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Strong oriented chromatic number of planar
graphs without short cycles

Mickaël Montassier, Pascal Ochem and Alexandre Pinlou†

LaBRI, Université Bordeaux 1, 351, Cours de la Libération, 33405 Talence Cedex, France

Let M be an additive abelian group. AnM-strong-oriented coloringof an oriented graphG is a mappingϕ fromV(G)
to M such thatϕ(u) 6= ϕ(v) whenever−→uv is an arc inG andϕ(v)−ϕ(u) 6= −(ϕ(t)−ϕ(z)) whenever−→uv and−→zt are
two arcs inG. Thestrong oriented chromatic numberof an oriented graph is the minimal order of a groupM such
thatG has anM-strong-oriented coloring. This notion was introduced by Nešetřil and Raspaud [Ann. Inst. Fourier,
49(3):1037-1056, 1999].

We prove that the strong oriented chromatic number of oriented planar graphs without cycles of lengths 4 to 12 (resp.
4 or 6) is at most 7 (resp. 19). Moreover, for alli ≥ 4, we construct outerplanar graphs without cycles of lengths 4 to
i whose oriented chromatic number is 7.
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1 Introduction
Oriented graphs are directed graphs without loops nor opposite arcs. For two adjacent verticesu andv, we
denote by−→uv the arc fromu to v or simplyuv whenever its orientation is not relevant (therefore,uv= −→uv
or uv= −→vu).

An oriented k-coloringof an oriented graphG is a mappingϕ from V(G) to a set ofk colors such that
(1) ϕ(u) 6= ϕ(v) whenever−→uv is an arc inG, and(2) ϕ(u) 6= ϕ(x) whenever−→uv and−→wx are two arcs inG
with ϕ(v) = ϕ(w). Theoriented chromatic numberof an oriented graph, denoted byχo(G), is defined as
the smallestk such thatG admits an orientedk-coloring.

Let G andH be two oriented graphs. Ahomomorphismfrom G to H is a mappingϕ : V(G) →V(H)

that preserves the arcs:
−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever−→xy∈ A(G).

An orientedk-coloring ofG can be equivalently defined as a homomorphism fromG to H, whereH
is an oriented graph of orderk. Then, theoriented chromatic numberχo(G) of G can be defined as the
smallest order of an oriented graphH such thatG admits a homomorphism toH.

The notion of oriented coloring can be extended to undirected graphs saying that theoriented chro-
matic numberχo(G) of an undirected graphG is the maximum oriented chromatic number taken over all
orientations ofG.
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The problem of bounding the oriented chromatic number has already been investigated for various
graph classes: graphs with bounded maximum average degree [4], graphs with bounded degree [7], graphs
with bounded treewidth [13, 14], and graph subdivisions [15].

Nešetřil and Raspaud [10] introduced thestrong oriented chromatic number. Let M be an additive
abelian group. Astrong oriented coloringof an oriented graphG is a mappingϕ from V(G) to M such
that(1) ϕ(u) 6= ϕ(v) whenever−→uv is an arc inG and(2) ϕ(v)−ϕ(u) 6= −(ϕ(t)−ϕ(z)) whenever−→uv and
−→zt are two arcs inG (this last condition will be called theno-opposite value condition). We say thatG
has aM-strong-oriented coloring. Thestrong oriented chromatic numberof an oriented graph, denoted
by χs(G), is the minimal order of a groupM, such thatG hasM-strong-oriented coloring.

A strong oriented coloringof an oriented graphG can be equivalently defined as a homomorphism
from G to H, whereH is an oriented graph withk vertices labeled by thek elements of an abelian additive
groupM, such that for any pair of arcs−→uv and−→zt of A(H), ϕ(v)−ϕ(u) 6= −(ϕ(t)−ϕ(z)). Then, the
strong oriented chromatic numberof G can be defined as the smallest order of an additive abelian group
M such thatG admits a homomorphism toH labeled by the elements ofM satisfying the no-opposite value
condition. Analogously, thestrong oriented chromatic numberof an undirected graphG is the maximum
strong oriented chromatic number taken over all the possible orientations ofG.

Therefore, any strong oriented coloring ofG is an oriented coloring ofG; hence,χo(G) ≤ χs(G).

Let M be an additive group and letS⊂ M be a set of group elements. TheCayley digraphassociated
with (M,S), denoted byC(M,S), is then defined as follows:

V(C(M,S)) = M and A(C(M,S)) = {(g,g+s) ; g∈ M,s∈ S}.

If the setSare group generators ofM, thenC(M,S) is connected.
Assuming thatM is abelian andS∩−S= /0, thenC(M,S) is oriented (neither loops nor opposite arcs), and

for any pair(g1,g1 +s1) and(g2,g2 +s2) of arcs ofC(M,S), g1 +s1−g1 6= −(g2 +s2−g2). Thus, finding
a strong orientedk-coloring of an oriented graphG may be viewed as finding a homomorphism fromG
to an oriented Cayley graphC(M,S) of orderk, for some abelian groupM with S⊂ M andS∩−S= /0.

Let H be an oriented graph. In the following, we say that an oriented graphG admits aH-coloring
whenever there exists a homomorphism fromG to H. In the undirected case, we say that an undirected
graphG admits anH-coloring when every orientation ofG admits a homomorphism toH.

Strong oriented coloring of planar graphs was recently studied. Sámal [12] proved that every oriented
planar graph admits a strong oriented coloring with at most 672 colors. Marshall [8] improved this result
and proved the following:

Theorem 1.1 [8] Let G be an oriented planar graph. Thenχs(G) ≤ 271.

Borodin et al. [3, 4] studied the relationship between the strong oriented chromatic number and the
maximum average degree of a graph, where the maximum averagedegree, denoted by mad(G) is:

mad(G) = max

{

2|A(H)|

|V(H)|
; H ⊆ G

}

They considered homomorphisms to oriented Cayley graphs and proved that:
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Theorem 1.2 [3, 4] Let G be a graph.

1. If mad(G) < 12/5 and G has girth at least 5, thenχs(G) ≤ 5 [3].

2. If mad(G) < 11/4 and G has girth at least 5, thenχs(G) ≤ 7 [4].

3. If mad(G) < 3, thenχs(G) ≤ 11 [4].

4. If mad(G) < 10/3, thenχs(G) ≤ 19 [4].

The girth of a graphG is the length of a shortest cycle ofG. When considering planar graphs, the
maximum average degree and the girth are linked by the following well-known relation:

Claim 1.3 [4] Let G be a planar graph with girth g. Then,mad(G) < 2+ 4
g−2.

Corollary 1.4 follows from the previous claim.

Corollary 1.4 [3, 4] Let G be a planar graph.

1. If G has girth at least 12, thenχs(G) ≤ 5 [3].

2. If G has girth at least 8, thenχs(G) ≤ 7 [4].

3. If G has girth at least 6, thenχs(G) ≤ 11 [4].

4. If G has girth at least 5, thenχs(G) ≤ 19 [4].

The following two theorems give upper bounds for planar graphs with girth 7 and 4, respectively. The
proofs of these results do not use arguments on the maximum average degree.

