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Strong oriented chromatic number of planar
graphs without short cycles
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LetM be an additive abelian group. Af-strong-oriented coloringf an oriented grapks is a mapping) fromV (G)
to M such thatp(u) # ¢(v) wheneveriV is an arc inG and(v) — d(u) # —(¢(t) — d(2)) wheneveriv and zt are
two arcs inG. Thestrong oriented chromatic numbef an oriented graph is the minimal order of a grddsuch
thatG has anM-strong-oriented coloring. This notion was introduced B5BIfil and Raspaud\pn. Inst. Fourier
49(3):1037-1056, 1999].

We prove that the strong oriented chromatic number of ceéptanar graphs without cycles of lengths 4 to 12 (resp.
4 or 6) is at most 7 (resp. 19). Moreover, forialt 4, we construct outerplanar graphs without cycles of lengtto
i whose oriented chromatic number is 7.
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1 Introduction

Oriented graphs are directed graphs without loops nor dgpass. For two adjacent verticesndv, we
denote byuv the arc fromu to v or simplyuv whenever its orientation is not relevant (therefare= tv
oruv= V).

An oriented k-coloringof an oriented grapl® is a mappingp fromV (G) to a set ok colors such that
(1) &(u) # ¢(v) whenevemv is an arc inG, and(2) ¢(u) # ¢(x) wheneveiiv andwx are two arcs irG
with ¢(v) = ¢(w). Theoriented chromatic numbeaf an oriented graph, denoted fy(G), is defined as
the smallesk such thatG admits an oriented-coloring.

Let G andH be two oriented graphs. Aomomorphisnfrom G to H is a mappingp : V(G) — V(H)
that preserves the ara(x)$(y) € A(H) whenevexy € A(G).

An orientedk-coloring of G can be equivalently defined as a homomorphism fato H, whereH
is an oriented graph of ordé&r Then, theoriented chromatic numbeg,(G) of G can be defined as the
smallest order of an oriented graphsuch thatG admits a homomorphism td.

The notion of oriented coloring can be extended to undiceg@phs saying that thariented chro-
matic numbelxo(G) of an undirected grap® is the maximum oriented chromatic number taken over all
orientations ofG.
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The problem of bounding the oriented chromatic number hasady been investigated for various
graph classes: graphs with bounded maximum average dédrgedphs with bounded degree [7], graphs
with bounded treewidth [13, 14], and graph subdivisiong.[15

NeSetfil and Raspaud [10] introduced tkteong oriented chromatic numbetet M be an additive
abelian group. Astrong oriented coloringf an oriented grapfs is a mapping fromV (G) to M such
that (1) ¢(u) # ¢(v) wheneverivis an arc inG and(2) ¢(v) — ¢ (u) # —(d(t) — ¢(2)) wheneveiv and
zt are two arcs irG (this last condition will be called theo-opposite value conditignWe say thatG
has aM-strong-oriented coloring. Th&trong oriented chromatic numbef an oriented graph, denoted
by xs(G), is the minimal order of a groud, such thats hasM-strong-oriented coloring.

A strong oriented coloringf an oriented grapks can be equivalently defined as a homomorphism
from GtoH, whereH is an oriented graph witk vertices labeled by thieelements of an abelian additive
groupM, such that for any pair of ardsv and zt of A(H), d(v) —d(u) # —(¢(t) — ¢(2)). Then, the
strong oriented chromatic numbef G can be defined as the smallest order of an additive abeliarpgro
M such thats admits a homomorphism té labeled by the elements bf satisfying the no-opposite value
condition. Analogously, thetrong oriented chromatic numbef an undirected grap® is the maximum
strong oriented chromatic number taken over all the possibientations o6.

Therefore, any strong oriented coloring®fs an oriented coloring oB; henceXo(G) < Xs(G).

Let M be an additive group and I&C M be a set of group elements. TBayley digraphassociated
with (M, S), denoted byCy 5, is then defined as follows:

V(Cwms) =M and A(Cm,g) ={(9,9+9); g€ M,se S}.

If the setSare group generators f, thenCy, g is connected.

Assuming thaM is abelian an®n —S= 0, thenCy, 5 is oriented (neither loops nor opposite arcs), and
for any pair(gi, 91+ S1) and(gz, g2 + s2) of arcs ofCy g, 91+ 1 — 91 # — (92 + S2 — g2). Thus, finding
a strong oriente#t-coloring of an oriented grap@ may be viewed as finding a homomorphism fr@n
to an oriented Cayley graglyy s, of orderk, for some abelian grould with SC M andSN —S= 0.

Let H be an oriented graph. In the following, we say that an origtephG admits aH-coloring
whenever there exists a homomorphism fr@nto H. In the undirected case, we say that an undirected
graphG admits arH-coloring when every orientation & admits a homomorphism td.

Strong oriented coloring of planar graphs was recentlyistidSamal [12] proved that every oriented
planar graph admits a strong oriented coloring with at m@&t@lors. Marshall [8] improved this result
and proved the following:

Theorem 1.1 [8] Let G be an oriented planar graph. Theg(G) < 271

Borodin et al. [3, 4] studied the relationship between thergj oriented chromatic number and the
maximum average degree of a graph, where the maximum aveeggee, denoted by m@s) is:

madG) = max{ 2|\|f\((|:|))|l ; HC G}

They considered homomorphisms to oriented Cayley grapthgaoved that:
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Theorem 1.2 [3, 4] Let G be a graph.

1. IfmadG) < 12/5and G has girth at least 5, the(G) < 5[3].

2. IfmadG) < 11/4and G has girth at least 5, the(G) < 7[4].

3. IfmadG) < 3, thenxs(G) < 11[4].

4. IfmadG) < 10/3, thenxs(G) < 19[4].

The girth of a graphG is the length of a shortest cycle & When considering planar graphs, the
maximum average degree and the girth are linked by the fallpwell-known relation:

Claim 1.3 [4] Let G be a planar graph with girth g. ThemadG) < 2+ ﬁ.
Corollary 1.4 follows from the previous claim.

Corollary 1.4 [3, 4] Let G be a planar graph.
1. If G has girth at least 12, thexs(G) < 5[3].
2. If G has girth at least 8, thexs(G) < 7 [4].
3. If G has girth at least 6, thexs(G) < 11[4].
4. If G has girth at least 5, thegs(G) < 19[4].

