# Homomorphisms of planar (m, n)-colored-mixed graphs to planar targets

Fabien Jacques and Pascal Ochem<sup>a,1</sup>

<sup>a</sup>LIRMM, Université de Montpellier, CNRS, Montpellier, France

#### Abstract

An (m, n)-colored-mixed graph  $G = (V, A_1, A_2, \cdots, A_m, E_1, E_2, \cdots, E_n)$  is a graph having m colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints. A homomorphism from an (m, n)-colored-mixed graph G to another (m, n)-colored-mixed graph H is a morphism  $\varphi: V(G) \to V(H)$  such that each edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). An (m, n)-colored-mixed graph T is said to be  $P_g^{(m,n)}$ -universal if every graph in  $P_g^{(m,n)}$  (the planar (m,n)-colored-mixed graphs with girth at least g) admits a homomorphism to T.

We show that planar  $P_g^{(m,n)}$ -universal graphs do not exist for  $2m + n \ge 3$  (and any value of g) and find a minimal (in the number vertices) planar  $P_g^{(m,n)}$ -universal graphs in the other cases.

## 1. Introduction

The concept of homomorphisms of (m, n)-colored-mixed graph was introduced by J. Nesětřil and A. Raspaud [1] in order to generalize homomorphisms of k-edge-colored graphs and oriented graphs.

An (m,n)-colored-mixed graph  $G = (V, A_1, A_2, \cdots, A_m, E_1, E_2, \cdots, E_n)$  is a graph having m colors of arcs and n colors of edges. We do not allow two arcs or edges to have the same endpoints and we do not allow loops. The case m = 0 and n = 1 corresponds to simple graphs, m = 1 and n = 0 to oriented graphs and m = 0 and n = k to k-edge-colored graphs. For the case m = 0 and n=2 (2-edge-colored graphs) we refer to the two types of edges as blue and red edges.

A homomorphism from an (m, n)-colored-mixed graph G to another (m, n)-colored-mixed graph H is a mapping  $\varphi: V(G) \to V(H)$  such that every edge (resp. arc) of G is mapped to an edge (resp. arc) of H of the same color (and orientation). If G admits a homomorphism to H, we say that G is H-colorable since this homomorphism can be seen as a coloring of the vertices of G using the vertices of H as colors. The edges and arcs of H (and their colors) give us the rules that this coloring must follow. Given a class of graphs C, a graph is *C*-universal if for every graph  $G \in \mathcal{C}$  is *H*-colorable. The class  $P_g^{(m,n)}$  contains every planar (m,n)-colored-mixed graph with girth at least g. Graph  $\overrightarrow{C_6^2}$  is the graph with vertex set  $\{0, 1, 2, 3, 4, 5\}$  such that uv is an arc if and only if  $v - u \equiv 1 \pmod{6}$  or  $v - u \equiv 2 \pmod{6}$ .

In this paper, we consider some planar  $P_g^{(m,n)}$ -universal graphs with few vertices. They are depicted in Figures 1 and 2. The known results about this topic are as follows.

# Theorem 1.

- K<sub>4</sub> is a planar P<sub>3</sub><sup>(0,1)</sup>-universal graph. This is the four color theorem.
  K<sub>3</sub> is a planar P<sub>4</sub><sup>(0,1)</sup>-universal graph. This is Grötzsch's Theorem [2].
  C<sub>6</sub><sup>2</sup> is a planar P<sub>16</sub><sup>(1,0)</sup>-universal graph [3].

<sup>&</sup>lt;sup>1</sup>This work is supported by the ANR project HOSIGRA (ANR-17-CE40-0022).

Our first result shows that, in addition to the case of (0, 1)-graphs covered by Theorems 1.1 and 1.2, our topic is actually restricted to the cases of oriented graphs (i.e., (m, n) = (1, 0)) and 2-edge-colored graphs (i.e., (m, n) = (0, 2)).

**Theorem 2.** For every  $g \ge 3$ , there exists no planar  $P_g^{(m,n)}$ -universal graph if  $2m + n \ge 3$ .

As Theorems 1.1 and 1.2 show for (0, 1)-graphs, there might exist a trade-off between minimizing the girth g and the number of vertices of the universal graph, for a fixed pair (m, n). For oriented graphs, Theorem 1.3 tries to minimize the girth. For oriented graphs and 2-edge-colored graphs, we choose instead to minimize the number of vertices of the universal graph.

## Theorem 3.

1.  $\overrightarrow{T_5}$  is a planar  $P_{28}^{(1,0)}$ -universal graph on 5 vertices. 2.  $T_6$  is a planar  $P_{22}^{(0,2)}$ -universal graph on 6 vertices.

The following results shows that Theorem 3 is optimal in terms of the number of vertices of the universal graph.

# Theorem 4.

- 1. For every  $g \ge 3$ , there exists an oriented bipartite cactus graph (i.e.,  $K_4^-$  minor-free graph) with girth at least g and oriented chromatic number at least 5.
- 2. For every  $g \ge 3$ , there exists a 2-edge-colored bipartite outerplanar graph (i.e.,  $(K_4^-, K_{2,3})$  minor-free graph) with girth at least g that does not map to a planar graph with at most 5 vertices.

Most probably, Theorem 3 is not optimal in terms of girth. The following constructions give lower bounds on the girth.

