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Abstract

Brandenburg and (implicitly) Dejean introduced the concept of repetition threshold:
the smallest real number α such that there exists an infinite word over a k-letter
alphabet that avoids β-powers for all β > α. We generalize this concept to include
the lengths of the avoided words. We give some conjectures supported by numerical
evidence and prove some of these conjectures. As a consequence of one of our results,
we show that the pattern ABCBABC is 2-avoidable. This resolves a question left
open in Cassaigne’s thesis.
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1 Introduction

In this paper we consider some variations on well-known theorems about avoid-
ing repetitions in words.

A square is a repetition of the form xx, where x is a nonempty word; an exam-
ple in English is hotshots. Let Σk denote the k-letter alphabet {0, 1, . . . , k −
1}. It is easy to see that every word of length ≥ 4 over Σ2 must contain a
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square, so squares cannot be avoided in infinite binary words. However, Thue
showed [18,19,2] that there exist infinite words over Σ3 that avoid squares.

Instead of avoiding all squares, one interesting variation is to avoid all suf-

ficiently large squares. Entringer, Jackson, and Schatz [8] showed that there
exist infinite binary words avoiding all squares xx with |x| ≥ 3. Furthermore,
they proved that every binary word of length ≥ 18 contains a factor of the
form xx with |x| ≥ 2, so the bound 3 is best possible. For some other papers
about avoiding sufficiently large squares, see [7,15,9,16,17].

Another interesting variation is to consider avoiding fractional powers. For
α ≥ 1 a rational number, we say that y is an α-power if we can write y = xnx′

with x′ a prefix of x and |y| = α|x|. For example, the French word entente

is a 7
3
-power and the English word tormentor is a 3

2
-power. For real α > 1,

we say a word avoids α-powers if it contains no factor that is a α′-power for
any rational α′ ≥ α. Brandenburg [3] and (implicitly) Dejean [6] considered
the problem of determining the repetition threshold; that is, the least exponent
α = α(k) such that there exist infinite words over Σk that avoid (α+ε)-powers
for all ε > 0. Dejean proved that α(3) = 7

4
. She also conjectured that α(4) = 7

5

and α(k) = k
k−1

for k ≥ 5. In its full generality, this conjecture is still open,

although Pansiot [14] proved that α(4) = 7
5

and Moulin-Ollagnier [12] proved
that Dejean’s conjecture holds for 5 ≤ k ≤ 11. For more information, see [5].

In this paper we consider combining these two variations. We generalize the
repetition threshold of Dejean to handle avoidance of all sufficiently large
fractional powers. (Pansiot also suggested looking at this generalization at
the end of his paper [14], but to the best of our knowledge no one else has
pursued this question.) We give a large number of conjectures, supported
by numerical evidence, about generalized repetition threshold, and prove six
of them. Finally, some applications of our results to pattern avoidability are
presented. In particular, we prove that the pattern ABCBABC is 2-avoidable,
which resolves a question left open in Cassaigne’s thesis [4], and implies that
every ternary pattern is either unavoidable or 3-avoidable.

2 Definitions

Let α > 1 be a rational number, and let ` ≥ 1 be an integer. A word w is
a repetition of order α and length ` if we can write it as w = xnx′ where x′

is a prefix of x, |x| = `, and |w| = α|x|. For brevity, we also call w a (α, `)-
repetition. Notice that an α-power is an (α, `)-repetition for some `. We say a
word is (α, `)-free if it contains no factor that is a (α′, `′)-repetition for α′ ≥ α
and `′ ≥ `. We say a word is (α+, `)-free if it is (α′, `)-free for all α′ > α.

2



For integers k ≥ 2 and ` ≥ 1, we define the generalized repetition threshold

R(k, `) as the real number α such that either

(a) over Σk there exists an (α+, `)-free infinite word, but all (α, `)-free words
are finite; or

(b) over Σk there exists a (α, `)-free infinite word, but for all ε > 0, all (α−ε, `)-
free words are finite.

Notice that R(k, 1) is essentially the repetition threshold of Dejean and Bran-
denburg.