The following two theorems give upper bounds for planar geapith girth 7 and 4, respectively. The
proofs of these results do not use arguments on the maximeraga degree.
Hence, Borodin and Ivanova [1] recently improved the presicesult;

Theorem 1.5 [1] Let G be a planar graph with girth at least 7. Thep(G) < 7.

Moreover, the class of triangle-free planar graphs wasietubly Ochem [11], and by Borodin and
Ivanova [2]:

Theorem 1.6 [2] Let G be an triangle-free planar graph. Theg(G) < 47.

Notice that, for general graphs, the oriented chromatic bemis not bounded when the maximum
average degree tends to 4 [4]. Therefore, Theorem 1.6 cdrnobtained via the maximum average
degree since triangle-free planar graphs have maximunageetegree arbitrarily close to 4.

The best known upper bounds on the strong oriented chromatiber of planar graphs and triangle-
free planar graphs are respectively 271 and 47. It seemdrihagjles play an important role for this
invariant. In this paper, we study the strong oriented clatiemumber of planar graphs without cycles of
lengths 4 td for a giveni > 4. These graph classes appear in Steinberg’s conjecturéljélaim of this
study is to check whether triangles have a significant infteean the strong oriented chromatic number
of planar graphs.
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Notice that the best known upper bounds on the strong odestieomatic number of planar graphs
with girth 5, 6, and 12 are obtained via the maximum averagge#e Therefore, to get bounds on the
strong oriented chromatic number of planar graphs withgales of lengths 4 t@, i > 4, it is natural to
determine the maximum average degree of these classesolldveifig two lemmas give tight bounds on
the maximum average degree of planar graphs without cytlesgths 4 toi for all i > 4.

Lemma l.7

; i 30
1. If G is a planar graph without cycles of length 4, thead G) < <.

2. Forall e > 0, there exists a planar graph G without cycles of length 4 shebhmadG) > 3—70 —&.
Lemma 1.8 Foralli > 5,
1. If G is a planar graph without cycles of lengths 4 to i, thead G) < 3+ %

2. For all € > 0, there exists a planar graph G without cycles of lengths 44och thatmad G) >
3+ -«
By Lemma 1.8, every planar grawithout cycles of lengths 4 to 11 has @) < 3+ 25 = 2.
Consequently, we obtain the following corollary by Theore.4:

Corollary 1.9 If G is a planar graph without cycles of lengths 4 to 11, thxe(G) < 19.

Lemmas 1.7.2 and 1.8.2 show that, for eveey 4, there exist planar grapl@ without cycles of
lengths 4 ta such that ma@s) > 3. Thus, Theorem 1.2 cannot provide an upper bound less thaim 1
the remainder, we improve Corollary 1.9 and prove the failhgitheorems:

Theorem 1.10 Let G be planar graph without cycles of lengths 4 to 12. Tixe(G) < 7.

Theorem 1.11 For all i > 4, there exists an outerplanar graph G without cycles of laagdtto i such that
Xo(G) > 7.

Theorem 1.12 Let G be planar graph without cycles of lengths 4 or 6. The(G) < 19.

In the next section, we prove Lemmas 1.7 and 1.8. In Sectiare3ntroduce the Cayley tournaments
QR; andQRyg and some of their properties. Section 4 is dedicated to thefmf Theorem 1.10; we
prove that every oriented planar graph without cycles ofjfes 4 to 12 has a homomorphism to the
Cayley graphQRy. In Section 5, we prove Theorem 1.11 which shows that Thedrd is tight in
some way. Section 6 is dedicated to the proof of Theorem WwéZhow that every oriented planar graph
without cycles of lengths 4 or 6 has a homomorphism to the &agtaphQRyg. In Section 7, we give
some concluding remarks and state recent related results.

In the following,V (G), A(G), andF (G) denote respectively the sets of vertices, edges/arcs aang f
of a plane graplG. For a vertew, we denote byl~ (v) the indegree of, by d*(v) its outdegree, and by
da(v) its degree. A vertex of degrde(resp. at leask, at mostk) is called ak-vertex(resp. Zk-vertex
=k-vertey. Thesizeof a facef, denoted byd(f), is the number of edges on its boundary walk, where
each cut-edge is counted twice. A face of dizeesp. at leadt, at most) is called a-face (resp.=I-face,
<|-face).
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2 Proofs of Lemmas 1.7 and 1.8

In this section, we give the proofs of Lemmas 1.7 and 1.8 wbliaracterize the maximum average degree
of planar graphs without cycles of lengths 4 for all i > 4.

Proof of Lemma 1.7:
1. Observe that we can rewrite Euler’'s form{\NdG)| — |A(G)| + |F(G)| = 2 as follows:

(7d(v) — 30) + Z (8d(f)—30)=—-60 (1)
veV(G) feF(G)

We define the weight functiom by w(f) = 8d(f) — 30 for each facd in F(G). Now, we redis-
tribute the weights according to the following dischargintg: every=5-face gives 2 to each adja-
cent 3-face. Lef be a face of (G) and letw*(f) denote its weight after discharging.dff) = 3,
thenw*(f) =w(f)+3 x 2=0. If d(f) > 5, thenw*(f) > w(f) —2d(f) =6d(f) —30> 0. Since
the total sum of weights is fixed by the discharging rule, weeha

(8d(f)-30)= § w(f)= Y w(f)>0
feF(G) feF(G) feF(H)

By Equation 1, we have (7d(v) — 30) < 0, which implies that ma@) < 3—70, since each sub-
veV(G)
graph ofG is a planar graph without cycles of length 4.

2. We now prove that the upper bound proved above is tightaFer> 0, we construct a planar graph
Gk without cycles of length 4 such that m@#}) > 3—70 —E.

Let H be the graph of Fig. 1(a). This graph is planar and has no sydleength 4. LeGi be the
graph obtained by tiling the plane wikhx k copies ofH (k lines andk columns); see Fig. 1(b).

We easily check that, for akk > 1, Gy is planar and has no cycles of length 4. The gr&gh
containgk? copies ofH and each copy contains 31 vertices and 54 edges. We can thmgutsthat
IV (Gk)| = 21k% + 12k — 2 and|A(Gk)| = 45k? + 12k — 3.Thus,

2|A(GK)| 2(4%k?+12—3) 30 19+ 29
> = —_
madGo = Gy ~ 2m@rik—2 ~ 7 147+ 8%k_14

This allows us to conclude:

Ve>0, 3k21:made)>37o—s.

Proof of Lemma 1.8:
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(a) The grapt. (b) The graphGy.