## Theorem 5.

- 1. There exists an oriented bipartite 2-outerplanar graph with girth 14 that does not map to  $\overline{T_5}$ .
- 2. There exists a 2-edge-colored planar graph with girth 11 that does not map to  $T_6$ .
- 3. There exists a 2-edge-colored bipartite planar graph with girth 10 that does not map to  $T_6$ .



Figure 1: The  $P_{28}^{(1,0)}$ -universal graph  $\overrightarrow{T_5}$ .

Figure 2: The  $P_{22}^{(0,2)}$ -universal graph  $T_6$ .

Next, we obtain the following complexity dichotomies:

## Theorem 6.

1. For any fixed girth  $g \ge 3$ , either every graph in  $P_g^{(1,0)}$  maps to  $\overrightarrow{T_5}$  or it is NP-complete to decide whether a graph in  $P_g^{(1,0)}$  maps to  $\overrightarrow{T_5}$ . Either every bipartite graph in  $P_g^{(1,0)}$  maps to  $\overrightarrow{T_5}$  or it is NP-complete to decide whether a bipartite graph in  $P_g^{(1,0)}$  maps to  $\overrightarrow{T_5}$ .

2. Either every graph in  $P_g^{(0,2)}$  maps to  $T_6$  or it is NP-complete to decide whether a graph in  $P_g^{(1,0)}$  maps to  $T_6$ . Either every bipartite graph in  $P_g^{(0,2)}$  maps to  $T_6$  or it is NP-complete to decide whether a bipartite graph in  $P_g^{(1,0)}$  maps to  $T_6$ .

Finally, we can use Theorem 6 with the non-colorable graphs in Theorem 5.

## Corollary 7.

- 1. Deciding whether a bipartite graph in  $P_{14}^{(1,0)}$  maps to  $\overrightarrow{T_5}$  is NP-complete.
- 2. Deciding whether a graph in  $P_{11}^{(0,2)}$  maps to  $T_6$  is NP-complete.
- 3. Deciding whether a bipartite graph in  $P_{10}^{(0,2)}$  maps to  $T_6$  is NP-complete.

A 2-edge-colored path or cycle is said to be *alternating* if any two adjacent edges have distinct colors.

#### **Proposition 8** (folklore).

- Every planar simple graph on n vertices has at most 3n 6 edges.
- Every planar simple graph satisfies  $(mad(G) 2) \cdot (g(G) 2) < 4$ .

## 2. Proof of Theorem 3

We use the discharging method for both results in Theorem 3. The following lemma will handle the discharging part. We call a vertex of degree n an n-vertex and a vertex of degree at least nan  $n^+$ -vertex. If there is a path made only of 2-vertices linking two vertices u and v, we say that v is a weak-neighbor of u. If v is a neighbor of u, we also say that v is a weak-neighbor of u. We call a (weak-)neighbor of degree n an n-(weak-)neighbor.

**Lemma 9.** Let k be a non-negative integer. Let G be a graph with minimum degree 2 such that every 3-vertex has at most k 2-weak-neighbors and every path contains at most  $\frac{k+1}{2}$  consecutive 2-vertices. Then  $mad(G) \ge 2 + \frac{2}{k+2}$ . In particular, G cannot be a planar graph with girth at least 2k + 6.

*Proof.* Let G be as stated. Every vertex has an initial charge equal to its degree. Every 3<sup>+</sup>-vertex gives  $\frac{1}{k+2}$  to each of its 2-weak-neighbors. Let us check that the final charge ch(v) of every vertex v is at least  $2 + \frac{2}{k+2}$ .

- If d(v) = 2, then v receives  $\frac{1}{k+2}$  from each of its 3-weak-neighbors. Thus  $ch(v) = 2 + \frac{2}{k+2}$ .
- If d(v) = 3, then v gives  $\frac{1}{k+2}$  to each of its 2-weak-neighbors. Thus  $ch(v) \ge 3 \frac{k}{k+2} = 2 + \frac{2}{k+2}$ .
- If  $d(v) = d \ge 4$ , then v has at most  $\frac{k+1}{2}$  2-weak-neighbors in each of the d incident paths. Thus  $ch(v) \ge d - d\left(\frac{k+1}{2}\right)\left(\frac{1}{k+2}\right) = \frac{d}{2}\left(1 + \frac{1}{k+2}\right) \ge 2 + \frac{2}{k+2}$ .

This implies that  $mad(G) \ge 2 + \frac{2}{k+2}$ . Finally, if G is planar, then the girth of G cannot be at least 2k+6, since otherwise  $(mad(G)-2) \cdot (g(G)-2) \ge \left(2 + \frac{2}{k+2} - 2\right)(2k+6-2) = \left(\frac{2}{k+2}\right)(2k+4) = 4$ , which contradicts Proposition 8.

# 2.1. Proof of Theorem 3.1

We prove that the oriented planar graph  $\overrightarrow{T_5}$  on 5 vertices from Figure 1 is  $P_{28}^{(1,0)}$ -universal by contradiction. Assume that G is an oriented planar graphs with girth at least 28 that does not admit a homomorphism to  $\overrightarrow{T_5}$  and is minimal with respect to the number of vertices. By minimality, G cannot contain a vertex v with degree at most one since a  $\overrightarrow{T_5}$ -coloring of G - v can be extended to G. Similarly, G does not contain the following configurations.

- A path with 6 consecutive 2-vertices.
- A 3-vertex with at least 12 2-weak-neighbors.