Theorem 1 The generalized repetition threshold R(k, `) exists and is finite

for all integers k ≥ 2 and ` ≥ 1. Furthermore, 1 + `/k` ≤ R(k, `) ≤ 2.

PROOF. Define S to be the set of all real numbers α ≥ 1 such that there
exists a (α, `)-free infinite word over Σk. Since Thue proved that there exists
an infinite word over a two-letter alphabet (and hence over larger alphabets)
avoiding (2 + ε)-powers for all ε > 0, we have that β = inf S exists and β ≤ 2.
If β ∈ S, we are in case (b) above, and if β 6∈ S, we are in case (a). Thus
R(k, `) = β.

For the lower bound, note that any word of length ≥ k` + ` contains ≥ k` + 1
factors of length `. Since there are only k` distinct factors of length `, such a
word contains at least two occurrences of some word of length `, and hence is
not (1 + `

k` , `)-free.

Remarks.

1. It may be worth noting that we know no instance where case (b) of the
definition of generalized repetition threshold above actually occurs, but we
have not been able to rule it out.

2. Using the Lovász local lemma, Beck [1] has proved a related result: namely,
for all ε > 0, there exists an integer n′ and an infinite (1 + n/(2− ε)n, n)-free
binary word for all n ≥ n′. Thus our work can be viewed as a first attempt
at an explicit version of Beck’s result (although in our case the exponent does
not vary with n).

3 Conjectures

In this section we give some conjectures about R(k, `).
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Figure 1 gives the established and conjectured values of R(k, `). Entries in
bold have been proved; the others (with question marks) are merely con-
jectured. However, in either case, if the entry for (k, `) is α, then we have
proved, using the usual tree-traversal technique discussed below, that there is
no infinite (α, `)-free word over Σk.

R(k, `) `

k

1 2 3 4 5 6 7 8

2 2 2 8

5

3

2

7

5

4

3

31
24

? 24
19

?

3 7

4

3

2

4

3

5
4
? 6

5
? 7

6
? 8

7
? 9

8
?

4 7

5

5
4
? 6

5
? 7

6
? 8

7
? 9

8
? 10

9
? 11

10
?

5 5

4

6
5
? 8

7
? 9

8
? 10

9
?

6 6

5

36
31

?

7 7

6

8
7
?

8 8

7

9 9

8

10 10

9

11 11

10

12 12
11

?

13 13
12

?

Fig. 1. Known and conjectured values of R(k, `).

The proved results are as follows:

• R(2, 1) = 2 follows from Thue’s proof of the existence of overlap-free words
over Σ2 [18,19,2];

• R(2, 2) = 2 follows from Thue’s proof together with the observation of
Entringer, Jackson and Schatz [8];

• R(3, 1) = 7
4

is due to Dejean [6];
• R(4, 1) = 7

5
is due to Pansiot [14];

• R(k, 1) = k
k−1

for 5 ≤ k ≤ 11 is due to Moulin-Ollagnier [12];

• R(2, 3) = 8
5
, R(2, 4) = 3

2
, R(2, 5) = 7

5
, R(2, 6) = 4

3
, R(3, 2) = 3

2
and R(3, 3) =

4
3

are new and are proved in Section 4.
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We now explain how the conjectured results were obtained. We used the usual
tree-traversal technique, as follows: suppose we want to determine if there
are only finitely many words over the alphabet Σk that avoid a certain set
of words S. We construct a certain tree T and traverse it using breadth-first
or depth-first search. The tree T is defined as follows: the root is labelled ε
(the empty word). If a node w has a factor contained in S, then it is a leaf.
Otherwise, it has children labelled wa for all a ∈ Σk. It is easy to see that T
is finite if and only if there are finitely many words avoiding S.

We can take advantage of various symmetries in S to speed traversal. For
example, if S is closed under renaming of the letters (as is the case in the
examples we study), we can label the root with an arbitrary single letter
(instead of ε) and deduce the number of leaves in the full tree by multiplying
by k.

Furthermore, if we use depth-first search, we can in some cases dramatically
shorten the search using the following observation: if at any point some suffix
of the current string strictly precedes the prefix of the same length of the
same string in lexicographic order, then this suffix must have already been
examined. Hence we can immediately abandon consideration of this node.