Fig. 1: Tiling the plane to obtain a planar graf without cycles of length 4 such that m@ak) > %) —&.

1. LetG be a counterexample to Lemma 1.8.1 which is minimal accgrttirthe subgraph order. In
particular,G is a planar graph without cycles of lengths 4i tawith maximum average degree at
least 3+ ifz. Moreover, by minimalityG contains neither 1-vertices nor two adjacent 2-vertices.
Let G’ be the graph obtained fro@ by removing every 2-vertex incident to a 3-face. ben,,
nz, andny denote respectively the number of vertices, 2-verticagrices, and 4-vertices ofG'.

An edge inG' is said to befreeif it is not incident to a 3-face ifG’. Let m, mg, andm denote
respectively the number of edges, edges incident to a 3-fackfree edges @&'. Let f, f3, andf;

denote respectively the number of faces, 3-facesZdné 1)-faces ofG'.

In G, a 2-vertex is incident to two free edges. Moreover, a 3exa incident to at least one free
edge, since otherwig®’ would contain a cycle of length four. We thus have

2np 4Nz < 2my (2)
By definition:

N=nNy+Ng+ny ®3)

mg+m =m (4)

f=fs+f (5)
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SinceG’ contains no cycle of length 4, we have:
3f3=mg (6)
Considering the sum of vertex degreesaih we have:
2np 4 3n3+4ns < 2m (7
Considering the sum of face degreesSinwe have:
3fz3+(i+1)fi <2m (8)
Considering the Euler’s formula f@', we have:
m+2=n-+f 9)

Let sdenote the number of 2-vertices incident to a triangl&inThis means thab containsn+ s
vertices anan+ 2sedges. By minimality 06, the maximum average degree®équals its average
degree and is at Ieas'&B%. We thus have:

3
(3+ ﬁ) (n+s) < 2(m+2s) (10)
If wis a 2-vertex incident to a trianglevwin G, thenuv is a free edge ifG’. Moreover, ifuvis
a free edge G/, there exists at most one 2-vertensuch thatuvwis a triangle inG (G does not
contain cycles of length 4). We thus have:

s<m (11)

The combination X (2)+12x (3)+2(i —2) x (4)+6(i + 1) x (5)+2(i — 2) x (6)+ 3 x (7)+6 x
(8)+6(i+1) x (9)+2(i—2) x (10)+2(i — 5) x (11)gives 1Zi + 1) < 0. This contradiction proves
Lemma 1.8.1.

2. We now prove that the upper bound proved above is tight. aicg > 0 and for alli > 5, we
construct a planar gragl without cycles of lengths 4 tbsuch that magG,) > 3+ % —E&.

Let H' be the graph obtained from two chains of intersecting tlies\gone of Iengtt{ %" J and
the other of Iengtf{ % ] arranged as depicted in Fig. 2(a). Foriall 5, this graph is planar and
has no cycles of lengths 4 toLet G, be the graph obtained by tiling the plane whth k copies of
H’ (k lines andk columns); see Fig. 2(b).

We easily check that, for ail> 5 and for allk > 1, the graphG, is planar and has no cycles of
lengths 4 ta. The graphG; containsk? copies ofH’ and each copy containgi2- 1) vertices and
3i+1 edges. We can then compute thatG, )| = 2ik? — 4k?+ 6k and|A(G} )| = 3ik? — 3k2 +k— 2.
Thus,

_ 2AAGY)| _ 6k* 6K +2k—4 3 8ik — 7k+2i — 4

T V(G| 2ik?—4k2+6k _3+i—2_k(i—2)(ik—2k+3)

madGy)
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Fig. 2: Tiling the plane to obtain a planar gra@x without cycles of lengths 4 tg i > 5, such that ma@y) >
3+ % —E.

This allows us to conclude:

Vizs,v»o,3k21:madG’k)>3+—ifz—E-

3 Some properties of the tournaments QRy and QRyg

In this section, we define the tourname@®; andQRy9, and give some properties that we use in next
sections to prove Theorems 1.10 and 1.12.

Recall that thecirculant graph G=C(p ; ¢1,Cp,...,¢q) is defined by (G) = {0,1,...,p— 1} and
uv e A(G) if and only if v= u+ ¢ (mod p) for somei, 1<i <d. If p=3(mod 4 is a prime power and
theg;’s are the non zero quadratic residues modylthend = p%l andQR, =C(p;cy,...,Cq) is aPaley
tournament.

Property 3.1 Let p=3(mod 4, Fp = Z/pZ and S= {x? ; x€ Fp\ {0} } be the non zero squaresBf.
Then $H—S=0.

Proof: Sincep = 3 (mod 4), —1 is not a square modula Indeed, if it were~1 = x? and so by Fermat's
little theorem:(—1)(P-1/2 = xP-1 = 1, But(—1)(P-V/2= 1.

Then, leta,b € Fp such thag? + b? = 0. If a# 0 orb # 0, then(b/a)2 = —1 or (a/b)? = —1, which
is a contradiction. Therefora,= b= 0. i
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Fig. 3: xis a(0,1,1)-successor ofus, Uy, Us)

0 1 0 1 0 1 0 1

Y Y Y Y

6 4 2 3/5
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Fig. 4: Example of property?, 1 of QR;

Therefore, such a Paley tournam@R; is clearly the Cayley grap@y gy with M =Fp = Z/pZ and
S={x%; xeFp\{0}}.

Another important property is that tH@R, tournaments ararc-transitive[5], which means that for
every two arcgivandXy, there exists an automorphism mappingto Xy.

For instance, let us consider the tournameépiy = C(7 ; 1,2,4) andQRig=C(19 ; 14,5,6,7,9,
11,16,17), which are Paley tournaments on 7 and 19 vertices, respéctiv

An orientation vectoiof lengthn is ann-tuplea = (01,02, ...,0,) in {0,1}".

Let G be an oriented graph and lét= (uj,us,...,uy) be a sequence of distinct vertices@f For an
orientation vecton, a vertexv of G is said to be am-successoof U if for everyi, 1 <i < n, Vj is an
arcinGif a; = 0 andG;v is an arc inG otherwise (see Fig. 3 for an example).

We shall say that an oriented gra@lsatisfies properti, k if for any sequenc® of n pairwise distinct
vertices ofG and any orientation vectax of lengthn, there exists at lea$t vertices inG which are
o-successors df .