Suppose that G contains a path  $u_0u_1u_2u_3u_4u_5u_6u_7$  such that the degree of  $u_i$  is two for  $1 \leq i \leq 6$ . By minimality of G,  $G - u_1, u_2, u_3, u_4, u_5, u_6$  admits a  $\overrightarrow{T_5}$ -coloring  $\varphi$ . We checked on a computer that for any  $\varphi(v_0)$  and  $\varphi(v_6)$  in  $V\left(\overrightarrow{T_5}\right)$  and every possible orientation of the 7 arcs  $u_iu_{i+1}$ , we can always extend  $\varphi$  into a  $\overrightarrow{T_5}$ -coloring of G, a contradiction.

Suppose that G contains a 3-vertex v with at least 12 2-weak-neighbors. Let  $u_1, u_2, u_3$  be the  $3^+$ -weak-neighbors of v and let  $l_i$  be the number of common 2-weak-neighbors of v and  $u_i$ , i.e., 2-vertices on the path between v and  $l_i$ . Without loss of generality and by the previous discussion, we have  $5 \ge l_1 \ge l_2 \ge l_3$  and  $l_1 + l_2 + l_3 \ge 12$ . So we have to consider the following cases:

- Case 1:  $l_1 = 5, l_2 = 5, l_3 = 2.$
- Case 2:  $l_1 = 5, l_2 = 4, l_3 = 3.$
- Case 3:  $l_1 = 4, l_2 = 4, l_3 = 4.$

By minimality, the graph G' obtained from G by removing v and its 2-weak-neighbors admits a  $\overrightarrow{T_5}$ -coloring  $\varphi$ . Let us show that in all three cases, we can extend  $\varphi$  into a  $\overrightarrow{T_5}$ -coloring of G to get a contradiction.

With an extensive search on a computer we found that if a vertex v is connected to a vertex u colored in  $\varphi(u)$  by a path made of l 2-vertices  $(0 \le l \le 5)$  then v can be colored in:

- at least 1 color if l = 0,
- at least 2 colors if l = 1,
- at least 2 colors if l = 2 (the sets  $\{c, d, e\}$  and  $\{b, c, d\}$  are the only sets of size 3 that can be forbidden from v),
- at least 3 colors if l = 3,
- at least 4 colors if l = 4 and
- at least 4 colors if l = 5 (only the sets  $\{b\}, \{c\}, \text{ and } \{e\}$  can be forbidden from v).

In Case 1,  $u_3$  forbids at most 3 colors from v since  $l_3 = 2$ . If it forbids less than 3 colors, we will be able to find a color for v since  $u_1$  and  $u_2$  forbid at most 1 color from v. The only sets of 3 colors that  $u_3$  can forbid are  $\{b, c, d\}$  and  $\{c, d, e\}$ . Since  $u_1$  and  $u_2$  can each only forbid b, c or e, we can always find a color for v.

In Case 2,  $u_1$  and  $u_2$  each forbid at most one color and  $u_3$  forbids at most 2 colors so there remains at least one color for v.

In Case 3,  $u_1$ ,  $u_2$ , and  $u_3$  each forbid at most one color, so there remains at least two colors for v.

We can always extend  $\varphi$  into a  $\overrightarrow{T_5}$ -coloring of G, a contradiction.

So G contains at most 5 consecutive 2-vertices and every 3-vertex has at most 11 2-weakneighbors. Using Lemma 9 with k = 11 contradicts the fact that the girth of G is at least 28.

## 2.2. Proof of Theorem 3.2

We prove that the 2-edge-colored planar graph  $T_6$  on 6 vertices from Figure 2 is  $P_{22}^{(0,2)}$ -universal by contradiction. Assume that G is a 2-edge-colored planar graphs with girth at least 22 that does not admit a homomorphism to  $T_6$  and is minimal with respect to the number of vertices. By minimality, G cannot contain a vertex v with degree at most one since a  $T_6$ -coloring of G - v can be extended to G. Similarly, G does not contain the following configurations.

- A path with 5 consecutive 2-vertices.
- A 3-vertex with at least 9 2-weak-neighbors.

Suppose that G contains a path  $u_0u_1u_2u_3u_4u_5u_6$  such that the degree of  $u_i$  is two for  $1 \le i \le 5$ . By minimality of G,  $G - u_1, u_2, u_3, u_4, u_5$  admits a  $T_6$ -coloring  $\varphi$ . We checked on a computer that for any  $\varphi(v_0)$  and  $\varphi(v_6)$  in V(T) and every possible colors of the 6 edges  $u_iu_{i+1}$ , we can always extend  $\varphi$  into a  $T_6$ -coloring of G, a contradiction.

Suppose that G contains a 3-vertex v with at least 9 2-weak-neighbors. Let  $u_1, u_2, u_3$  be the  $3^+$ -weak-neighbors of v and let  $l_i$  be the number of common 2-weak-neighbors of v and  $u_i$ , i.e., 2-vertices on the path between v and  $l_i$ . Without loss of generality and by the previous discussion, we have  $4 \ge l_1 \ge l_2 \ge l_3$  and  $l_1 + l_2 + l_3 \ge 9$ . So we have to consider the following cases:

- Case 1:  $l_1 = 3, l_2 = 3, l_3 = 3.$
- Case 2:  $l_1 = 4, l_2 = 3, l_3 = 2.$
- Case 3:  $l_1 = 4, l_2 = 4, l_3 = 1.$

By minimality of G, the graph G' obtained from G by removing v and its 2-weak-neighbors admits a  $T_6$ -coloring  $\varphi$ . Let us show that in all three cases, we can extend  $\varphi$  into a  $T_6$ -coloring of G to get a contradiction.