Hence, Borodin and Ivanova [1] recently improved the previous result:

Theorem 1.5 [1] Let G be a planar graph with girth at least 7. Thenχs(G) ≤ 7.

Moreover, the class of triangle-free planar graphs was studied by Ochem [11], and by Borodin and
Ivanova [2]:

Theorem 1.6 [2] Let G be an triangle-free planar graph. Thenχs(G) ≤ 47.

Notice that, for general graphs, the oriented chromatic number is not bounded when the maximum
average degree tends to 4 [4]. Therefore, Theorem 1.6 cannotbe obtained via the maximum average
degree since triangle-free planar graphs have maximum average degree arbitrarily close to 4.

The best known upper bounds on the strong oriented chromaticnumber of planar graphs and triangle-
free planar graphs are respectively 271 and 47. It seems thattriangles play an important role for this
invariant. In this paper, we study the strong oriented chromatic number of planar graphs without cycles of
lengths 4 toi for a giveni ≥ 4. These graph classes appear in Steinberg’s conjecture [6]. The aim of this
study is to check whether triangles have a significant influence on the strong oriented chromatic number
of planar graphs.



4 Mickaël Montassier, Pascal Ochem and Alexandre Pinlou

Notice that the best known upper bounds on the strong oriented chromatic number of planar graphs
with girth 5, 6, and 12 are obtained via the maximum average degree. Therefore, to get bounds on the
strong oriented chromatic number of planar graphs without cycles of lengths 4 toi, i ≥ 4, it is natural to
determine the maximum average degree of these classes. The following two lemmas give tight bounds on
the maximum average degree of planar graphs without cycles of lengths 4 toi for all i ≥ 4.

Lemma 1.7

1. If G is a planar graph without cycles of length 4, thenmad(G) < 30
7 .

2. For all ε > 0, there exists a planar graph G without cycles of length 4 suchthatmad(G) > 30
7 − ε.

Lemma 1.8 For all i ≥ 5,

1. If G is a planar graph without cycles of lengths 4 to i, thenmad(G) < 3+ 3
i−2.

2. For all ε > 0, there exists a planar graph G without cycles of lengths 4 to isuch thatmad(G) >
3+ 3

i−2 − ε.

By Lemma 1.8, every planar graphG without cycles of lengths 4 to 11 has mad(G) < 3+ 3
11−2 = 10

3 .
Consequently, we obtain the following corollary by Theorem1.2.4:

Corollary 1.9 If G is a planar graph without cycles of lengths 4 to 11, thenχs(G) ≤ 19.

Lemmas 1.7.2 and 1.8.2 show that, for everyi ≥ 4, there exist planar graphsG without cycles of
lengths 4 toi such that mad(G) > 3. Thus, Theorem 1.2 cannot provide an upper bound less than 19. In
the remainder, we improve Corollary 1.9 and prove the following theorems:

Theorem 1.10 Let G be planar graph without cycles of lengths 4 to 12. Then,χs(G) ≤ 7.

Theorem 1.11 For all i ≥ 4, there exists an outerplanar graph G without cycles of lengths 4 to i such that
χo(G) ≥ 7.

Theorem 1.12 Let G be planar graph without cycles of lengths 4 or 6. Then,χs(G) ≤ 19.

In the next section, we prove Lemmas 1.7 and 1.8. In Section 3,we introduce the Cayley tournaments
QR7 andQR19 and some of their properties. Section 4 is dedicated to the proof of Theorem 1.10; we
prove that every oriented planar graph without cycles of lengths 4 to 12 has a homomorphism to the
Cayley graphQR7. In Section 5, we prove Theorem 1.11 which shows that Theorem1.10 is tight in
some way. Section 6 is dedicated to the proof of Theorem 1.12;we show that every oriented planar graph
without cycles of lengths 4 or 6 has a homomorphism to the Cayley graphQR19. In Section 7, we give
some concluding remarks and state recent related results.

In the following,V(G), A(G), andF(G) denote respectively the sets of vertices, edges/arcs, and faces
of a plane graphG. For a vertexv, we denote byd−(v) the indegree ofv, by d+(v) its outdegree, and by
dG(v) its degree. A vertex of degreek (resp. at leastk, at mostk) is called ak-vertex(resp.≥k-vertex,
≤k-vertex). Thesizeof a face f , denoted byd( f ), is the number of edges on its boundary walk, where
each cut-edge is counted twice. A face of sizel (resp. at leastl , at mostl ) is called al-face(resp.≥l-face,
≤l-face).
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2 Proofs of Lemmas 1.7 and 1.8

In this section, we give the proofs of Lemmas 1.7 and 1.8 whichcharacterize the maximum average degree
of planar graphs without cycles of lengths 4 toi for all i ≥ 4.

Proof of Lemma 1.7:

1. Observe that we can rewrite Euler’s formula|V(G)|− |A(G)|+ |F(G)| = 2 as follows:

∑
v∈V(G)

(7d(v)−30)+ ∑
f∈F(G)

(8d( f )−30) = −60 (1)

We define the weight functionω by ω( f ) = 8d( f )−30 for each facef in F(G). Now, we redis-
tribute the weights according to the following dischargingrule: every≥5-face gives 2 to each adja-
cent 3-face. Letf be a face ofF(G) and letω∗( f ) denote its weight after discharging. Ifd( f ) = 3,
thenω∗( f ) = ω( f )+3 × 2 = 0. If d( f ) ≥ 5, thenω∗( f ) ≥ ω( f )−2d( f ) = 6d( f )−30≥ 0. Since
the total sum of weights is fixed by the discharging rule, we have:

∑
f∈F(G)

(8d( f )−30) = ∑
f∈F(G)

ω( f ) = ∑
f∈F(H)

ω∗( f ) ≥ 0

By Equation 1, we have∑
v∈V(G)

(7d(v)−30) < 0, which implies that mad(G) < 30
7 , since each sub-

graph ofG is a planar graph without cycles of length 4.

2. We now prove that the upper bound proved above is tight. Forall ε ≥ 0, we construct a planar graph
Gk without cycles of length 4 such that mad(Gk) > 30

7 − ε.

Let H be the graph of Fig. 1(a). This graph is planar and has no cycles of length 4. LetGk be the
graph obtained by tiling the plane withk×k copies ofH (k lines andk columns); see Fig. 1(b).

We easily check that, for allk ≥ 1, Gk is planar and has no cycles of length 4. The graphGk

containsk2 copies ofH and each copy contains 31 vertices and 54 edges. We can then compute that
|V(Gk)| = 21k2 +12k−2 and|A(Gk)| = 45k2 +12k−3.Thus,

mad(Gk) ≥
2|A(Gk)|

|V(Gk)|
=

2(45k2+12k−3)

21k2+12k−2
=

30
7
−

192k+29
147k2 +84k−14

This allows us to conclude:

∀ ε > 0, ∃ k≥ 1 : mad(Gk) >
30
7

− ε.

2

Proof of Lemma 1.8:
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(a) The graphH. (b) The graphGk.