The tournament®R; andQRy 9 have the following properties:

Property 3.2 [4] The tournament QRsatisfies propertiesii and B 1.
Property 3.3 [4] The tournament QR satisfies propertiesiR, P> 4, and R 1.

Let us give an example; saying th@R; has property?, 1 means that for any pair of distinct vertices
(x,y) of QR; and any orientation vectax of length two (four possible orientation vectors), we have
at least onen-successor ofx,y). For instance, fox = 0 andy = 1, we can check that there exists
one(0,0)-successor (Fig. 4(a)), or{&,0)-successor (Fig. 4(b)), or{&,1)-successor (Fig. 4(c)) and two
(0,1)-successors (Fig. 4(d)) ¢k, y).

In the remainder of this section, we will consider some otiteperties oQR;.
For a given vertew of an oriented grapks, we denote by *(v) (resp. [~ (v)) the set of outgoing
neighbors of/ (F*(v) = {ueV ; Vi€ A(G)}) (resp. the set of incoming neighborswfl ~(v) = {u €
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V ; Gve A(G)})). For a subse® of vertices ofG, we define:

rs=Jrtw and T (§=Jr (v

vesS vesS

For a given oriented grap®, we will denote byQg(k) the largest numben such that for all sets
SCV(G) of sizek, [Tt (S)| > nand|r(S)| >n.
By a case analysis, we have the following property:

Property 3.4
1. Qor,(1) =3;
2. Qor,(2) =5;
3. Qgr,(k) =6for3<k < 4
4. Qor, (k) =7for5<k<7.

Let us consider the following definition.

Definition 3.5 Let G be an oriented graph. L& C V(G) andxy,X2,...,%n,Y1,Y2,.-.,Ym € W ben+
m vertices. Lety be aQRy-coloring of G\ W. vy is called (ki,ko,...,kq | 11,l2,...,lm)-extendable to
(X1,X2,-- -, Xn | Y1,¥2,--.,¥Ym) in G if there existr = k; x ky x ... X kn QRy-coloringsys, yz,...,y: of G
extendingy such that

1. forall 1< j<n, |{yi(x;);1<i<r} =k;,
2. ther n-tuples(yi(x1),Yi (%2),---,Vi(Xn)) are distinct,
3. forall1<j<m [{vi(yj);1<i<r}| <l

Thek; colors forx; will be calledchoicessince, for each X j <n, we canindependently choose a color
for eachxj among thek; available colors, and then take the correspon@fg-coloringy; accordingly.

Thel; colors fory; will be calledpossibilitiessince, for each X j <m, our only knowledge is that;
will have a color taken among at mdgtcolors.

Whenever we do not have informations about possibilitiesstime vertices, we will say thatis
(k1,ko,...,kn)-extendable tdxs, Xz, ..., %n) in G.

The drawing conventions for@nfiguration Ccontained in a grap® are the following. Ifu andv are
two vertices ofC, then they are adjacent@if and only if they are adjacent i@. Moreover, the neighbors
of awhitevertex inG are exactly its neighbors i@, whereas &lack vertex may have neighbors outside
of C. Two or more black vertices i@ may coincide in a single vertex i@, provided they do not share a
common white neighbor. Finally, an edge will represent anagth any of its two possible orientations.
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Fig. 5: Configurations of Properties 3.6 and 3.10.

Property 3.6 Let G be an oriented graph containing the configuratian of Fig. 5, let WcC V(G) and
let u,v,w € W (u and w are non-adjacent). Lebe a QR-coloring of G\W. Ifyis (k|)-extendable to
(u,w) in G\ {v}, then it is(Qqr, (1) + Qor, (k) — 7| k,I)-extendable t@v | u,w) in G.

Proof: Thek choices of colors fou allow Qqr, (k) distinct colors forv, while thel choices of colors
of w allow Qqr, (I) distinct colors forv. By the Pigeon Hole Principle, we have at least Qqr, (k) +
Qqr, (1) — 7 choices to colov in G while u andw havek and| possibilities, respectively. O

A quick case check shows that the fi#lghas the following property:

Property 3.7 Let S= {x?; x € F7\ {0}} = {1,2,4}. For any two distinct couple,s;) and(s,,s,) of
S, we haves-s; # S —s,.

Property 3.7 allows us to prove the following:

Property 3.8 Letxy € F7 with x#y and lets,,3,5 € S= {x*; x€ F7\ {0}} such that s # s, and
3 # S4. Then|{Xx+ s, X+ s,y + 83,y + sa}| = 3and[{x—s1,X— 8,y — 3,y —u}| > 3.

Proof: Suppose tha{ X+ s, X+ S,y +S3, Y+ }| < 3. Sinces; # 5 andss # &4, we havex+ s # X+ S
andy+s3 # y+ . Therefore, we may assume w.l.o.g. tRat s; = y+ 3 andx+ S = y+ &4, which
implies thatss — 51 = &4 — S, that is a contradiction by Property 3.7.

The same argument allows us to prove f{at— s;,X— S,y — S,y — S }| > 3. 0

A careful case study dPRy; gives the following:

Property 3.9 Let xy,z be three distinct vertices of QRuch thatxy € A(QR;) and Xz € A(QRy). For
any orientation vectoo = (a1, az) € {0,1}2, there exist at least two distinct verticésand Z such that
y is ana-successor ofx,y) and Z is ana-successor ofx, z).

Property 3.10 Let G be an oriented graph containing the configuratitm of Fig. 5, let WC V(G),
and let uv,w e W (u and w are adjacent). Lgtbe a QR-coloring of G\W. Ifyis (2| 1)-extendable
(resp. (5] 3)-extendable) tdu | w) is G\ {v}, thenyis (2 | 2,1)-extendable (resp(3 | 5, 3)-extendable)
to (v|u,w)in G.

Proof: LetG' = G\ {v} and we may assume w.l.0.g. thvat € A(G).