With an extensive search on a computer we found that if a vertex v is connected to a vertex u colored in  $\varphi(u)$  by a path P made of l 2-vertices  $(0 \le l \le 4)$  then v can be colored in:

- at least 1 color if l = 0 (the sets a, c, d, e, f and b, c, d, e, f of colors are the only sets of size 5 that can be forbidden from v for some  $\varphi(u) \in T$  and edge-colors on P),
- at least 2 colors if l = 1 (the sets a, b, c, f and b, c, e, f are the only sets of size 4 that can be forbidden from v),
- at least 3 colors if l = 2 (the sets b, c, f, c, e, f and d, e, f are the only sets of size 3 that can be forbidden from v),
- at least 4 colors if l = 3 (the set c, b is the only set of size 2 that can be forbidden from v), and
- at least 5 colors if l = 4 (the sets c and f are the only sets of size 1 that can be forbidden from v).

Suppose that we are in Case 1. Vertices  $u_1$ ,  $u_2$ , and  $u_3$  each forbid at most 2 colors from v since  $l_1 = l_2 = l_3 = 3$ . Suppose that  $u_1$  forbids 2 colors. It has to forbid colors c and f (since it is the only pair of colors that can be forbidden by a path made of 3 2-vertices). If  $u_2$  or  $u_3$  also forbids 2 colors, they will forbid the exact same pair of colors. We can therefore assume that they each forbid 1 color from v. There are 6 available colors in  $T_6$ , so we can always find a color for v and extend  $\varphi$  to a  $T_6$ -coloring of G, a contradiction. We proceed similarly for the other two cases.

So G contains at most 4 consecutive 2-vertices and every 3-vertex has at most 8 2-weakneighbors. Then Lemma 9 with k = 8 contradicts the fact that the girth of G is at least 22.

#### 3. Proof of Theorem 4.1

We construct an oriented bipartite cactus graph with girth at least g and oriented chromatic number at least 5. Let g' be such that  $g' \ge g$  and  $g' \equiv 4 \pmod{6}$ . Consider a circuit  $v_1, \dots, v_{g'}$ . Clearly, the oriented chromatic number of this circuit is 4 and the only tournament on 4 vertices it can map to is the tournament  $\overrightarrow{T}_4$  induced by the vertices a, b, c, and d in  $\overrightarrow{T}_5$ . Now we consider the cycle  $C = w_1, \dots, w_{g'}$  containing the arcs  $w_{2i-1}w_{2i}$  with  $1 \le i \le g'/2, w_{2i+1}w_{2i}$  with  $1 \le i \le$ g'/2 - 1, and  $w_{g'}w_1$ . Suppose for contradiction that C admits a homomorphism  $\varphi$  such that  $\varphi(w_1) = d$ . This implies that  $\varphi(w_2) = a$ ,  $\varphi(w_3) = d$ ,  $\varphi(w_4) = a$ , and so on until  $\varphi(w_{g'}) = a$ . Since  $\varphi(w_{g'}) = a$  and  $\varphi(w_1) = d$ ,  $w_{g'}w_1$  should map to ad, which is not an arc of  $\overrightarrow{T}_4$ , a contradiction.

Our cactus graph is then obtain from the circuit  $v_1, \dots, v_{g'}$  and g' copies of C by identifying every vertex  $v_i$  with the vertex  $w_1$  of a copy of C. This cactus graph does not map to  $\overrightarrow{T}_4$  since one of the  $v_i$  would have to map to d and then the copy of C attached to  $v_i$  would not be  $\overrightarrow{T}_4$ -colorable.

#### 4. Proof of Theorem 4.2

We construct a 2-edge-colored bipartite outerplanar graph with girth at least g that does not map to a 2-edge-colored planar graph with at most 5 vertices. Let g' be such that  $g' \ge g$  and  $g' \equiv 2 \pmod{4}$ . Consider an alternating cycle  $C = v_0, \cdots, v_{g'-1}$ . For every  $0 \le i \le g' - 3$ , we add g' - 2 2-vertices  $w_{i,1}, \cdots, w_{i,g'-2}$  that form the path  $P_i = v_i w_{i,1} \cdots w_{i,g'-2} v_{i+1}$  such that the edges of  $P_i$  get the color distinct from the color of the edge  $v_i v_{i+1}$ . Let G be the obtained graph. The 2-edge-colored chromatic number of C is 5. So without loss of generality, we assume for contradiction that G admits a homomorphism  $\varphi$  to a 2-edge-colored planar graph H on 5 vertices. Let us define  $\mathcal{E} = \bigcup_{i \text{ even }} \varphi(v_i)$  and  $\mathcal{O} = \bigcup_{i \text{ odd }} \varphi(v_i)$ . Since C is alternating,  $\varphi(v_i) \neq \varphi(v_{i+2})$ (indices are modulo g'). Since  $g' \equiv 2 \pmod{4}$ , there is an odd number of  $v_i$  with an even (resp. odd) index. Thus,  $|\mathcal{E}| \ge 3$  and  $|\mathcal{O}| \ge 3$ . Therefore we must have  $\mathcal{E} \cap \mathcal{O} \neq \emptyset$ .