Fig. 1: Tiling the plane to obtain a planar graphGk without cycles of length 4 such that mad(Gk) > 30
7 − ε.

1. LetG be a counterexample to Lemma 1.8.1 which is minimal according to the subgraph order. In
particular,G is a planar graph without cycles of lengths 4 toi with maximum average degree at
least 3+ 3

i−2. Moreover, by minimality,G contains neither 1-vertices nor two adjacent 2-vertices.
Let G′ be the graph obtained fromG by removing every 2-vertex incident to a 3-face. Letn, n2,
n3, andn4 denote respectively the number of vertices, 2-vertices, 3-vertices, and≥4-vertices ofG′.
An edge inG′ is said to befree if it is not incident to a 3-face inG′. Let m, m3, andmi denote
respectively the number of edges, edges incident to a 3-face, and free edges ofG′. Let f , f3, and fi
denote respectively the number of faces, 3-faces, and≥(i +1)-faces ofG′.

In G′, a 2-vertex is incident to two free edges. Moreover, a 3-vertex is incident to at least one free
edge, since otherwiseG′ would contain a cycle of length four. We thus have

2n2 +n3 ≤ 2mi (2)

By definition:

n = n2+n3+n4 (3)

m3 +mi = m (4)

f = f3 + fi (5)
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SinceG′ contains no cycle of length 4, we have:

3 f3 = m3 (6)

Considering the sum of vertex degrees inG′, we have:

2n2 +3n3+4n4 ≤ 2m (7)

Considering the sum of face degrees inG′, we have:

3 f3 +(i +1) fi ≤ 2m (8)

Considering the Euler’s formula forG′, we have:

m+2= n+ f (9)

Let s denote the number of 2-vertices incident to a triangle inG. This means thatG containsn+s
vertices andm+2sedges. By minimality ofG, the maximum average degree ofG equals its average
degree and is at least 3+ 3

i−2. We thus have:

(

3+
3

i −2

)

(n+s) ≤ 2(m+2s) (10)

If w is a 2-vertex incident to a triangleuvw in G, thenuv is a free edge inG′. Moreover, ifuv is
a free edge inG′, there exists at most one 2-vertexw such thatuvw is a triangle inG (G does not
contain cycles of length 4). We thus have:

s≤ mi (11)

The combination 3× (2)+12× (3)+2(i −2)× (4)+6(i +1)× (5)+2(i −2)× (6)+3× (7)+6×
(8)+6(i +1)× (9)+2(i−2)× (10)+2(i−5)× (11)gives 12(i +1)≤ 0. This contradiction proves
Lemma 1.8.1.

2. We now prove that the upper bound proved above is tight. Forall ε > 0 and for all i ≥ 5, we
construct a planar graphG′

k without cycles of lengths 4 toi such that mad(G′
k) > 3+ 3

i−2 − ε.

Let H ′ be the graph obtained from two chains of intersecting triangles, one of length
⌊

i−5
2

⌋

and
the other of length

⌈

i−5
2

⌉

, arranged as depicted in Fig. 2(a). For alli ≥ 5, this graph is planar and
has no cycles of lengths 4 toi. Let G′

k be the graph obtained by tiling the plane withk×k copies of
H ′ (k lines andk columns); see Fig. 2(b).

We easily check that, for alli ≥ 5 and for allk ≥ 1, the graphG′
k is planar and has no cycles of

lengths 4 toi. The graphG′
k containsk2 copies ofH ′ and each copy contains 2(i +1) vertices and

3i +1 edges. We can then compute that|V(G′
k)|= 2ik2−4k2+6k and|A(G′

k)|= 3ik2−3k2+k−2.
Thus,

mad(G′
k) ≥

2|A(G′
k)|

|V(G′
k)|

=
6ik2−6k2+2k−4

2ik2−4k2+6k
= 3+

3
i −2

−
8ik−7k+2i −4

k(i −2)(ik−2k+3)
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(a) The graphH′. (b) The graphG′
k.

Fig. 2: Tiling the plane to obtain a planar graphGk without cycles of lengths 4 toi, i ≥ 5, such that mad(Gk) >
3+ 3

i−2 − ε.

This allows us to conclude:

∀ i ≥ 5, ∀ ε > 0, ∃ k≥ 1 : mad(G′
k) > 3+

3
i −2

− ε.

2

3 Some properties of the tournaments QR7 and QR19

In this section, we define the tournamentsQR7 andQR19, and give some properties that we use in next
sections to prove Theorems 1.10 and 1.12.

Recall that thecirculant graph G= C(p ; c1,c2, . . . ,cd) is defined byV(G) = {0,1, . . . , p− 1} and
−→uv∈ A(G) if and only if v≡ u+ci (mod p) for somei, 1≤ i ≤ d. If p≡ 3 (mod 4) is a prime power and
theci ’s are the non zero quadratic residues modulop, thend = p−1

2 andQRp = C(p;c1, . . . ,cd) is aPaley
tournament.

Property 3.1 Let p≡ 3 (mod 4), Fp = Z/pZ and S= {x2 ; x∈ Fp\{0}} be the non zero squares ofFp.
Then S∩−S= /0.

Proof: Sincep≡ 3 (mod 4), −1 is not a square modulop. Indeed, if it were,−1= x2 and so by Fermat’s
little theorem:(−1)(p−1)/2 = xp−1 = 1. But(−1)(p−1)/2 = −1.

Then, leta,b∈ Fp such thata2 +b2 = 0. If a 6= 0 or b 6= 0, then(b/a)2 = −1 or (a/b)2 = −1, which
is a contradiction. Therefore,a = b = 0. 2
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x

u3u2u1

Fig. 3: x is a(0,1,1)-successor of(u1,u2,u3)

6

0 1

(a)

4

0 1

(b)

2

0 1

(c)

3 / 5

0 1

(d)

Fig. 4: Example of propertyP2,1 of QR7

Therefore, such a Paley tournamentQRp is clearly the Cayley graphC(M,S) with M = Fp = Z/pZ and
S= {x2 ; x∈ Fp\ {0}}.

Another important property is that theQRp tournaments arearc-transitive[5], which means that for
every two arcs−→uv and−→xy, there exists an automorphism mapping−→uv to−→xy.

For instance, let us consider the tournamentsQR7 = C(7 ; 1,2,4) andQR19 = C(19 ; 1,4,5,6,7,9,
11,16,17), which are Paley tournaments on 7 and 19 vertices, respectively.

An orientation vectorof lengthn is ann-tupleα = (α1,α2, . . . ,αn) in {0,1}n.
Let G be an oriented graph and letU = (u1,u2, . . . ,un) be a sequence of distinct vertices ofG. For an

orientation vectorα, a vertexv of G is said to be anα-successorof U if for every i, 1≤ i ≤ n, −→vui is an
arc inG if αi = 0 and−→uiv is an arc inG otherwise (see Fig. 3 for an example).

We shall say that an oriented graphG satisfies propertyPn,k if for any sequenceU of n pairwise distinct
vertices ofG and any orientation vectorα of lengthn, there exists at leastk vertices inG which are
α-successors ofU .