1. Suppose thatis (2| 1)-extendable tdu | w) in G'. In other words, there exist at least tW@R;-
coloringsy; andy; of G’ extendingy such thaty; (u) # y»>(u) andy;(w) = y>(w). Thereforey; (u)
andy;(u) are two distinct successorsyaiw) in QR;. By Property 3.9, we have at least two choices
to colorvin G while u andw have 2 and 1 possibilities, respectively.
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Fig. 6: Configuration of Property 3.11

2. Suppose now that is (5 | 3)-extendable tqu | w) in G'. In other words, there exist at least
five QRy-coloringsy, ..., ys of G’ extendingy such thaty (u)’s are pairwise distinct anfyi (w);
1 <i <5}| = 3 (which is the worst case). Lgt(u) = u and{yi(w);1 <i <5} = {wy,wp,w3}.
The colory; is a successor ofi(w) in QR; for 1 <i <5. W.Lo.g, if there existj,k,| € [1,5]
with j # k# | # j such thaty;(w) = yk(w) = yi(w) = w, thenuj,ug, U are the three successors
of wi in QRy and by Property 3.9, we have at least three choices to eoldrile u andw have
5 and 3 possibilities, respectively; thyss (3 | 5,3)-extendable tdv | u,w) in G. If it is not, by
the Pigeon Hole Principle, we may assume w.l.o.g. thaandu, are both successors of in
QR; anduz anduy are both successors wb in QR;. By Property 3.9, for any orientation vector
a € {0,1}2, there existy, S, S3,54 € S= {1,2,4} such thaiv; +s; (resp.wi + S, Wo + Sz, W2 -+ Sy)
is ana-successor ofwi, us) (resp.(wq, Uz), (W, u3) and(Wy, Us)) such thatvy +s1 # w1 + 5 and
Wy + S3 # Wo + 4. Therefore, by Property 3.8iwi + 1, W1 + S, Wo + S3, W2 + 4} > 3 and we have
at least three choices to colein G while u andw have 5 and 3 possibilities, respectively; tiyis
(31]5,3)-extendable tgv | u,w) in G.

O

Property 3.11 Let G be an oriented graph containing the configuration degglon Fig. 6 and ley be a
QRy-coloring of G\ {v,w,x,y}. Thenyyis (3)-extendable tdy) in G.

Proof: By Property 3.4y is (3,3)-extendable tqu,x) in G\ {w,y}. Then, by Property 3.6;is (5| 3)
extendable tdqw | u) in G\ {y}. Finally, by Property 3.10yis (3)-extendable tdy) in G.

We will extensively use these previous properties in thet he®r sections to prove Theorems 1.10
and 1.12.

4 Proof of Theorem 1.10

In this section, we prove that every oriented planar graghaut cycles of lengths 4 to 12 has a homo-
morphism to the Cayley grafdRy;.

Let H be a counterexample to Theorem 1.10 of minimum order. Weshibiw that in the following
claim, H does not contain some configurations. For each of them, wsid@ma reductiotd’ such that
[V(H")| < [V(H)|. By minimality of H, there exists &Ry-coloring of H’ and we show how to extend it
to aQRy-coloring ofH. Finally, a discharging procedure will complete the proof.
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Uy Vv w X
u \Y X w u
e——O—O—e0 X
Uo Yy z t
(@) (b) ()
u X1 X2 X3 \
u X1 Xo X3 \
Xq
X5
X w
Xs Xe
X7
y X6 X7 Xg z
y X8 X9 X10 z

(d) (e)

Fig. 7: Forbidden configurations of Theorem 1.10.

4.1 Structural properties of H

Claim 4.1 The counterexample H does not contain the following:

(C1) 1-vertices;

(C2) two adjacent 2-vertices;

(C3) a 3-faceincident to a 2-vertex;

(C4) a 3-faceincident to two 3-vertices, each of them adjattea 2-vertex;
(C5) the configuration depicted in Fig. 7(d);

(C6) the configuration depicted in Fig. 7(e).

Proof:
(C1) Trivial.

(C2) Consider configuration (a) depicted in Fig. 7. ADR;-coloringy of H \ {x} can be modified such

thaty(v) # y(w) thanks to property; 3. This modified coloring can be extendedHdby property
Pz"l.
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(C3) Consider configuration (b) depicted in Fig. 7. AQRR;-coloringy of H \ {x} satisfiesy(uz) # y(u),
and can be extended kb by propertyP. 1.

(C4) Consider configuration (c) depicted in Fig. 7. k&e aQRy-coloring ofH \ {v,w,y,z}. By property
P13, we have two available colors to color the verteguch thaty(v) # y(x) in H\ {w,y,z}. We
choose the one such that by propePyi, we can color the vertey with a colory(y) # y(t) in
H\ {w,z}. By propertyP, 1, we can finally exteng to aQR;-coloring ofH.

(C5) Consider configuration (d) depicted in Fig. 7. lyebe aQRy-coloring of H \ {x1,...,xs}. By
Property 3.11y s (3,3)-extendable tdx4,xs) in H \ {x4xs}. By Property 3.4, the three choices of
x4 forbid at most one color faxs and therefore, there exist at least two couples of colorshar g4
andxs, i.e. there exist at least tw@QRy-coloring of G extendingy.

(C6) Consider configuration (e) depicted in Fig. 7. kdie aQRy-coloring ofH \ {x1,...,x10}. By
Property 3.11y is (3,3)-extendable tdxas,x7) in H\ {xs,%s}. Then, by Property 3.6 is (3,2)-
extendable tqxs,%s) in H\ {xs}. Then by property 3.10y is (3,2)-extendable tdxs,xs) in H '\
{xaxs}. By Property 3.4, the three choicesxafforbid at most one color foxs and therefore, there
exist at least one couple of colors to colgrandxs, i.e. there exists at least o@R;-coloring of G

extendingy.
O
4.2 Discharging procedure
Lemma 4.2 Let H be a connected plane graph. Then the following holds:
(11d(v) — 26) + Z (2d(f)—26) = —52 (12)

veV(H) feF(H)

Proof: Euler's formulaV (G)| — |A(G)| + |F(G)| = 2 can be rewritten a@2- |A(G)| — 26-|V(G)]) + (4
|A(G)| —26-|F(G)|) = —52. This identity and the relatiop,c, d(v) = 5 ¢ d(f) = 2- |A(G)| complete
the proof. i

A 3-facef incident to verticesl, v, andw is light if each ofu,v, andw has degree 3, and onewfv, and
w, sayw, is adjacent to a 2-vertex. We sawis weak andu andv arelight; see Fig. 8).