Notice that every two vertices  $v_i$  and  $v_j$  in G are joined by a blue path and a red path such that the lengths of these paths have the same parity as i - j. Thus, the blue (resp. red) edges of H must induce a connected spanning subgraph of H. Since |V(H)| = 5, H contains at least 4 blue (resp. red) edges. Since red and blue edges play symmetric roles in G and since  $|E(H)| \leq 9$  by Proposition 8, we assume without loss of generality that H contains exactly 4 blue edges. Moreover, these 4 blue edges induce a tree. In particular, the blue edges induce a bipartite graph which partitions V(H) into 2 parts. Thus, every  $v_i$  with even index is mapped into one part of V(H) and every  $v_i$  with odd index is mapped into the other part of V(H). So  $\mathcal{E} \cap \mathcal{O} = \emptyset$ , which is a contradiction.

#### 5. Proof of Theorem 2

Let T be a  $P_g^{(m,n)}$ -universal planar graph for some g that is minimal with respect to the subgraph order.

By minimality of T, there exists a graph  $G \in P_g^{(m,n)}$  such that every color in T has to be used at least once to color G. Without loss of generality, G is connected, since otherwise we can replace G by the connected graph obtained from G by choosing a vertex in each component of Gand identifying them. We obtain a graph G' from G as follows:

For each edge or arc uv in G, we keep uv in G' and we add 4m + n paths starting at u and ending at v made of vertices of degree 2:

- For each type of edge, we add a path made of g-1 edges of this type.
- For each type of arc, we add two paths made of g-1 arcs of this type such that the paths alternate between forward and backward arcs. We make the paths such that u is the tail of the first arc of one path and the head of the first arc of the other path.
- Similarly, for each type of arc we add two paths made of g arcs of this type such that the paths alternate between forward and backward arcs. We make the paths such that u is the tail of the first arc of one path and the head of the first arc of the other path.

Notice that G' is in  $P_g^{(m,n)}$  and thus admits a homomorphism  $\varphi$  to T. Since G is a connected subgraph of G' and every color in T has to be used at least once to color G, we can find for each pair of vertices  $(c_1, c_2)$  in T and each type of edge a path  $(v_1, v_2, \dots, v_l)$  in G' made only of edges

of this type such that  $\varphi(v_1) = c_1$  and  $\varphi(v_l) = c_2$ .

This implies that for every pair of vertices  $(c_1, c_2)$  in T and each type of edge, there exists a walk from  $c_1$  to  $c_2$  made of edges of this type. Therefore, for  $1 \leq j \leq n$ , the subgraph induced by  $E_j(T)$  is connected and contains all the vertices of T. So  $E_j(T)$  contains a spanning tree of T. Thus T contains at least |V(T)| - 1 edges of each type.

Similarly, we can find for each pair of vertices  $(c_1, c_2)$  in T and each type of arc a path of even length  $(v_1, v_2, \dots, v_{2l-1})$  in G' made only of arcs of this type, starting with a forward arc and alternating between forward and backward arcs such that  $\varphi(v_1) = c_1$  and  $\varphi(v_l) = c_2$ . We can also find a path of the same kind with odd length.

This implies that for every pair of vertices  $(c_1, c_2)$  in T and each type of arc there exist a walk of odd length and a walk of even length from  $c_1$  to  $c_2$  made of arcs of this type, starting with a forward arc and alternating between forward and backward arcs. Let p be the maximum of the length of all these paths. Given one of these walks of length l, we can also find a walk of length l + 2 that satisfies the same constraints by going through the last arc of the walk twice more. Therefore, for every  $l \ge p$ , every pair of vertices  $(c_1, c_2)$  in T, and every type of arc, it is possible to find a homomorphism from the path P of length l made of arcs of this type, starting with a forward arc and alternating between forward and backward arcs to T such that the first vertex is colored in  $c_1$  and the last vertex is colored in  $c_2$ .

We now show that this implies that  $|A_j(T)| \ge 2|V(T)| - 1$  for  $1 \le j \le m$ . Let P be a path  $(v_1, v_2, \dots, v_p, v_{p+1})$  of length p starting with a forward arc and alternating between forward and backward arcs of the same type. We color  $v_1$  in some vertex c of T. Let  $C_i$  be the set of colors in which vertex  $v_i$  could be colored. We know that  $C_1 = c$  and  $C_2$  is the set of direct successors of c. Set  $C_3$  is the set of direct predecessors of vertices in  $C_2$  so  $C_1 \subseteq C_3$  and, more generally,  $C_i \subseteq C_i + 2$ . Let uv be an arc in T. If  $u \in C_i$  with i odd, then  $v \in C_{i+1}$ . If  $v \in C_i$  with i even then  $u \in C_{i+1}$ . We can see that uv is capable of adding at most one vertex to a  $C_i$  (and every  $C_j$  with  $j \equiv i \mod 2$  and  $i \le j$ ). We know that  $C_{p+1} = V(T)$  hence T contains at least 2|V(T)| - 1 arcs of each type.

Therefore, the underlying graph of T contains at least m(2|V(T)|-1) + n(|V(T)|-1) = (2m+n)|V(T)| - m - n edges, which contradicts Proposition 8 for  $2m + n \ge 3$ .