If the tree is finite, then certain parameters about the tree give useful infor-
mation about the set of finite words avoiding S:

• If h is the height of the tree, then any word of length ≥ h over Σk contains
a factor in S.

• If M is the length of a longest word avoiding S, then M = h − 1.
• If I is the number of internal nodes, then there are exactly I finite words

avoiding S. Furthermore, if L is the number of leaves, then (as usual),
L = 1 + (k − 1)I.

• If I ′ is the number of internal nodes at depth h− 1, then there are I ′ words
of maximum length avoiding S.

Figure 2 gives the value of some of these parameters. Here α is the established
or conjectured value of R(k, `) from Figure 1. “NR” indicates that the value
was not recorded by our program.
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k ` α L I h M=h−1 I ′

2 1 2 8 7 4 3 2

2 2 2 478 477 19 18 2

2 3 8/5 5196 5195 34 33 12

2 4 3/2 13680 13679 54 53 4

2 5 7/5 40642 40641 60 59 4

2 6 4/3 21476 21475 40 39 4

2 8 24/19 3480734274 3480734273 452 451 NR

3 1 7/4 6393 3196 39 38 18

3 2 3/2 11655 5827 31 30 6

3 3 4/3 4037361 2018680 228 227 6

3 4 5/4 188247 94123 63 62 24

3 5 6/5 493653 246826 63 62 12

3 6 7/6 782931 391465 60 59 24

3 7 8/7 2881125 1440562 68 67 24

3 8 9/8 6987903 3493951 62 61 24

4 1 7/5 709036 236345 122 121 48

4 2 5/4 10324 3441 17 16 24

4 3 6/5 153724 51241 24 23 96

4 4 7/6 2501620 833873 35 34 24

4 5 8/7 30669148 10223049 40 39 864

4 6 9/8 340760884 113586961 50 49 NR

5 1 5/4 1785 446 7 6 120

5 2 6/5 453965 113491 23 22 240

5 3 8/7 7497345 1874336 34 33 720

5 4 9/8 1521535445 380383861 52 51 NR

6 1 6/5 13386 2677 8 7 720

6 2 36/31 17372138466 3474427693 751 750 NR

7 1 7/6 112441 18740 9 8 5040

7 2 9/8 345508219 57584703 32 31 NR

8 1 8/7 1049448 149921 10 9 40320

Fig. 2. Tree statistics for various values of k and l

We have seen how to prove computationally that only finitely many (α, `)-free
words exist. But what is the evidence that suggests we have determined the
smallest possible α? For this, we explore the tree corresponding to avoiding
(α+, `)-repetitions using depth-first (and not breadth-first) search. If we are
able to construct a “very long” word avoiding (α+, `)-repetitions, then we
suspect we have found the optimal value of α. For each unproven α given in
Figure 1, we were able to construct a word of length at least 20000 avoiding the
corresponding repetitions. This constitutes weak evidence of the correctness
of our conjectures, but it is evidently not conclusive.
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Based on the data in Figure 1, we propose the following conjectures.

Conjecture 2 R(3, `) = 1 + 1
`

for ` ≥ 2.

Conjecture 3 R(4, `) = 1 + 1
`+2

for ` ≥ 2.

These conjectures are weakly supported by the numerical evidence above.

4 New Results

In this section, we prove six results of the form R(k, l) = α. From the numerical
results reported in Figure 2, we know in each case that there exist no infinite
(α, l)-free words over Σk. It therefore suffices to exhibit an infinite (α+, l)-free
word over Σk. A uniform morphism h : Σ∗

i → Σ∗
k is said to be synchronizing

if for any a, b, c ∈ Σi and s, r ∈ Σk, if h(ab) = rh(c)s, then either r = ε and
a = c or s = ε and b = c. An α+-repetition is an (α′, l)-repetition some α′ > α
and l ≥ 1. A word is α+-free if it contains no α+-repetition.

