 vertices such that both the red and the blue edges induce a

Figure 4: Forcing a good set.
path of length 3 . We use a series of constructions in order to eventually force a good set starting from \mathcal{S}. We thus reduce T_{6}-coloring to T_{4}-coloring, which is NP-complete for subcubic bipartite planar graphs with any given girth [5].

These constructions are summarized in the forest depicted in Figure 4. The vertices of this forest are the non-empty subsets of $\{a, b, c, d, e\}$ together with a few auxiliary sets of vertices containing f. In this forest, an arc from S_{1} to S_{2} means that if we can force S_{1}, then we can force S_{2}. Every set with no outgoing arc is good. We detail below the construction that is performed for each arc. In every case, we suppose that S_{1} is forced on the vertex v of a graph H_{1} and we construct a graph H_{2} that forces S_{2} on the vertex w.

- Blue arcs: The set S_{2} is the blue neighborhood of S_{1} in T_{6}. We construct H_{2} from H_{1} by adding a vertex w adjacent to v such that $v w$ is blue. Thus, S_{2} is indeed forced on the vertex w of H_{2}.
- Red arcs: The set S_{2} is the red neighborhood of S_{1} in T_{6}. The construction is as above except that the edge $v w$ is red.
- Dashed blue arcs: The set S_{2} is the set of vertices incident to a blue edge contained in the subgraph induced by S_{1} in T_{6}. We construct H_{2} from two copies of H_{1} by adding a blue
edge between the vertex v of one copy and the vertex v of the other copy. Then w is one of the vertices v.
- Dashed red arcs: The set S_{2} is the set of vertices incident to a red edge contained in the subgraph induced by S_{1} in T_{6}. The construction is as above except that the added edge is red.
- Arc labelled "X": Let $g^{\prime}=2\lceil g / 2\rceil$. We consider an even cycle $v_{1}, \cdots, v_{g^{\prime}}$ such that $v_{1} v_{g^{\prime}}$ is red and the other edges are blue. For every vertex v_{i}, we take a copy of H_{1} and we identify its vertex v with v_{i}. We thus obtain the graph H_{2} and we set $w=v_{1}$. Let φ be any T_{6}-coloring of H_{2}. In any T_{6}-coloring of H_{2}, the cycle $v_{1}, \cdots, v_{g^{\prime}}$ maps to a 4 -cycle with exactly one red edge contained in the subgraph of T_{6} induced by $S_{1}=\{a, b, c, d, e\}$. These 4 -cycles are aedb with red edge ae and $c d b a$ with red edge $c d$. Since w is incident to the red edge in the cycle $v_{1}, \cdots, v_{g^{\prime}}, w$ can be mapped to a, e, c, or d but not to b. Thus $S_{2}=\{a, c, d, e\}$.
- Arc labelled " Y ": We consider an alternating cycle $v_{0}, \cdots, v_{8 g-1}$. For every vertex v_{i}, we take a copy of H_{1} and we identify its vertex v with v_{i}. We obtain the graph H_{2} by adding the vertex x adjacent to v_{0} and $v_{4 g+2}$ such that $x v_{0}$ and $x v_{4 g+2}$ are blue. We set $w=v_{0}$. In any T_{6}-coloring φ of H_{2}, the cycle $v_{1}, \cdots, v_{g^{\prime}}$ maps to the alternating 4 -cycle acde contained in $S_{1}=\{a, c, d, e\}$ such that $\varphi\left(v_{i}\right)=\varphi\left(v_{i+4}(\bmod 8 g)\right)$. So, a priori, either $\left\{\varphi\left(v_{0}\right), \varphi\left(v_{4 g+2}\right)\right\}=\{a, d\}$ or $\left\{\varphi\left(v_{0}\right), \varphi\left(v_{4 g+2}\right)\right\}=\{c, e\}$. In the former case, we can extend φ to H_{2} by setting $\varphi(x)=b$. In the latter case, we cannot color x since c and e have no common blue neighbor in T_{6}. Thus, $\left\{\varphi\left(v_{0}\right), \varphi\left(v_{4 g+2}\right)\right\}=\{a, d\}$ and $S_{2}=\{a, d\}$.

References

[1] J. Nešetřil and A. Raspaud. Colored homomorphisms of colored mixed graphs. Journal of Combinatorial Theory, Series B, 80(1):147-155, 2000.
[2] H. Grötzsch. Ein dreifarbensatz für dreikreisfreie netze auf der kugel. Wiss. Z. Martin-LutherUniv. Halle-Wittenberg Math.-Natur. Reihe, 8:109-120, 1959.
[3] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud, and É. Sopena. On universal graphs for planar oriented graphs of a given girth. Discrete Mathematics, 188(1):73-85, 1998.
[4] G. Guegan and P. Ochem. Complexity dichotomy for oriented homomorphism of planar graphs with large girth. Theoretical Computer Science, 596:142-148, 2015.
[5] N. Movarraei and P. Ochem. Oriented, 2-edge-colored, and 2-vertex-colored homomorphisms. Information Processing Letters, 123:42-46, 2017.

[^0]: ${ }^{1}$ This work is supported by the ANR project HOSIGRA (ANR-17-CE40-0022).