#### 6. Proof of Theorem 5.1

We construct an oriented bipartite 2-outerplanar graph with girth 14 that does not map to  $\overrightarrow{T_5}$ . The oriented graph X is a cycle on 14 vertices  $v_0, \cdots, v_{13}$  such that the tail of every arc is the vertex with even index, except for the arc  $\overrightarrow{v_{13}v_0}$ . Suppose for contradiction that X has a  $\overrightarrow{T_5}$ -coloring h such that no vertex with even index maps to b. The directed path  $v_{12}v_{13}v_0$  implies that  $h(v_{12}) \neq h(v_0)$ . If  $h(v_0) = a$ , then  $h(v_1) \in \{b, c\}$  and  $h(v_2) = a$  since  $h(v_2) \neq b$ . By contagion,  $h(v_0) = h(v_2) = \cdots = h(v_{12}) = a$ , which is a contradiction. Thus  $h(v_0) \neq a$ . If  $h(v_0) = c$ , then  $h(v_1) = d$  and  $h(v_2) = c$  since  $h(v_2) \neq b$ . By contagion,  $h(v_0) = h(v_2) = \cdots = h(v_{12}) = c$ , which is a contradiction. Thus  $h(v_0) = h(v_2) = \cdots = h(v_{12}) = c$ , which is a contradiction. Thus  $h(v_0) \neq c$ . So  $h(v_0) \notin \{a, b, c\}$ , that is,  $h(v_0) \in \{d, e\}$ . Similarly,  $h(v_{12}) \in \{d, e\}$ . Notice that  $\overrightarrow{T_5}$  does not contain a directed path xyz such that x and z belong to  $\{d, e\}$ . So the path  $v_{12}v_{13}v_0$  cannot be mapped to  $\overrightarrow{T_5}$ . Thus X does not have a  $\overrightarrow{T_5}$ -coloring h such that no vertex with even index maps to b.

Consider now the path P on 7 vertices  $p_0, \dots, p_6$  with the arcs  $\overrightarrow{p_1p_0}, \overrightarrow{p_1p_2}, \overrightarrow{p_3p_2}, \overrightarrow{p_4p_3}, \overrightarrow{p_5p_4}, \overrightarrow{p_5p_6}$ . It is easy to check that there exists no  $\overrightarrow{T_5}$ -coloring h of P such that  $h(p_0) = h(p_6) = b$ .

We construct the graph Y as follows: we take 8 copies of X called  $X_{\text{main}}$ ,  $X_0$ ,  $X_2$ ,  $X_4$ ,  $\cdots$ ,  $X_{12}$ . For every couple  $(i, j) \in \{0, 2, 4, 6, 8, 10, 12\}^2$ , we take a copy  $P_{i,j}$  of P, we identify the vertex  $p_0$  of  $P_{i,j}$  with the vertex  $v_i$  of  $X_{\text{main}}$  and we identify the vertex  $p_6$  of  $P_{i,j}$  with the vertex  $v_j$  of  $H_i$ . So Y is our oriented bipartite 2-outerplanar graph with girth 14. Suppose for contradiction that Y has a  $\overrightarrow{T_5}$ -coloring h. By previous discussion, there exists  $i \in \{0, 2, 4, 6, 8, 10, 12\}$  such that the vertex  $v_i$  of  $X_{\text{main}}$  maps to b. Also, there exists  $j \in \{0, 2, 4, 6, 8, 10, 12\}$  such that the vertex  $v_j$ of  $X_i$  maps to b. So the corresponding path  $P_{i,j}$  is such that  $h(p_0) = h(p_6) = b$ , a contradiction. Thus Y does not map to  $\overrightarrow{T_5}$ .

## 7. Proof of Theorem 5.2

We construct a 2-edge-colored 2-outerplanar graph with girth 11 that does not map to  $T_6$ . We take 12 copies  $X_0, \dots, X_{11}$  of a cycle of length 11 such that every edge is red. Let  $v_{i,j}$  denote the  $j^{\text{th}}$  vertex of  $X_i$ . For every  $0 \leq i \leq 10$  and  $0 \leq j \leq 10$ , we add a path consisting of 5 blue edges between  $v_{i,11}$  and  $v_{j,i}$ .

Notice that in any  $T_6$ -coloring of a red odd cycle, one vertex must map to c. So we suppose without loss of generality that  $v_{0,11}$  maps to c. We also suppose without loss of generality that  $v_{0,0}$  maps to c. The blue path between  $v_{0,11}$  and  $v_{0,0}$  should map to a blue walk of length 5 from c to c in  $T_6$ . Since  $T_6$  contains no such walk, our graph does not map to  $T_6$ .

## 8. Proof of Theorem 5.3

We construct a 2-edge-colored bipartite 2-outerplanar graph with girth 10 that does not map to  $T_6$ . By Theorem 4.2, there exists a bipartite outerplanar graph M with girth at least 10 such that for every  $T_6$ -coloring h of M, there exists a vertex v in M such that h(v) = c.

Let X be the graph obtained as follows. Take a main copy Y of M. For every vertex v of Y, take a copy  $Y_v$  of M. Since  $Y_v$  is bipartite, let A and B the two independent sets of  $Y_v$ . For every vertex w of A, we add a path consisting of 5 blue edges between v and w. For every vertex w of B, we add a path consisting of 4 edges colored (blue, blue, red, blue) between v and w.

Notice that X is indeed a bipartite 2-outerplanar graph with girth 10. We have seen in the previous proof that  $T_6$  contains no blue walk of length 5 from c to c. We also check that  $T_6$  contains no walk of length 4 colored (blue, blue, red, blue) from c to c. By the property of M, for every  $T_6$ -coloring h of X, there exist a vertex v in Y and a vertex w in  $Y_v$  such that h(v) = h(w) = c. Then h cannot be extended to the path of length 4 or 5 between v and w. So X does not map to  $T_6$ .