We define the weight functiom by w(x) = 11-d(x) — 26 if x € V(H) andw(x) = 2-d(x) — 26 if
x € F(H). It follows from identity (12) that the total sum of weightsequal to—52. In what follows, we
will define discharging rules (R1) and (R2) and redistribargghts accordingly. Once the discharging
is finished, a new weight functiow* is produced. However, the total sum of weights is fixed by the
discharging rules. Nevertheless, we can showdbigx) > O for all x e V(H) UF(H). This leads to the
following obvious contradiction

0< w*(x) < w(x) =—-52<0
xeV(H)UF(H) XeV (H)UF(H)

That demonstrates that no such counterexample can exist.
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Fig. 8: A light 3-face

The discharging rules are defined as follows:
(R1) Letvbe a=4-vertex. (see Fig. 9)

(R1.1) v gives% to each adjacent light 3-vertex.
(R1.2) v gives 2 to each adjacent 2-vertex.
(R1.3) v gives 9 to each incident 3-face.

(R2) Letv be a 3-vertex.

(R2.1) vis incident to a light 3-face. (see Fig. 10)

(R2.1.1) Ifvis light, thenv gives%5 to the incident light 3-face.
(R2.1.2) Ifvis weak, therv gives 2 to the adjacent 2-vertex and 5 to the incident ligfeic-

(R2.2) vis incident to 3-face which is not light. (see Fig. 11)

(R2.2.1) Ifvis adjacent to a 2-vertex thergives 2 to the 2-vertex and 5 to the incident 3-face.
(R2.2.2) Ifvis adjacentto alight 3-vertex, thergives% to the light 3-vertex an%3 tothe incident
3-face.
(R2.2.3) In the other casesgives 7 to the incident 3-face.
(R2.3) v is not incident to a 3-face. The\ngives% to each adjacent light 3-vertex and 2 to each
adjacent 2-vertex. (see Fig. 12)

Letv be ak-vertex withk > 2 by (C1).

o If k=2, thenw(v) = —4. Since two 2-vertices cannot be adjacent by (@2gceives 2 from each
neighbor by R1.2, R2.1.2, R2.2.1 and R2.3. Hencg#dy) = 0.

o If k=3, thenw"(v) = 7. Suppose first thatis not incident to a 3-face. By R2.8,gives at most
3.2 andw*(v) > 1. Suppose now thatis incident to a 3-facd. If f is light, thenv is light or
weak. Ifvis light then it receive% from its neighbor which is not weak nor light by R1 and R2.3
(this neighbor exists, since a light 3-vertex cannot becatjato two other light 3-vertices by (C5)).
Thenv gives at most? to f by R2.1.1. Hencew*(v) = 7+ 3 — £ = 0. If vis weak, by R2.1.2, it
gives 7 andw*(v) = 0. If f is not light,v gives 7 by R2.2.1, R2.2.2 and R2.2.3, andv) = 0.
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Fig. 9: Rule (R1) Fig. 10: Rule (R2.1)

neither a 2-vertex

2-vertex light 3-vertex nor a light 3-vertex
2< 0.5<

(a) Rule (R2.2.1) (b) Rule (R2.2.2) (c) Rule (R2.2.3)

Fig. 11: Rule (R2.2)

2-vertex

N;s

Fig. 12: Rule (R2.3)

light 3-vertex
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4 1
3 2
Fig. 13: An outerplanar grapiti, without cycles of Fig. 14: The tournaments.
lengths 4 ta such that(o(Hn) > 6 foralln>5,n#£ 4
(mod 5).

o If k>4, thenw(v) = 11-k—26. It is easy to observe thatgives at most% -k by R1. Hence,
w*(v) >11-k—26-3 -k=2.k-26>0.

Let f be al-face. Ifl > 13, thenw(f) = w*(f) > 0. Suppose thdt= 3; w(f) = —20. If f is light,
then it receiveslz—5 from each incident light 3-vertex and 5 from the incident weartex by R2.1.1 and
R2.1.2, andw*(f) = —20+2- 175+5: 0. Suppose that is not light. By (C3),f is not incident to a
2-vertex. Iff is incident to three 3-vertices, then the vertices on thendauy of f are adjacent to at most
one light 3-vertex by (C6) and to no 2-vertex by (C4), and seceives at least-Z + 173 by R2.2.2 and
R2.2.3. Hencew*(v) > % Finally, if f is incident to at least oné4-vertex (thereford is not light), then
f receives at least9 5+ 12 by (C4), R1.3, R2.2.1, R2.2.2 and R2.2.3. Henody) > 3.

Forallxe V(H)UF(H), w*(x) > 0 which completes the proof of Theorem 1.10.

5 Proof of Theorem 1.11

In this section, we prove that, for all> 4, there exists an outerplanar grapkithout cycle of lengths 4 to
i such thaio(G) > 7, which impliesxs(G) > 7. This result shows that the upper bound of Theorem 1.10
is tight for planar and outerplanar graphs. To get the regluiesult, we need the two following lemmas.

Lemma5.1 For all n > 5, n# 4 (mod 5, we havexo(Hn) > 6 (where H, is the graph depicted on
Fig. 13).

Proof: The graptH,, needs at least 5 colors for any oriented coloring: indeegydticesun, vy, Ug, Vo, Ug
must have distinct colors. Suppose thktadmits a 5-oriented-coloring and let w.l.o.g. f(u,) = 0,
f(vn) =1, f(w) =2, f(vo) =3 etf(u1) = 4. Then, we have two available colors, namely 0 and 1, to
color v; anduz. However,f(u,) = 0 and f(v,) = 1; so we must sef(v1) =0 andf(uz) = 1. Then,

we have two available colors, namely 2 and 3, to cetoandus. However,f(up) = 2 and f(vp) = 3;

so, we must sef(vy) = 2 and f(uz) = 3. Finally, we have two available colors, namely 0 and 4, to
colorvs andus. However,f(u;) =4 andf(v1) = 0; so, we must sef(vs) =4 andf(us) = 0. Itis then
obvious that any 5-oriented-coloring df, is a Ts-oriented-coloring (wher@&s is the tournament depicted
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Wo

Fig. 15: An outerplanar graphi/, without cycles of lengths 4 tn.

W3

on Fig. 14). Now, we can check that for amy-oriented-coloring oH,,, we havef (ui+1) = f(u) +2
(mod 5 (subscripts are taken modufo+ 1). Therefore, we havé(u,) = f(up) +2n (mod 5, and
f(up) = f(up) +2 (mod 5. Thus, 2+2n=0 (mod 5, what impliesn =4 (mod 5), a contradiction.
Thereforexo(Hn) > 6. O

LetTd, T2, T3, T¢, T be the five tournaments on six vertices depicted on Fig. 16.

Lemma 5.2 Let n be an even integer and, e the outerplanar graph depicted on Fig. 15. Aqgng
oriented-coloring (resp. &, T, T¢, T9) f of Hj, is such that fwo) # 1.