Lemma 4 Let α, β ∈ R, 1 < α < β < 2. Let h : Σ∗
s → Σ∗

e be a synchronizing

morphism. Let w ∈ Σ∗
s be an α+-free word. Any β+-repetition occurring in

h(w) is contained in the h-image of a factor t of w such that |t| < 2β
β−α

.

PROOF. Since h is synchronizing, it is q-uniform for some q ≥ 1. Suppose
h(t) contains a β+-repetition, that is, a factor uvu such that |uvu|

|uv|
> β. Denote

x = |u| and y = |v|. If x ≥ 2q − 1, then each occurrence of u contains at
least one full h-image of a letter. As h is synchronizing, the two occurrences
of u in uvu contain the same h-images and in the same positions. Therefore,
there is a factor UV U in t such that, denoting X = |U | and Y = |V |, we
have Y q < y + 2q and Xq > x − 2q, or equivalently x < (X + 2)q. (Each U
is the factor of t that contains all letters whose h-images are contained in the
corresponding u.) We have then 2x+y

x+y
> β, which gives y < 2−β

β−1
x. The fact

that t is α+-free implies that 2X+Y
X+Y

≤ α, which gives X ≤ α−1
2−α

Y . Now we have

Y q < y+2q <
2 − β

β − 1
x+2q <

2 − β

β − 1
(X+2)q+2q ≤

2 − β

β − 1

(

α − 1

2 − α
Y + 2

)

q+2q,

implying that Y < 2(2−α)
β−α

. By the minimality of t we get

|t| ≤ 2 + Y + 2X ≤ 2 + Y
(

1 + 2
α − 1

2 − α

)

< 2 +
2(2 − α)

β − α

α

2 − α
=

2β

β − α
.

Consider next the case when x ≤ 2q−2. This implies y < 2−β
β−1

(2q−2) and thus

2x + y < 2β
β−1

(q − 1). The minimality of t implies that (|t| − 2)q ≤ |uvu| − 2 =
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2x + y − 2. By the above we get that |t| < 2(q−1)(2β−1)
q(β−1)

. Since 1 < α < β < 2

and q ≥ 1, we can check that 2(q−1)(2β−1)
q(β−1)

< 2β
β−α

, which completes the proof.

For convenience, let us denote the maximum in Lemma 4 by maxα,β. The
morphisms below were found using the method described in [13].

Theorem 5 R(2, 3) = 8
5
.

PROOF. Consider the 992-uniform morphism h : Σ∗
4 −→ Σ∗

2 defined by

h(0) = 0000101011110000111010100011110000101011110100001111000101011100001111010000101111

0000111010100011110000101111010100001111000101011100001111010100001011110000111010100011

1100001010111101000011110001010111000011110100001010111100001110101000111100001011110101

0000111100010101110000111101000010111100001110101000111100001011110100001111000101011100

0011110101000010111100001110101000111100001010111101000011110001010111000011110100001011

1100001110101000111100001011110101000011110001010111000011110100001010111100001110101000

1111000010111101000011110001010111000011110100001011110000111010100011110000101011110100

0011110001010111000011110101000010111100001110101000111100001011110100001111000101011100

0011110100001010111100001110101000111100001011110101000011110001010111000011110101000010

1111000011101010001111000010101111010000111100010101110000111101000010101111000011101010

0011110000101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101,

h(1) = 0000101011110000111010100011110000101011110100001111000101011100001111010000101111

0000111010100011110000101111010100001111000101011100001111010100001011110000111010100011

1100001010111101000011110001010111000011110100001010111100001110101000111100001011110101

0000111100010101110000111101000010111100001110101000111100001011110100001111000101011100

0011110100001010111100001110101000111100001010111101000011110001010111000011110101000010

1111000011101010001111000010111101010000111100010101110000111101000010101111000011101010

0011110000101111010000111100010101110000111101000010111100001110101000111100001010111101

0000111100010101110000111101010000101111000011101010001111000010111101000011110001010111

0000111101000010101111000011101010001111000010111101010000111100010101110000111101000010

1111000011101010001111000010101111010000111100010101110000111101000010101111000011101010

0011110000101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101,
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h(2) = 0000101011110000111010100011110000101011110100001111000101011100001111010000101111