#### 9. Proof of Theorem 6.1

Let g be the largest integer such that there exists a graph in  $P_g^{(1,0)}$  that does not map to  $\overrightarrow{T_5}$ . Let  $G \in P_g^{(1,0)}$  be a graph that does not map to  $\overrightarrow{T_5}$  and such that the underlying graph of G is minimal with respect to the homomorphism order.

Let G' be obtained from G by removing an arbitrary arc  $v_0v_3$  and adding two vertices  $v_1$  and  $v_2$  and the arcs  $v_0v_1$ ,  $v_2v_1$ ,  $v_2v_3$ . By minimality, G' admits a homomorphism  $\varphi$  to  $\overrightarrow{T_5}$ . Suppose for contradiction that  $\varphi(v_2) = c$ . This implies that  $\varphi(v_1) = \varphi(v_3) = d$ . Thus  $\varphi$  provides a  $\overrightarrow{T_5}$ -coloring of G, a contradiction. So  $\varphi(v_2) \neq c$  and, similarly,  $\varphi(v_2) \neq e$ .

Given a set S of vertices of  $\overrightarrow{T_5}$ , we say that we force S if we specify a graph H and a vertex  $v \in V(H)$  such that for every vertex  $x \in V(\overrightarrow{T_5})$ , we have  $x \in S$  if and only if there exists a  $\overrightarrow{T_5}$ -coloring  $\varphi$  of H such that  $\varphi(v) = x$ . Thus, with the graph G' and the vertex  $v_2$ , we force a non-empty set  $\mathcal{S} \subset V(\overrightarrow{T_5}) \setminus \{c, e\} = \{a, b, d\}$ .

We use a series of constructions in order to eventually force the set  $\{a, b, c, d\}$  starting from  $\mathcal{S}$ . Recall that  $\{a, b, c, d\}$  induces the tournament  $\overrightarrow{T_4}$ . We thus reduce  $\overrightarrow{T_5}$ -coloring to  $\overrightarrow{T_4}$ -coloring, which is NP-complete for subcubic bipartite planar graphs with any given girth [4].

These constructions are summarized in the tree depicted in Figure 3. The vertices of this forest contain the non-empty subsets of  $\{a, b, d\}$  and a few other sets. In this tree, an arc from  $S_1$  to

 $S_2$  means that if we can force  $S_1$ , then we can force  $S_2$ . Every arc has a label indicating the construction that is performed. In every case, we suppose that  $S_1$  is forced on the vertex v of a graph  $H_1$  and we construct a graph  $H_2$  that forces  $S_2$  on the vertex w.



Figure 3: Forcing the set  $\{a, b, c, d\}$ .

- Arcs labelled "out": The set  $S_2$  is the out-neighborhood of  $S_1$  in  $\overline{T_5}$ . We construct  $H_2$  from  $H_1$  by adding a vertex w and the arc vw. Thus,  $S_2$  is indeed forced on the vertex w of  $H_2$ .
- Arcs labelled "in": The set  $S_2$  is the in-neighborhood of  $S_1$  in  $\overrightarrow{T_5}$ . We construct  $H_2$  from  $H_1$  by adding a vertex w and the arc wv. Thus,  $S_2$  is indeed forced on the vertex w of  $H_2$ .
- Arc labelled "Z": Let g' be the smallest integer such that  $g' \ge g$  and  $g' \equiv 4 \pmod{6}$ . We consider a circuit  $v_1, \dots, v_{g'}$ . For  $2 \le i \le g'$ , we take a copy of  $H_1$  and we identify its vertex v with  $v_i$ . We thus obtain the graph  $H_2$  and we set  $w = v_2$ . Let  $\varphi$  be any  $T_6$ -coloring of  $H_2$ . By construction,  $\{\varphi(v_2), \dots, \varphi(v_{g'})\} \subset S_1 = \{a, b, d\}$ . A circuit of length  $\neq 0 \pmod{3}$  cannot map to the 3-circuit induced by  $\{a, b, d\}$ , so  $\varphi(v_1) \in \{c, e\}$ . If  $\varphi(v_1) = c$  then  $\varphi(v_2) = d$  and if  $\varphi(v_1) = e$  then  $\varphi(v_2) = a$ . Thus  $S_2 = \{ad\}$ .

## 10. Proof of Theorem 6.2

Let g be the largest integer such that there exists a graph in  $P_g^{(0,2)}$  that does not map to  $T_6$ . Let  $G \in P_g^{(0,2)}$  be a graph that does not map to  $T_6$  and such that the underlying graph of G is minimal with respect to the homomorphism order.

Let G' be obtained from G by subdividing an arbitrary edge  $v_0v_3$  twice to create the path  $v_0v_1v_2v_3$  such that the edges  $v_0v_1$  and  $v_1v_2$  are red and the edge  $v_2v_3$  gets the color of the original edge  $v_0v_3$ . By minimality, G' admits a homomorphism  $\varphi$  to  $T_6$ . Suppose for contradiction that  $\varphi(v_1) = f$ . This implies that  $\varphi(v_0) = \varphi(v_2) = b$ . Thus  $\varphi$  provides a  $T_6$ -coloring of G, a contradiction.