The tournamentsQR7 andQR19 have the following properties:

Property 3.2 [4] The tournament QR7 satisfies properties P1,3 and P2,1.

Property 3.3 [4] The tournament QR19 satisfies properties P1,9, P2,4, and P3,1.

Let us give an example; saying thatQR7 has propertyP2,1 means that for any pair of distinct vertices
(x,y) of QR7 and any orientation vectorα of length two (four possible orientation vectors), we have
at least oneα-successor of(x,y). For instance, forx = 0 andy = 1, we can check that there exists
one(0,0)-successor (Fig. 4(a)), one(1,0)-successor (Fig. 4(b)), one(1,1)-successor (Fig. 4(c)) and two
(0,1)-successors (Fig. 4(d)) of(x,y).

In the remainder of this section, we will consider some otherproperties ofQR7.
For a given vertexv of an oriented graphG, we denote byΓ+(v) (resp. Γ−(v)) the set of outgoing

neighbors ofv (Γ+(v) = {u∈V ; −→vu∈ A(G)}) (resp. the set of incoming neighbors ofv (Γ−(v) = {u∈
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V ; −→uv∈ A(G)})). For a subsetSof vertices ofG, we define:

Γ+(S) =
[

v∈S

Γ+(v) and Γ−(S) =
[

v∈S

Γ−(v)

For a given oriented graphG, we will denote byΩG(k) the largest numbern such that for all sets
S⊆V(G) of sizek, |Γ+(S)| ≥ n and|Γ−(S)| ≥ n.

By a case analysis, we have the following property:

Property 3.4

1. ΩQR7(1) = 3;

2. ΩQR7(2) = 5;

3. ΩQR7(k) = 6 for 3≤ k≤ 4;

4. ΩQR7(k) = 7 for 5≤ k≤ 7.

Let us consider the following definition.

Definition 3.5 Let G be an oriented graph. LetW ⊆ V(G) andx1,x2, . . . ,xn,y1,y2, . . . ,ym ∈ W be n+
m vertices. Letγ be aQR7-coloring of G\W. γ is called(k1,k2, . . . ,kn | l1, l2, . . . , lm)-extendable to
(x1,x2, . . . ,xn | y1,y2, . . . ,ym) in G if there existr = k1 × k2 × . . .× kn QR7-coloringsγ1,γ2, . . . ,γr of G
extendingγ such that

1. for all 1≤ j ≤ n, |{γi(x j);1≤ i ≤ r}| = k j ,

2. ther n-tuples(γi(x1),γi(x2), . . . ,γi(xn)) are distinct,

3. for all 1≤ j ≤ m, |{γi(y j);1≤ i ≤ r}| ≤ l j .

Thek j colors forx j will be calledchoicessince, for each 1≤ j ≤n, we can independently choose a color
for eachx j among thek j available colors, and then take the correspondingQR7-coloringγi accordingly.

The l j colors fory j will be calledpossibilitiessince, for each 1≤ j ≤ m, our only knowledge is thaty j

will have a color taken among at mostl j colors.
Whenever we do not have informations about possibilities for some vertices, we will say thatγ is

(k1,k2, . . . ,kn)-extendable to(x1,x2, . . . ,xn) in G.

The drawing conventions for aconfiguration Ccontained in a graphG are the following. Ifu andv are
two vertices ofC, then they are adjacent inG if and only if they are adjacent inC. Moreover, the neighbors
of a whitevertex inG are exactly its neighbors inC, whereas ablackvertex may have neighbors outside
of C. Two or more black vertices inC may coincide in a single vertex inG, provided they do not share a
common white neighbor. Finally, an edge will represent an arc with any of its two possible orientations.
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w

v

u

(a)

w

v

u

(b)

Fig. 5: Configurations of Properties 3.6 and 3.10.

Property 3.6 Let G be an oriented graph containing the configuration(a) of Fig. 5, let W⊂ V(G) and
let u,v,w∈W (u and w are non-adjacent). Letγ be a QR7-coloring of G\W. If γ is (k, l)-extendable to
(u,w) in G\ {v}, then it is(ΩQR7(l)+ ΩQR7(k)−7 | k, l)-extendable to(v | u,w) in G.

Proof: The k choices of colors foru allow ΩQR7(k) distinct colors forv, while the l choices of colors
of w allow ΩQR7(l) distinct colors forv. By the Pigeon Hole Principle, we have at leastn = ΩQR7(k)+
ΩQR7(l)−7 choices to colorv in G while u andw havek andl possibilities, respectively. 2

A quick case check shows that the fieldF7 has the following property:

Property 3.7 Let S= {x2 ; x∈ F7\ {0}}= {1,2,4}. For any two distinct couples(s1,s′1) and(s2,s′2) of
S, we have s1−s′1 6= s2−s′2.

Property 3.7 allows us to prove the following:

Property 3.8 Let x,y∈ F7 with x 6= y and let s1,s2,s3,s4 ∈ S= {x2 ; x∈ F7 \ {0}} such that s1 6= s2 and
s3 6= s4. Then|{x+s1,x+s2,y+s3,y+s4}| ≥ 3 and|{x−s1,x−s2,y−s3,y−s4}| ≥ 3.

Proof: Suppose that|{x+s1,x+s2,y+s3,y+s4}|< 3. Sinces1 6= s2 ands3 6= s4, we havex+s1 6= x+s2

andy+ s3 6= y+ s4. Therefore, we may assume w.l.o.g. thatx+ s1 = y+ s3 andx+ s2 = y+ s4, which
implies thats3−s1 = s4−s2, that is a contradiction by Property 3.7.

The same argument allows us to prove that|{x−s1,x−s2,y−s3,y−s4}| ≥ 3. 2

A careful case study ofQR7 gives the following:

Property 3.9 Let x,y,z be three distinct vertices of QR7 such that−→xy ∈ A(QR7) and−→xz∈ A(QR7). For
any orientation vectorα = (α1,α2) ∈ {0,1}2, there exist at least two distinct vertices y′ and z′ such that
y′ is anα-successor of(x,y) and z′ is anα-successor of(x,z).

Property 3.10 Let G be an oriented graph containing the configuration(b) of Fig. 5, let W⊆ V(G),
and let u,v,w∈ W (u and w are adjacent). Letγ be a QR7-coloring of G\W. If γ is (2 | 1)-extendable
(resp. (5 | 3)-extendable) to(u | w) is G\ {v}, thenγ is (2 | 2,1)-extendable (resp.(3 | 5,3)-extendable)
to (v | u,w) in G.

Proof: Let G′ = G\ {v} and we may assume w.l.o.g. that−→wu∈ A(G).

1. Suppose thatγ is (2 | 1)-extendable to(u | w) in G′. In other words, there exist at least twoQR7-
coloringsγ1 andγ2 of G′ extendingγ such thatγ1(u) 6= γ2(u) andγ1(w) = γ2(w). Therefore,γ1(u)
andγ2(u) are two distinct successors ofγ1(w) in QR7. By Property 3.9, we have at least two choices
to colorv in G while u andw have 2 and 1 possibilities, respectively.