Proof: Leti € [1,5]. Suppose that the grapfy, admits aTi-oriented-coloringf such thatf (wo) = 1.
Then, it is easy to check that, for &Jl0 <i < n, we havef (w;) = 1 if i is even, and (w;) = 2 otherwise.
Therefore, we havé(w,) = f(wo), that is forbidden. O

Proof of Theorem 1.11:Letn>5,n#4 (mod 5), andJ, be the outerplanar graph constructed as follows:
we getHp, (depicted in Fig. 13)a+ 1 copies oH (depicted in Fig. 17) and we identify the verterf each
copy ofH to verticesvg,vi,...,vn. By Lemma 5.1x0(Hn) > 6. LetW = {ug,Uz,...,Un,Vo,V1,...,Vn}.
Thus, ifXo(Jn) = 6, the six colors are necessarily used on the vertic¥¥ of J,. In addition, since each
vertex ofW has two successors and two predecessors with necessatifcticolors inl,, each vertex of
a tournament on six vertices such thah — T must have at least two distinct predecessors and at least
two distinct successors. There exist fifty-six non-isonhicpournaments on six vertices, but only five are
such thad™(u) > 2 andd* (u) > 2 for each vertex:: these are the ones depicted on Fig. 16. Therefore,
if Xo(Jn) = 6, thenJ, has necessarily B-oriented-coloring foll € {Td, T2, T2, T¢ T2}

Let G, be the outerplanar graph depicted on Fig. 18 constructedllas/é. We takel,, 2n+ 2 copies
of H;, and we identifywp of each copy oH}, with each vertex o¥W. Since the six colors are necessarily
used on the vertices ¥¥, G, 4~ T for all tournamentd of Fig. 16 by Lemma 5.2. We thus ge$(Gy) >
7. Moreover, Sopena [13] proved that every outerplanar hasri@nted chromatic number at most 7.
Thereforexo(Gn) =7. O

6 Proof of Theorem 1.12

In this section, we prove that every oriented planar gragthawit cycles of lengths 4 or 6 has a homomor-
phism to the Cayley grapQRo.
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2 3 2 3 2 3
1 4 1 4 1 4
6 5 6 5 6 5
(@ T¢. (b) TZ. (©) T&.
2 3 2 3
1 4 1 4
6 5 6 5
(d) T&. (e) Tg.

Fig. 16: The five non-isomorphic tournaments on six vertices suchftimaach vertex, d~(u) > 2 etd™ (u) > 2.

Pl

Fig. 17: The grapHH.
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Fig. 18: An outerplanar grapks, without cycle of lengths 4 tm such thatyo(Gn) = 7 for alln > 5, n odd, n # 4
(mod 5.

Let us define the partial ordet. Letnz(G) be the number of 3-vertices inG. For any two graph&;
andGy, we haveGi < Gy if and only if at least one of the following conditions hold:

e Gj is a proper subgraph &,.
o ng(Gl) < n3(G2).

Note that this partial order is well-defined, sinc&if is a proper subgraph @, thennz(G1) < n3(Gy).
So=is a partial linear extension of the subgraph poset.

LetH be a minimal counterexample to Theorem 1.12 according.to

Similarly, we proceed by reduction of configurations andkiéging procedure.

6.1 Structural properties of H

Claim 6.1 The counterexample H does not contain:
(C1) al-vertex;

(C2) a2-vertex incident to a 3-face;

(C3) a 2-vertex adjacent to a3-vertex;

(C4) a 3-vertex;

(C5) a4-vertex adjacent to two 2-vertices;

(C6) a 5-vertex adjacent to three 2-vertices;



Strong oriented chromatic number of planar graphs withdwdrscycles 21

Up

97}

@

(e)

Fig. 19: Forbidden configurations of Theorem 1.12.

(C7) ak-vertex adjacent ttk — 1) 2-vertices withb < k < 9.

Proof:
(C1) Trivial.

(C2) Consider configuration (a) depicted in Fig. 19. ARRo-coloringy of H \ {x} satisfiesy(u;) #
y(u2), and can be extended tbby propertyP, 4.

(C3) Consider configuration (b) depicted in Fig. 19. ARRRg-coloringy of H \ {x} can be modified
such thaty(v) # y(w) thanks to property 4. This modified coloring can be extendedhioby

propertyP; 4.

(C4) Consider configuration (c) depicted in Fig. 19. Notibatiu;, up, andus are Z3-vertices since

configuration (b) is forbidden. i~ (x) = 0 ord™ (x) = 0, we can extend ar@Ryg-coloring ofH \

{x} to H by propertyPs 1. Now, there remains two equivalent cases:d1jx) = 1 andd ™" (x) = 2

or (2)d=(x) =2 andd™ (x) = 1. We only treat Case (1). Let us $&t(x) = {ur}, [ " (x) = {up,us}.

We now consider the gragt’ obtained fronH \ {x} by adding directed 2-paths joining respectively
u; anduy, andu; andus. Notice that ifH is a planar graph without cycles of length 4 or 6, then
H’ is a planar graph without cycles of length 4 or 6. Moreddé H sinceng(H’) = n3(H) — 1.
Any QRyg-coloringy of H” induces a coloring dfl \ {x} such that/(uz) # y(u2) andy(uz) # y(us),
which can be extended td by propertyPs ;.
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(C5)-(C6) Consider configuration (d) depicted in Fig. 19.yApR;g-coloringy of H \ {us,...,ux_2} can be
modified such thay(x) ¢ {y(v1),...,y(vk—2)} thanks to property 4. This modified coloring can
be extended tél by propertyP, 4.

(C7) Consider configuration (e) depicted in Fig. 19. ADRjo-coloringy of H \ {u,...,ux_1} can be
modified such thay(x) ¢ {y(v1),...,y(w-1)} thanks to property?; o. This modified coloring can
be extended tél by propertyP; 4.