Given a set S of vertices of  $T_6$ , we say that we force S if we specify a graph H and a vertex  $v \in V(H)$  such that for every vertex  $x \in V(T_6)$ , we have  $x \in S$  if and only if there exists  $T_6$ -coloring  $\varphi$  of H such that  $\varphi(v) = x$ . Thus, with the graph G' and the vertex  $v_1$ , we force a non-empty set  $S \subset V(T_6) \setminus \{f\} = \{a, b, c, d, e\}.$ 

Recall that the core of a graph is the smallest subgraph which is also a homomorphic image. We say that a subset S of  $V(T_6)$  is good if the core of the subgraph induced by S is isomorphic to the graph  $T_4$  which is a clique on 4 vertices such that both the red and the blue edges induce a



path of length 3. We use a series of constructions in order to eventually force a good set starting from S. We thus reduce  $T_6$ -coloring to  $T_4$ -coloring, which is NP-complete for subcubic bipartite planar graphs with any given girth [5].

These constructions are summarized in the forest depicted in Figure 4. The vertices of this forest are the non-empty subsets of  $\{a, b, c, d, e\}$  together with a few auxiliary sets of vertices containing f. In this forest, an arc from  $S_1$  to  $S_2$  means that if we can force  $S_1$ , then we can force  $S_2$ . Every set with no outgoing arc is good. We detail below the construction that is performed for each arc. In every case, we suppose that  $S_1$  is forced on the vertex v of a graph  $H_1$  and we construct a graph  $H_2$  that forces  $S_2$  on the vertex w.

- Blue arcs: The set  $S_2$  is the blue neighborhood of  $S_1$  in  $T_6$ . We construct  $H_2$  from  $H_1$  by adding a vertex w adjacent to v such that vw is blue. Thus,  $S_2$  is indeed forced on the vertex w of  $H_2$ .
- Red arcs: The set  $S_2$  is the red neighborhood of  $S_1$  in  $T_6$ . The construction is as above except that the edge vw is red.
- Dashed blue arcs: The set  $S_2$  is the set of vertices incident to a blue edge contained in the subgraph induced by  $S_1$  in  $T_6$ . We construct  $H_2$  from two copies of  $H_1$  by adding a blue

edge between the vertex v of one copy and the vertex v of the other copy. Then w is one of the vertices v.

- Dashed red arcs: The set  $S_2$  is the set of vertices incident to a red edge contained in the subgraph induced by  $S_1$  in  $T_6$ . The construction is as above except that the added edge is red.
- Arc labelled "X": Let  $g' = 2 \lceil g/2 \rceil$ . We consider an even cycle  $v_1, \dots, v_{g'}$  such that  $v_1 v_{g'}$  is red and the other edges are blue. For every vertex  $v_i$ , we take a copy of  $H_1$  and we identify its vertex v with  $v_i$ . We thus obtain the graph  $H_2$  and we set  $w = v_1$ . Let  $\varphi$  be any  $T_6$ -coloring of  $H_2$ . In any  $T_6$ -coloring of  $H_2$ , the cycle  $v_1, \dots, v_{g'}$  maps to a 4-cycle with exactly one red edge contained in the subgraph of  $T_6$  induced by  $S_1 = \{a, b, c, d, e\}$ . These 4-cycles are *aedb* with red edge *ae* and *cdba* with red edge *cd*. Since w is incident to the red edge in the cycle  $v_1, \dots, v_{g'}, w$  can be mapped to a, e, c, or d but not to b. Thus  $S_2 = \{a, c, d, e\}$ .
- Arc labelled "Y": We consider an alternating cycle v<sub>0</sub>, ..., v<sub>8g-1</sub>. For every vertex v<sub>i</sub>, we take a copy of H<sub>1</sub> and we identify its vertex v with v<sub>i</sub>. We obtain the graph H<sub>2</sub> by adding the vertex x adjacent to v<sub>0</sub> and v<sub>4g+2</sub> such that xv<sub>0</sub> and xv<sub>4g+2</sub> are blue. We set w = v<sub>0</sub>. In any T<sub>6</sub>-coloring φ of H<sub>2</sub>, the cycle v<sub>1</sub>, ..., v<sub>g'</sub> maps to the alternating 4-cycle acde contained in S<sub>1</sub> = {a, c, d, e} such that φ(v<sub>i</sub>) = φ(v<sub>i+4 (mod 8g)</sub>). So, a priori, either {φ(v<sub>0</sub>), φ(v<sub>4g+2</sub>)} = {a,d} or {φ(v<sub>0</sub>), φ(v<sub>4g+2</sub>)} = {c, e}. In the former case, we can extend φ to H<sub>2</sub> by setting φ(x) = b. In the latter case, we cannot color x since c and e have no common blue neighbor in T<sub>6</sub>. Thus, {φ(v<sub>0</sub>), φ(v<sub>4g+2</sub>)} = {a,d} and S<sub>2</sub> = {a,d}.

# References

- J. Nešetřil and A. Raspaud. Colored homomorphisms of colored mixed graphs. Journal of Combinatorial Theory, Series B, 80(1):147–155, 2000.
- [2] H. Grötzsch. Ein dreifarbensatz für dreikreisfreie netze auf der kugel. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe, 8:109–120, 1959.
- [3] O.V. Borodin, A.V. Kostochka, J. Nešetřil, A. Raspaud, and É. Sopena. On universal graphs for planar oriented graphs of a given girth. *Discrete Mathematics*, 188(1):73–85, 1998.
- [4] G. Guegan and P. Ochem. Complexity dichotomy for oriented homomorphism of planar graphs with large girth. *Theoretical Computer Science*, 596:142–148, 2015.
- [5] N. Movarraei and P. Ochem. Oriented, 2-edge-colored, and 2-vertex-colored homomorphisms. Information Processing Letters, 123:42–46, 2017.