0000111010100011110000101111010000111100010101110000111101010000101111000011101010001111

0000101011110100001111000101011100001111010000101011110000111010100011110000101111010100

0011110001010111000011110101000010111100001110101000111100001011110100001111000101011100

0011110100001010111100001110101000111100001010111101000011110001010111000011110101000010

1111000011101010001111000010111101010000111100010101110000111101000010111100001110101000

1111000010101111010000111100010101110000111101000010101111000011101010001111000010111101

0000111100010101110000111101010000101111000011101010001111000010101111010000111100010101

1100001111010000101111000011101010001111000010111101010000111100010101110000111101000010

1011110000111010100011110000101111010000111100010101110000111101000010111100001110101000

1111000010101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101,

h(3) = 0000101011110000111010100011110000101011110100001111000101011100001111010000101111

0000111010100011110000101111010000111100010101110000111101010000101111000011101010001111

0000101011110100001111000101011100001111010000101011110000111010100011110000101111010100

0011110001010111000011110100001011110000111010100011110000101111010000111100010101110000

1111010000101011110000111010100011110000101011110100001111000101011100001111010100001011

1100001110101000111100001011110101000011110001010111000011110100001011110000111010100011

1100001010111101000011110001010111000011110100001010111100001110101000111100001011110101

0000111100010101110000111101010000101111000011101010001111000010101111010000111100010101

1100001111010000101111000011101010001111000010111101010000111100010101110000111101000010

1011110000111010100011110000101111010000111100010101110000111101000010111100001110101000

1111000010101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101.

By a result of Pansiot [14], there exist 7
5

+
-free infinite words over Σ4. Consider

one such word x. A computer check shows that h is synchronizing and that
for every 7

5

+
-free word t ∈ Σ∗

4 such that |t| < max 7

5
, 8
5

= 16, h(t) is (8
5

+
, 3)-free.

By Lemma 4, this proves that h(x) is an infinite binary ( 8
5

+
, 3)-free word.

Theorem 6 R(2, 4) = 3
2
.

PROOF. Consider the 19-uniform morphism h : Σ∗
4 −→ Σ∗

2 defined by

h(0) = 0000110100100111110, h(1) = 0000011011001010111,

h(2) = 0000011010100111111, h(3) = 0000010110111110010.

We again consider an infinite 7
5

+
-free word x over Σ4. A computer check shows

that h is synchronizing and that for every 7
5

+
-free word t ∈ Σ∗

4 such that
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|t| < max 7

5
, 3
2

= 30, h(t) is (3
2

+
, 4)-free. By Lemma 4, this proves that h(x) is

an infinite binary (3
2

+
, 4)-free word.

Theorem 7 R(2, 5) = 7
5
.

PROOF. Consider the 45-uniform morphism h : Σ∗
5 −→ Σ∗

2 defined by

h(0) = 000000101011111001000000011010101001111111011,

h(1) = 000000101010111100010011011101000001111111011,

h(2) = 000000010101011111100100101101100010001110111,

h(3) = 000000010101011001100111111010001000101110111,

h(4) = 000000010011110101010000001100111111101010011.

By a result of Moulin-Ollagnier [12], there exist 5
4

+
-free infinite words over Σ5.

Consider one such word x. A computer check shows that h is synchronizing
and that for every 5

4

+
-free word t ∈ Σ∗

5 such that |t| < max 5

4
, 7
5

= 56
3

< 19,

h(t) is (7
5

+
, 5)-free. By Lemma 4, this proves that h(x) is an infinite binary

(7
5

+
, 5)-free word.

Theorem 8 R(2, 6) = 4
3
.

PROOF. Consider the 71-uniform morphism h : Σ∗
5 −→ Σ∗

2 defined by

h(0) = 00000001010101111111100001000101110111101000000001101101010010011110111,

h(1) = 00000000101011111110001100101001011110110000100011111111010101001100111,

h(2) = 00000000101011011111111000110011010101000000111111100100010110101100111,

h(3) = 00000000101010111111000110010100101110111100001000110110101001001110111,

h(4) = 00000000100101011011111111001100101000000001111110101101000010011110111.