12 Mickaël Montassier, Pascal Ochem and Alexandre Pinlou

xv

y

w zu

Fig. 6: Configuration of Property 3.11

2. Suppose now thatγ is (5 | 3)-extendable to(u | w) in G′. In other words, there exist at least
five QR7-coloringsγ1, . . . ,γ5 of G′ extendingγ such thatγi(u)′s are pairwise distinct and|{γi(w);
1≤ i ≤ 5}| = 3 (which is the worst case). Letγi(u) = ui and{γi(w);1 ≤ i ≤ 5} = {w1,w2,w3}.
The colorui is a successor ofγi(w) in QR7 for 1 ≤ i ≤ 5. W.l.o.g, if there existj,k, l ∈ [1,5]
with j 6= k 6= l 6= j such thatγ j(w) = γk(w) = γl (w) = w1, thenu j ,uk,ul are the three successors
of w1 in QR7 and by Property 3.9, we have at least three choices to colorv while u andw have
5 and 3 possibilities, respectively; thusγ is (3 | 5,3)-extendable to(v | u,w) in G. If it is not, by
the Pigeon Hole Principle, we may assume w.l.o.g. thatu1 andu2 are both successors ofw1 in
QR7 andu3 andu4 are both successors ofw2 in QR7. By Property 3.9, for any orientation vector
α ∈ {0,1}2, there exists1,s2,s3,s4 ∈ S= {1,2,4} such thatw1+s1 (resp.w1+s2,w2 +s3,w2 +s4)
is anα-successor of(w1,u1) (resp.(w1,u2), (w2,u3) and(w2,u4)) such thatw1 +s1 6= w1 +s2 and
w2+s3 6= w2+s4. Therefore, by Property 3.8,|{w1+s1,w1+s2,w2+s3,w2+s4}| ≥ 3 and we have
at least three choices to colorv in G while u andw have 5 and 3 possibilities, respectively; thusγ is
(3 | 5,3)-extendable to(v | u,w) in G.

2

Property 3.11 Let G be an oriented graph containing the configuration depicted on Fig. 6 and letγ be a
QR7-coloring of G\ {v,w,x,y}. Then,γ is (3)-extendable to(y) in G.

Proof: By Property 3.4,γ is (3,3)-extendable to(u,x) in G\ {w,y}. Then, by Property 3.6,γ is (5 | 3)-
extendable to(w | u) in G\ {y}. Finally, by Property 3.10,γ is (3)-extendable to(y) in G. 2

We will extensively use these previous properties in the next two sections to prove Theorems 1.10
and 1.12.

4 Proof of Theorem 1.10

In this section, we prove that every oriented planar graph without cycles of lengths 4 to 12 has a homo-
morphism to the Cayley graphQR7.

Let H be a counterexample to Theorem 1.10 of minimum order. We willshow that in the following
claim, H does not contain some configurations. For each of them, we consider a reductionH ′ such that
|V(H ′)| < |V(H)|. By minimality of H, there exists aQR7-coloring ofH ′ and we show how to extend it
to aQR7-coloring ofH. Finally, a discharging procedure will complete the proof.
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Fig. 7: Forbidden configurations of Theorem 1.10.

4.1 Structural properties of H

Claim 4.1 The counterexample H does not contain the following:

(C1) 1-vertices;

(C2) two adjacent 2-vertices;

(C3) a 3-face incident to a 2-vertex;

(C4) a 3-face incident to two 3-vertices, each of them adjacent to a 2-vertex;

(C5) the configuration depicted in Fig. 7(d);

(C6) the configuration depicted in Fig. 7(e).

Proof:

(C1) Trivial.

(C2) Consider configuration (a) depicted in Fig. 7. AnyQR7-coloringγ of H \ {x} can be modified such
thatγ(v) 6= γ(w) thanks to propertyP1,3. This modified coloring can be extended toH by property
P2,1.
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(C3) Consider configuration (b) depicted in Fig. 7. AnyQR7-coloringγ of H \{x} satisfiesγ(u1) 6= γ(u2),
and can be extended toH by propertyP2,1.

(C4) Consider configuration (c) depicted in Fig. 7. Letγ be aQR7-coloring ofH \{v,w,y,z}. By property
P1,3, we have two available colors to color the vertexv such thatγ(v) 6= γ(x) in H \ {w,y,z}. We
choose the one such that by propertyP2,1, we can color the vertexy with a colorγ(y) 6= γ(t) in
H \ {w,z}. By propertyP2,1, we can finally extendγ to aQR7-coloring ofH.

(C5) Consider configuration (d) depicted in Fig. 7. Letγ be aQR7-coloring of H \ {x1, . . . ,x8}. By
Property 3.11,γ is (3,3)-extendable to(x4,x5) in H \ {x4x5}. By Property 3.4, the three choices of
x4 forbid at most one color forx5 and therefore, there exist at least two couples of colors to color x4

andx5, i.e. there exist at least twoQR7-coloring ofG extendingγ.

(C6) Consider configuration (e) depicted in Fig. 7. Letγ be aQR7-coloring of H \ {x1, . . . ,x10}. By
Property 3.11,γ is (3,3)-extendable to(x4,x7) in H \ {x5,x6}. Then, by Property 3.6,γ is (3,2)-
extendable to(x4,x6) in H \ {x5}. Then by property 3.10,γ is (3,2)-extendable to(x4,x5) in H \
{x4x5}. By Property 3.4, the three choices ofx4 forbid at most one color forx5 and therefore, there
exist at least one couple of colors to colorx4 andx5, i.e. there exists at least oneQR7-coloring ofG
extendingγ.

2

4.2 Discharging procedure

Lemma 4.2 Let H be a connected plane graph. Then the following holds:

∑
v∈V(H)

(11d(v)−26)+ ∑
f∈F(H)

(2d( f )−26) = −52 (12)

Proof: Euler’s formula|V(G)|− |A(G)|+ |F(G)| = 2 can be rewritten as(22· |A(G)|−26· |V(G)|)+(4·
|A(G)|−26· |F(G)|) = −52. This identity and the relation∑v∈V d(v) = ∑ f∈F d( f ) = 2· |A(G)| complete
the proof. 2

A 3-face f incident to verticesu,v, andw is light if each ofu,v, andw has degree 3, and one ofu,v, and
w, sayw, is adjacent to a 2-vertex. We sayw is weak, andu andv arelight; see Fig. 8).

We define the weight functionω by ω(x) = 11· d(x)− 26 if x ∈ V(H) and ω(x) = 2 · d(x)− 26 if
x∈ F(H). It follows from identity (12) that the total sum of weights is equal to−52. In what follows, we
will define discharging rules (R1) and (R2) and redistributeweights accordingly. Once the discharging
is finished, a new weight functionω∗ is produced. However, the total sum of weights is fixed by the
discharging rules. Nevertheless, we can show thatω∗(x) ≥ 0 for all x ∈V(H)∪F(H). This leads to the
following obvious contradiction

0≤ ∑
x∈V(H)∪F(H)

ω∗(x) ≤ ∑
x∈V(H)∪F(H)

ω(x) = −52< 0

That demonstrates that no such counterexample can exist.
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v
light 3-face

w

u

Fig. 8: A light 3-face

The discharging rules are defined as follows:

(R1) Letv be a≥4-vertex. (see Fig. 9)

(R1.1) v gives 1
2 to each adjacent light 3-vertex.