6.2 Discharging procedure

Lemma 6.2 Let H be a connected plane graph with n vertices, m edges aadesf Then we have the
following:

(3d(v) — 10) + Z (2d(f)—10)=-20 (13)
veV(H) feF(H)

Proof: Euler’s formulan—m+r = 2 can be rewritten am— 10n) + (4m— 10r) = —20. This identity
and the relatiory oy d(V) = 3 t<F d(f) = 2m complete the proof. O

We define the weight functiow by w(x) = 3-d(x) —10if xe V(H) andw(x) = 2-d(x) —10ifxe F(H).
It follows from identity (13) that the total sum of weightsdqual to—20. In what follows, we will define
discharging rules (R1) to (R6) and redistribute weightoadingly. Once the discharging is finished, a
new weight functiorw* is produced. However, the total sum of weights is fixed by tiseldrging rule.
Nevertheless, we can show that(x) > 0 for allx e V(H) UF (H). This leads to the following obvious
contradiction

0< z w'(x) < w(x) =—-20<0
xeV (H)UF(H) XeV(H)UF(H)

That demonstrates that no such counterexample can exist.

A 4-vertex isweakif it is incident to a unique 3-face and adjacent to a uniqueeex. The edge
incident to a weak 4-vertex which is not on the boundary of3fface and not incident to the 2-vertex is
calledspecial A special edge can be incident to two weak 4-verticesnigt) be the number of 3-faces
incident tov. Letmy(v) be the number of 7-faces incident te.

The discharging rules are defined as follows (note that titialiveight of every edge off is null):

(R1) Every=7-face giveé to each edge on its boundary.

(R2) Every=4-vertex give% to each incident 3-face.

(R3) Every special edge givésto each incident weak 4-vertex.
(R4) Every edge on the boundary of a 3—fafcgivesi71 to f.

(R5) Letv be a 2-vertex.

: i ; 6
(R5.1) Ifmy(v) = 2, then the vertices adjacenti@ive eachs tov.
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(R5.2) Ifmy(v) =1, then the vertices adjacenti@ive each%’ tov.

(R5.3) Ifmy(v) = 0, then the vertices adjacentt@ive each 2 to.

(R6) Every edge incident to a 2-verteygives the total weight obtained (R1)vo

Let f be anl-face. Ther # 4 andl # 6 by hypothesis.

If I =3, w(f) = —4. Since there is no 2-vertices incident to a 3-face by (CR)ram3-vertices by
(C3), f is incident to three€ 4-vertices and receives from ea%?\by (R2). Moreover, each edge of
its boundary gived to it by (R1). Hencew'(f) = —4+3-18+3.2 =0.

IfI =5,0(f) =w'(f)=0.

IfI>7 w(f)=2-1-10. By (R1),f gives%1 to each edge on its boundary. Henag(f) =
2-1-10-4/7-1=10/7-1-10> 0.

Letv be ak-vertex. Therk # 1 andk £ 3 by (C1) and (C3).

If k=2, thenw(v) = —4. Observe that there is no 1-vertices by (C1), no two adjs2emrtices
by (C3), and no 3-vertices by (C4). iifi7(v) = 2, thenv receives 44/7 from its incident edges by
(R6) and 2 6/7 from its adjacent vertices by (R5.1). Heno&(v) = —4+4-4/7+2-6/7=0.

If mz(v) =1, thenv receives 24/7 from its incident edges by (R6) and 20/7 from its adjacent
vertices by (R5.2). Hencep*(v) = —4+2-4/7+2-10/7 = 0. Finally, if my(v) = 0, thenv
receives nothing from its incident edges and22from its adjacent vertices by (R5.3). Hence,
w*(v)=-4+2-2=0.

If k=4, thenw(v) = 2. By (C5),v is adjacent to at most one 2-vertex. First, supposevimhot
weak. Ifmg(v) = 2, thenv gives 2 16/21 by (R2) andw*(v) > 0. If v is adjacent to a 2-vertex,

it gives at most 2 by (R5). Finally, suppose thas weak. Observe that since a 3-face is adjacent
to =7-faces, then the 2-vertex adjacenwtis incident to at least on&7-face. Soy gives at most
10/7 to the adjacent 2-vertex by (R5) and 16/21 to the 3-fga&B). Now,v receives 2/7 from its
incident special edge by (R3). Finalby; (v) =2—10/7—16/21+2/7=2/21> 0.

If k=5, w(v) =5. By (C6),vis adjacent to at most two 2-vertices andsgv) >5—-2-2—16/21>
0 by (R2) and (R5).

If k=6, w(v) =8. By (C7),v is adjacent to at most four 2-vertices. Vifis adjacent to at most
three 2-vertices, them*(v) > 8—3-2—16/21> 0 by (R2) and (R5). Now suppose thais
adjacent to four 2-vertices. ifis not incident to a 3-face thew*(v) > 8—-4-2=0 by (R5). If
v is incident to a 3-face, then two of the 2-vertices are intide at least oneg 7-face. Hence,
w*(v) >8-2-2—2-10/7—16/21> 0 by (R2) and (R5).

If 7 <k<9, wv)=3-k—10. By (C7),v is adjacent to at mogik —2) 2-vertices. Hence,
w*(v) >3-k—10—(k—2)-2—16/21=k—6—16/21> 0.

If k>10,(v) =3-k—10. Hencew*(v) > 3-k—10—2-k>0.
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Finally, it is easy to observe that the remaining charge @h eage is non-negative.
Thus, we obtain the following contradiction which compfetiee proof:

0< z w*(x) < z w(x) =—-20<0
xeV (H)UF (H) xeV (H)UF (H)

7 Concluding remarks

Several papers dealing with the strong oriented chromatich®er of planar graphs get upper bounds as
corollaries of results on the maximum average degree. Hemvellowing triangles increases the max-
imum average degree as shown by Lemma 1.8. Indeed, the maxavwerage degree of planar graphs
with given girth tends to 2 when the girth grows, whereas tlagimum average degree of planar graphs
without cycles of length 4 totends to 3 with grows. Therefore, one might expect that the strong oriented
chromatic number would increase together with the maximuenage degree. Nevertheless, our results
show that allowing triangles does not increase that muclstitoeg oriented chromatic number. Conse-
quently, the maximum average degree is not a pertinent peaito bound the strong oriented chromatic
number of planar graphs without cycles of lengths 4, io> 4. Indeed, the proofs for upper bounds in
this paper do not use the maximum average degree but have tbeuplanar structure of the graphs.

In a companion paper [9], we continue this study and provexk(&) > 11 (resp. 19, 43) for planar
graphs without cycles of lengths 4 to 9 (resp. without cyolelengths 4 and 5, without cycles of length
4). The proofs are assisted by computer.

Up to now, we know that for ail > 4, there exist outerplanar grapBawithout cycles of lengths 4 tb
with xs(G) = 7. It would be interesting to construct lower bounds for dmalues ofi to determine the
relevance of our upper bounds.
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