We again consider an infinite 5
4

+
-free word x over Σ5. A computer check

shows that h is synchronizing and that for every 5
4

+
-free word t ∈ Σ∗

5 such

that |t| < max 5

4
, 4
3

= 32, h(t) is (4
3

+
, 6)-free. By Lemma 4, this proves that

h(x) is an infinite binary ( 4
3

+
, 6)-free word.

Theorem 9 R(3, 2) = 3
2
.

PROOF. Consider the 3-uniform morphism h : Σ∗
4 −→ Σ∗

3 defined by

h(0) = 021, h(1) = 100, , h(2) = 122, h(3) = 201.
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We again consider an infinite 7
5

+
-free word x over Σ4. A computer check shows

that h is synchronizing and that for every 7
5

+
-free word t ∈ Σ∗

4 such that

|t| < max 7

5
, 3
2

= 30, h(t) is (3
2

+
, 2)-free. By Lemma 4, this proves that h(x) is

an infinite ternary ( 3
2

+
, 2)-free word.

Theorem 10 R(3, 3) = 4
3
.

PROOF. Consider the 14-uniform morphism h : Σ∗
5 −→ Σ∗

3 defined by

h(0) = 00011112122220, h(1) = 00101112202021,

h(2) = 01012111102120, h(3) = 10002212102020,

h(4) = 10100222112020.

We again consider an infinite 5
4

+
-free word x over Σ5. A computer check shows

that h is synchronizing and that for every 5
4

+
-free word t ∈ Σ∗

5 such that

|t| < max 5

4
, 4
3

= 32, h(t) is (4
3

+
, 3)-free. By Lemma 4, this proves that h(x) is

an infinite ternary ( 4
3

+
, 3)-free word.

5 Applications to Pattern Avoidability

Our results on the repetition threshold have some interesting applications to
pattern avoidability. This is due to the following observation: A word avoiding
a repetition which appears in any image of a pattern, avoids the pattern itself.

For a pattern p ∈ A∗, its pattern language p(Σ+) is the language over Σ which
contains all the words h(p), where h is a non-erasing morphism from A∗ to
Σ∗. (For further notions and results on avoidability, we refer to Chapter 3 in
[11].) We say that the pattern p has an inherent (α+, `)-repetition with respect

to Σ if any word in p(Σ+) contains an (α′, `′)-repetition for some α′ > α and
`′ ≥ `.

We then have the following general result which can be used to prove avoid-
ability for many patterns.

Lemma 11 If there exists an (α+, `)-free infinite word over Σk, then any

pattern that has an inherent (α+, `)-repetition is k-avoidable.

According to Cassaigne [4], the pattern ABCBABC was the only avoidable
ternary pattern not known to be 3-avoidable. The next result solves this open
problem as well as some other open ones.
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Corollary 12 The patterns ABCBABC, ABBCBABBC, ABCCBABC,

and ABCBAABC are simultaneously 2-avoidable.

PROOF. Any of the patterns in the given set has an inherent ( 3
2

+
, 4)-repetition

with respect to any alphabet. Theorem 6 gives a ( 3
2

+
, 4)-free infinite word over

Σ2 which, by Lemma 11, avoids simultaneously all patterns in the set.

Corollary 12 and the results of Cassaigne [4] give the following theorem.

Theorem 13 Every ternary pattern is either unavoidable or 3-avoidable.
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[6] F. Dejean. Sur un théorème de Thue. J. Combin. Theory. Ser. A 13 (1972),
90–99.

[7] F. M. Dekking. On repetitions of blocks in binary sequences. J. Combin.

Theory. Ser. A 20 (1976), 292–299.

12



[8] R. C. Entringer, D. E. Jackson, and J. A. Schatz. On nonrepetitive sequences.
J. Combin. Theory. Ser. A 16 (1974), 159–164.

[9] A. S. Fraenkel and R. J. Simpson. How many squares must a binary sequence
contain? Electronic J. Combinatorics 2 (1995), #R2.

[10] L. Ilie, P. Ochem, and J. Shallit. A generalization of repetition threshold.
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