(R1.2) v gives 2 to each adjacent 2-vertex.

(R1.3) v gives 9 to each incident 3-face.

(R2) Letv be a 3-vertex.

(R2.1) v is incident to a light 3-face. (see Fig. 10)

(R2.1.1) Ifv is light, thenv gives 15
2 to the incident light 3-face.

(R2.1.2) Ifv is weak, thenv gives 2 to the adjacent 2-vertex and 5 to the incident light 3-face.

(R2.2) v is incident to 3-face which is not light. (see Fig. 11)

(R2.2.1) Ifv is adjacent to a 2-vertex thenv gives 2 to the 2-vertex and 5 to the incident 3-face.
(R2.2.2) Ifv is adjacent to a light 3-vertex, thenv gives1

2 to the light 3-vertex and13
2 to the incident

3-face.
(R2.2.3) In the other cases,v gives 7 to the incident 3-face.

(R2.3) v is not incident to a 3-face. Thenv gives 1
2 to each adjacent light 3-vertex and 2 to each

adjacent 2-vertex. (see Fig. 12)

Let v be ak-vertex withk≥ 2 by (C1).

• If k = 2, thenω(v) = −4. Since two 2-vertices cannot be adjacent by (C2),v receives 2 from each
neighbor by R1.2, R2.1.2, R2.2.1 and R2.3. Hence,ω∗(v) = 0.

• If k = 3, thenω∗(v) = 7. Suppose first thatv is not incident to a 3-face. By R2.3,v gives at most
3 · 2 andω∗(v) ≥ 1. Suppose now thatv is incident to a 3-facef . If f is light, thenv is light or
weak. Ifv is light then it receives12 from its neighbor which is not weak nor light by R1 and R2.3
(this neighbor exists, since a light 3-vertex cannot be adjacent to two other light 3-vertices by (C5)).
Thenv gives at most15

2 to f by R2.1.1. Hence,ω∗(v) = 7+ 1
2 −

15
2 = 0. If v is weak, by R2.1.2, it

gives 7 andω∗(v) = 0. If f is not light,v gives 7 by R2.2.1, R2.2.2 and R2.2.3, andω∗(v) = 0.
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light 3-vertex

0.5 2
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9

Fig. 9: Rule (R1)

7.5

5

light 3-face

7.5

2

Fig. 10: Rule (R2.1)

2

5

not light 3-face

2-vertex

(a) Rule (R2.2.1)

0.5

not light 3-face

light 3-vertex

6.5

(b) Rule (R2.2.2)

nor a light 3-vertex

not light 3-face

7

neither a 2-vertex

(c) Rule (R2.2.3)

Fig. 11: Rule (R2.2)

0.5

light 3-vertex

2-vertex

2

Fig. 12: Rule (R2.3)
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v1

v2

u1

u2

u3
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Fig. 13: An outerplanar graphHn without cycles of
lengths 4 ton such thatχo(Hn)≥ 6 for all n≥ 5, n 6≡ 4
(mod 5)).

4

23

0

1

Fig. 14: The tournamentT5.

• If k ≥ 4, thenω(v) = 11· k− 26. It is easy to observe thatv gives at most92 · k by R1. Hence,
ω∗(v) ≥ 11·k−26− 9

2 ·k = 13
2 ·k−26≥ 0.

Let f be al -face. If l ≥ 13, thenω( f ) = ω∗( f ) ≥ 0. Suppose thatl = 3; ω( f ) = −20. If f is light,
then it receives15

2 from each incident light 3-vertex and 5 from the incident weak vertex by R2.1.1 and
R2.1.2, andω∗( f ) = −20+ 2 · 15

2 + 5 = 0. Suppose thatf is not light. By (C3), f is not incident to a
2-vertex. If f is incident to three 3-vertices, then the vertices on the boundary of f are adjacent to at most
one light 3-vertex by (C6) and to no 2-vertex by (C4), and sof receives at least 2·7+ 13

2 by R2.2.2 and
R2.2.3. Hence,ω∗(v) ≥ 1

2. Finally, if f is incident to at least one≥4-vertex (thereforef is not light), then
f receives at least 9+5+ 13

2 by (C4), R1.3, R2.2.1, R2.2.2 and R2.2.3. Hence,ω∗(v) ≥ 1
2.

For all x∈V(H)∪F(H), ω∗(x) ≥ 0 which completes the proof of Theorem 1.10.

5 Proof of Theorem 1.11
In this section, we prove that, for alli ≥ 4, there exists an outerplanar graphG without cycle of lengths 4 to
i such thatχo(G) ≥ 7, which impliesχs(G) ≥ 7. This result shows that the upper bound of Theorem 1.10
is tight for planar and outerplanar graphs. To get the required result, we need the two following lemmas.

Lemma 5.1 For all n ≥ 5, n 6≡ 4 (mod 5), we haveχo(Hn) ≥ 6 (where Hn is the graph depicted on
Fig. 13).

Proof: The graphHn needs at least 5 colors for any oriented coloring: indeed, the verticesun,vn,u0,v0,u1

must have distinct colors. Suppose thatHn admits a 5-oriented-coloringf and let w.l.o.g. f (un) = 0,
f (vn) = 1, f (u0) = 2, f (v0) = 3 et f (u1) = 4. Then, we have two available colors, namely 0 and 1, to
color v1 andu2. However, f (un) = 0 and f (vn) = 1; so we must setf (v1) = 0 and f (u2) = 1. Then,
we have two available colors, namely 2 and 3, to colorv2 andu3. However, f (u0) = 2 and f (v0) = 3;
so, we must setf (v2) = 2 and f (u3) = 3. Finally, we have two available colors, namely 0 and 4, to
color v3 andu4. However,f (u1) = 4 and f (v1) = 0; so, we must setf (v3) = 4 and f (u4) = 0. It is then
obvious that any 5-oriented-coloring ofHn is aT5-oriented-coloring (whereT5 is the tournament depicted
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w3

w0

w2

w1

w0

wn

wn−1

wn−2

Fig. 15: An outerplanar graphH ′
n without cycles of lengths 4 ton.

on Fig. 14). Now, we can check that for anyT5-oriented-coloring ofHn, we havef (ui+1) ≡ f (ui)+ 2
(mod 5) (subscripts are taken modulon+ 1). Therefore, we havef (un) ≡ f (u0) + 2n (mod 5), and
f (u0) ≡ f (un)+ 2 (mod 5). Thus, 2+ 2n≡ 0 (mod 5), what impliesn ≡ 4 (mod 5), a contradiction.
Therefore,χo(Hn) ≥ 6. 2

Let T1
6 , T2

6 , T3
6 , T4

6 , T5
6 be the five tournaments on six vertices depicted on Fig. 16.

Lemma 5.2 Let n be an even integer and H′n be the outerplanar graph depicted on Fig. 15. Any T1
6 -

oriented-coloring (resp. T26 , T3
6 , T4

6 , T5
6 ) f of H′

n is such that f(w0) 6= 1.

Proof: Let i ∈ [1,5]. Suppose that the graphH ′
n admits aT i

6-oriented-coloringf such thatf (w0) = 1.
Then, it is easy to check that, for alli, 0≤ i ≤ n, we havef (wi) = 1 if i is even, andf (wi) = 2 otherwise.
Therefore, we havef (wn) = f (w0), that is forbidden. 2

Proof of Theorem 1.11:Letn≥5,n 6≡4 (mod 5), andJn be the outerplanar graph constructed as follows:
we getHn (depicted in Fig. 13),n+1 copies ofH (depicted in Fig. 17) and we identify the vertexx of each
copy ofH to verticesv0,v1, . . . ,vn. By Lemma 5.1,χo(Hn) ≥ 6. LetW = {u1,u2, . . . ,un,v0,v1, . . . ,vn}.
Thus, ifχo(Jn) = 6, the six colors are necessarily used on the vertices ofW of Jn. In addition, since each
vertex ofW has two successors and two predecessors with necessarily distinct colors inJn, each vertex of
a tournamentT on six vertices such thatJn → T must have at least two distinct predecessors and at least
two distinct successors. There exist fifty-six non-isomorphic tournaments on six vertices, but only five are
such thatd−(u) ≥ 2 andd+(u) ≥ 2 for each vertexu: these are the ones depicted on Fig. 16. Therefore,
if χo(Jn) = 6, thenJn has necessarily aT-oriented-coloring forT ∈ {T1

6 ,T2
6 ,T3

6 ,T4
6 ,T5

6 }.
Let Gn be the outerplanar graph depicted on Fig. 18 constructed as follows. We takeJn, 2n+2 copies

of H ′
n and we identifyw0 of each copy ofH ′

n with each vertex ofW. Since the six colors are necessarily
used on the vertices ofW, Gn 6→ T for all tournamentsT of Fig. 16 by Lemma 5.2. We thus getχo(Gn)≥
7. Moreover, Sopena [13] proved that every outerplanar has an oriented chromatic number at most 7.
Therefore,χo(Gn) = 7. 2

6 Proof of Theorem 1.12
In this section, we prove that every oriented planar graph without cycles of lengths 4 or 6 has a homomor-
phism to the Cayley graphQR19.
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Fig. 16: The five non-isomorphic tournaments on six vertices such that for each vertexu, d−(u) ≥ 2 etd+(u) ≥ 2.

x

Fig. 17: The graphH.
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u3

u0

un−1

un−2

un

u2

u1

Fig. 18: An outerplanar graphGn without cycle of lengths 4 ton such thatχo(Gn) = 7 for all n ≥ 5, n odd,n 6≡ 4
(mod 5).

Let us define the partial order�. Let n3(G) be the number of≥3-vertices inG. For any two graphsG1

andG2, we haveG1 ≺ G2 if and only if at least one of the following conditions hold:

• G1 is a proper subgraph ofG2.

• n3(G1) < n3(G2).

Note that this partial order is well-defined, since ifG1 is a proper subgraph ofG2, thenn3(G1) ≤ n3(G2).
So� is a partial linear extension of the subgraph poset.

Let H be a minimal counterexample to Theorem 1.12 according to≺.

Similarly, we proceed by reduction of configurations and discharging procedure.

6.1 Structural properties of H

Claim 6.1 The counterexample H does not contain:

(C1) a 1-vertex;

(C2) a 2-vertex incident to a 3-face;

(C3) a 2-vertex adjacent to a≤3-vertex;

(C4) a 3-vertex;

(C5) a 4-vertex adjacent to two 2-vertices;

(C6) a 5-vertex adjacent to three 2-vertices;
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Fig. 19: Forbidden configurations of Theorem 1.12.

(C7) a k-vertex adjacent to(k−1) 2-vertices with6≤ k≤ 9.

Proof:

(C1) Trivial.

(C2) Consider configuration (a) depicted in Fig. 19. AnyQR19-coloring γ of H \ {x} satisfiesγ(u1) 6=
γ(u2), and can be extended toH by propertyP2,4.

(C3) Consider configuration (b) depicted in Fig. 19. AnyQR19-coloring γ of H \ {x} can be modified
such thatγ(v) 6= γ(w) thanks to propertyP2,4. This modified coloring can be extended toH by
propertyP2,4.

(C4) Consider configuration (c) depicted in Fig. 19. Notice that u1, u2, andu3 are≥3-vertices since
configuration (b) is forbidden. Ifd−(x) = 0 ord+(x) = 0, we can extend anyQR19-coloring ofH \
{x} to H by propertyP3,1. Now, there remains two equivalent cases: (1)d−(x) = 1 andd+(x) = 2
or (2)d−(x) = 2 andd+(x) = 1. We only treat Case (1). Let us setΓ−(x) = {u1}, Γ+(x) = {u2,u3}.
We now consider the graphH ′ obtained fromH \{x} by adding directed 2-paths joining respectively
u1 andu2, andu1 andu3. Notice that ifH is a planar graph without cycles of length 4 or 6, then
H ′ is a planar graph without cycles of length 4 or 6. MoreoverH ′ ≺ H sincen3(H ′) = n3(H)−1.
Any QR19-coloringγ of H ′ induces a coloring ofH \{x} such thatγ(u1) 6= γ(u2) andγ(u1) 6= γ(u3),
which can be extended toH by propertyP3,1.
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(C5)-(C6) Consider configuration (d) depicted in Fig. 19. Any QR19-coloringγ of H \ {u1, . . . ,uk−2} can be
modified such thatγ(x) /∈ {γ(v1), . . . ,γ(vk−2)} thanks to propertyP2,4. This modified coloring can
be extended toH by propertyP2,4.

(C7) Consider configuration (e) depicted in Fig. 19. AnyQR19-coloringγ of H \ {u1, . . . ,uk−1} can be
modified such thatγ(x) /∈ {γ(v1), . . . ,γ(vk−1)} thanks to propertyP1,9. This modified coloring can
be extended toH by propertyP2,4.

2

6.2 Discharging procedure

Lemma 6.2 Let H be a connected plane graph with n vertices, m edges and r faces. Then we have the
following:

∑
v∈V(H)

(3d(v)−10)+ ∑
f∈F(H)

(2d( f )−10) = −20 (13)

Proof: Euler’s formulan−m+ r = 2 can be rewritten as(6m−10n)+ (4m−10r) = −20. This identity
and the relation∑v∈V d(v) = ∑ f∈F d( f ) = 2mcomplete the proof. 2

We define the weight functionω byω(x)= 3·d(x)−10 if x∈V(H) andω(x)= 2·d(x)−10 if x∈F(H).
It follows from identity (13) that the total sum of weights isequal to−20. In what follows, we will define
discharging rules (R1) to (R6) and redistribute weights accordingly. Once the discharging is finished, a
new weight functionω∗ is produced. However, the total sum of weights is fixed by the discharging rule.
Nevertheless, we can show thatω∗(x) ≥ 0 for all x∈V(H)∪F(H). This leads to the following obvious
contradiction

0≤ ∑
x∈V(H)∪F(H)

ω∗(x) ≤ ∑
x∈V(H)∪F(H)

ω(x) = −20< 0

That demonstrates that no such counterexample can exist.

A 4-vertex isweak if it is incident to a unique 3-face and adjacent to a unique 2-vertex. The edge
incident to a weak 4-vertex which is not on the boundary of the3-face and not incident to the 2-vertex is
calledspecial. A special edge can be incident to two weak 4-vertices. Letm3(v) be the number of 3-faces
incident tov. Let m7(v) be the number of≥7-faces incident tov.

The discharging rules are defined as follows (note that the initial weight of every edge ofH is null):

(R1) Every≥7-face gives4
7 to each edge on its boundary.

(R2) Every≥4-vertex gives16
21 to each incident 3-face.

(R3) Every special edge gives27 to each incident weak 4-vertex.

(R4) Every edge on the boundary of a 3-facef gives 4
7 to f .

(R5) Letv be a 2-vertex.

(R5.1) If m7(v) = 2, then the vertices adjacent tov give each6
7 to v.
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(R5.2) If m7(v) = 1, then the vertices adjacent tov give each10
7 to v.

(R5.3) If m7(v) = 0, then the vertices adjacent tov give each 2 tov.

(R6) Every edge incident to a 2-vertexv gives the total weight obtained (R1) tov.

Let f be anl -face. Thenl 6= 4 andl 6= 6 by hypothesis.

• If l = 3, ω( f ) = −4. Since there is no 2-vertices incident to a 3-face by (C2) and no 3-vertices by
(C3), f is incident to three≥4-vertices and receives from each16

21 by (R2). Moreover, each edge of
its boundary gives47 to it by (R1). Hence,ω∗( f ) = −4+3 · 16

21 +3 · 4
7 = 0.

• If l = 5, ω( f ) = ω∗( f ) = 0.

• If l ≥ 7, ω( f ) = 2 · l − 10. By (R1), f gives 4
7 to each edge on its boundary. Hence,ω∗( f ) =

2 · l −10−4/7 · l = 10/7 · l −10≥ 0.

Let v be ak-vertex. Thenk 6= 1 andk 6= 3 by (C1) and (C3).

• If k = 2, thenω(v) = −4. Observe that there is no 1-vertices by (C1), no two adjacent 2-vertices
by (C3), and no 3-vertices by (C4). Ifm7(v) = 2, thenv receives 4·4/7 from its incident edges by
(R6) and 2·6/7 from its adjacent vertices by (R5.1). Hence,ω∗(v) = −4+ 4 ·4/7+ 2 ·6/7 = 0.
If m7(v) = 1, thenv receives 2·4/7 from its incident edges by (R6) and 2·10/7 from its adjacent
vertices by (R5.2). Hence,ω∗(v) = −4+ 2 · 4/7+ 2 · 10/7 = 0. Finally, if m7(v) = 0, thenv
receives nothing from its incident edges and 2· 2 from its adjacent vertices by (R5.3). Hence,
ω∗(v) = −4+2 ·2= 0.

• If k = 4, thenω(v) = 2. By (C5),v is adjacent to at most one 2-vertex. First, suppose thatv is not
weak. If m3(v) = 2, thenv gives 2·16/21 by (R2) andω∗(v) > 0. If v is adjacent to a 2-vertex,
it gives at most 2 by (R5). Finally, suppose thatv is weak. Observe that since a 3-face is adjacent
to ≥7-faces, then the 2-vertex adjacent tov is incident to at least one≥7-face. So,v gives at most
10/7 to the adjacent 2-vertex by (R5) and 16/21 to the 3-face by (R2). Now,v receives 2/7 from its
incident special edge by (R3). Finally,ω∗(v) = 2−10/7−16/21+2/7= 2/21> 0.

• If k= 5,ω(v) = 5. By (C6),v is adjacent to at most two 2-vertices and soω∗(v)≥5−2·2−16/21>
0 by (R2) and (R5).

• If k = 6, ω(v) = 8. By (C7),v is adjacent to at most four 2-vertices. Ifv is adjacent to at most
three 2-vertices, thenω∗(v) ≥ 8− 3 · 2− 16/21 > 0 by (R2) and (R5). Now suppose thatv is
adjacent to four 2-vertices. Ifv is not incident to a 3-face thenω∗(v) ≥ 8− 4 · 2 = 0 by (R5). If
v is incident to a 3-face, then two of the 2-vertices are incident to at least one≥7-face. Hence,
ω∗(v) ≥ 8−2 ·2−2 ·10/7−16/21> 0 by (R2) and (R5).

• If 7 ≤ k ≤ 9, ω(v) = 3 · k− 10. By (C7),v is adjacent to at most(k− 2) 2-vertices. Hence,
ω∗(v) ≥ 3 ·k−10− (k−2) ·2−16/21= k−6−16/21> 0.

• If k≥ 10,ω(v) = 3 ·k−10. Hence,ω∗(v) ≥ 3 ·k−10−2 ·k≥ 0.
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Finally, it is easy to observe that the remaining charge on each edge is non-negative.

Thus, we obtain the following contradiction which completes the proof:

0≤ ∑
x∈V(H)∪F(H)

ω∗(x) ≤ ∑
x∈V(H)∪F(H)

ω(x) = −20< 0

7 Concluding remarks
Several papers dealing with the strong oriented chromatic number of planar graphs get upper bounds as
corollaries of results on the maximum average degree. However, allowing triangles increases the max-
imum average degree as shown by Lemma 1.8. Indeed, the maximum average degree of planar graphs
with given girth tends to 2 when the girth grows, whereas the maximum average degree of planar graphs
without cycles of length 4 toi tends to 3 withi grows. Therefore, one might expect that the strong oriented
chromatic number would increase together with the maximum average degree. Nevertheless, our results
show that allowing triangles does not increase that much thestrong oriented chromatic number. Conse-
quently, the maximum average degree is not a pertinent parameter to bound the strong oriented chromatic
number of planar graphs without cycles of lengths 4 toi, i ≥ 4. Indeed, the proofs for upper bounds in
this paper do not use the maximum average degree but have to use the planar structure of the graphs.

In a companion paper [9], we continue this study and prove that χs(G) ≥ 11 (resp. 19, 43) for planar
graphs without cycles of lengths 4 to 9 (resp. without cyclesof lengths 4 and 5, without cycles of length
4). The proofs are assisted by computer.

Up to now, we know that for alli ≥ 4, there exist outerplanar graphsG without cycles of lengths 4 toi
with χs(G) = 7. It would be interesting to construct lower bounds for small values ofi to determine the
relevance of our upper bounds.
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