A GENERATOR OF MORPHISMS FOR INFINITE WORDS

PASCAL OCHEM¹

Abstract. We present an algorithm which produces, in some cases, infinite words avoiding both large fractional repetitions and a given set of finite words. We use this method to show that all the ternary patterns whose avoidability index was left open in Cassaigne's thesis are 2-avoidable. We also prove that there exist exponentially many $\frac{7}{4}^+$ -free ternary words and $\frac{7}{5}^+$ -free 4-ary words. Finally we give small morphisms for binary words containing only the squares 0^2 , 1^2 and $(01)^2$ and for binary words avoiding large squares and fractional repetitions.

AMS Subject Classification. — Give AMS classification codes —.

1. INTRODUCTION

We assume that the reader is familiar with Combinatorics on Words (see for instance [11]). A pattern is a finite word of variables. An infinite word w avoids pattern P if for any substitution ϕ of the variables of P with non-empty words, $\phi(P)$ is not a factor of w. Let Σ_i denote the *i*-letter alphabet $\{0, 1, \ldots, i-1\}$. The avoidability index $\mu(P)$ of P is the smallest integer k such that there exists an infinite word w over Σ_k avoiding P.

In the early 1900's, Thue [16,17] (see also [3]) showed that there exists an infinite word over a three-letter alphabet which contains no square, i.e. two consecutive occurrences of the same factor. He thus proved that $\mu(AA) = 3$. He also obtained that $\mu(AAA) = 2$.

In 1979, Zimin [18] and Bean, Ehrenfeucht, and McNulty [2] indepently considered the avoidability of patterns and gave a caracterization of the patterns Psuch that $\mu(P) = \infty$ (unavoidable patterns). For more informations on pattern avoidability, we refer to chapter 3 in [11].

© EDP Sciences 1999

¹ LaBRI, Université Bordeaux I

^{351,} cours de la Libération, 33405 Talence Cedex, FRANCE ochem@labri.fr

Baker, McNulty, and Taylor [1] found a pattern P_4 such that $\mu(P_4) = 4$ and Clark [5] found a pattern P_5 such that $\mu(P_5) = 5$. The question whether there exists a pattern P_k such that $k \leq \mu(P_k) < \infty$ for every k remains open.

Let t(n) be the number of words of length n satisfying a property \mathcal{P} . We say that there exist polynomially (resp. exponentially) many words satisfying \mathcal{P} if there exists a constant c > 1 such that $t(n) \leq n^c + c$ (resp. $t(n) \geq c^n$) for every n. A surprising result in [1] states that there exist polynomially many words avoiding P_4 over Σ_4 .

Cassaigne [4] obtained the avoidability index of every binary pattern and of some ternary patterns. In Section 3, we end the determination of the avoidability index of ternary patterns.

Let $\alpha > 1$ be a rational number and let $\ell \ge 1$ be an integer. A word w is an (α, ℓ) -repetition if we can write it as $w = x^n x'$ where x' is a prefix of $x, |x| = \ell$, and $|w| = \alpha |x|$. Let β be a real number and let $n \ge 1$ be an integer. A word is (β^+, n) -free if it contains no (α, ℓ) -repetition such that $\alpha > \beta$ and $\ell \ge n$. A word is β^+ -free if it is $(\beta^+, 1)$ -free. The repetition threshold is the smallest real number R_k such that there exists an infinite R_k^+ -free word over Σ_k . The exact value of the repetition threshold is known for $2 \le k \le 11$: $R_2 = 2$ [3, 16, 17], $R_3 = \frac{7}{4}$ [7], $R_4 = \frac{7}{5}$ [13], and $R_k = \frac{k}{k-1}$ for $5 \le k \le 11$ [12]. Dejean [7] conjectured that $R_k = \frac{k}{k-1}$ for every $k \ge 5$. In Section 4, we show that there exist exponentially many $\frac{7}{4}^+$ -free ternary words and $\frac{7}{5}^+$ -free 4-ary words. We use this result to prove that for every pattern P considered in Section 3, there exist exponentially many words avoiding P over $\Sigma_{\mu(P)}$.

The length of a square u^2 is |u|. In Section 5, we give a simple construction for four special types of binary words containing squares of bounded length only.

The main results in Section 3, 4, and 5 were obtained using the method presented in Section 2. Notice that we also used this method in [9] to obtain upper bounds on some generalized repetition thresholds.

2. The method

A morphism is q-uniform if the image of every letter has length q. A uniform morphism $h: \Sigma_s^* \to \Sigma_e^*$ is synchronizing if for any $a, b, c \in \Sigma_s$ and $v, w \in \Sigma_e^*$, if h(ab) = vh(c)w, then either $v = \varepsilon$ and a = c or $w = \varepsilon$ and b = c.

Lemma 2.1. Let $\alpha, \beta \in \mathbb{Q}$, $1 < \alpha < \beta < 2$ and $n \in \mathbb{N}^*$. Let $h: \Sigma_s^* \to \Sigma_e^*$ be a synchronizing q-uniform morphism (with $q \ge 1$). If h(w) is (β^+, n) -free for every α^+ -free word w such that $|w| < \max\left(\frac{2\beta}{\beta-\alpha}, \frac{2(q-1)(2\beta-1)}{q(\beta-1)}\right)$, then h(t) is (β^+, n) -free for every (finite or infinite) α^+ -free word t.

Proof. Suppose w is an α^+ -free word such that h(w) is not (β^+, n) -free and w is of minimum length with this property. Thus h(w) contains a β^+ -repetition, that is, a factor uvu such that $\frac{|uvu|}{|uv|} > \beta$. Denote x = |u| and y = |v|. Since

 $\frac{|uvu|}{|uv|} = \frac{2x+y}{x+y} > \beta, \text{ we have } y < \frac{2-\beta}{\beta-1}x. \text{ If } x \ge 2q-1, \text{ then each occurrence of } u \text{ contains at least one full } h\text{-image of a letter. As } h \text{ is synchronizing, the two occurrences of } u \text{ in } uvu \text{ contain the same } h\text{-images and in the same positions. Let } U \text{ be the factor of } w \text{ that contains all letters whose } h\text{-images are contained in } u, \text{ and let } V \text{ be the factor of } w \text{ that contains all letters whose } h\text{-images intersect } v. \text{ Denoting } X = |U| \text{ and } Y = |V|, \text{ we have } Yq < y + 2q \text{ and } Xq > x - 2q, \text{ or equivalently } x < (X+2)q. \text{ Since } UVU \text{ is a factor of } w \text{ and } w \text{ is } \alpha^+\text{-free, then } \frac{2X+Y}{X+Y} \leq \alpha, \text{ which gives } X \leq \frac{\alpha-1}{2-\alpha}Y. \text{ Now we have } \end{cases}$

$$Yq < y+2q < \frac{2-\beta}{\beta-1}x+2q < \frac{2-\beta}{\beta-1}(X+2)q+2q \le \frac{2-\beta}{\beta-1}\left(\frac{\alpha-1}{2-\alpha}Y+2\right)q+2q,$$

implying that $Y < \frac{2(2-\alpha)}{\beta-\alpha}$. By the minimality of w we get

$$|w| \le 2 + Y + 2X \le 2 + Y\left(1 + 2\frac{\alpha - 1}{2 - \alpha}\right) < 2 + \frac{2(2 - \alpha)}{\beta - \alpha}\frac{\alpha}{2 - \alpha} = \frac{2\beta}{\beta - \alpha}$$

If $x \leq 2q-2$, then $y < \frac{2-\beta}{\beta-1}(2q-2)$ and thus $2x + y < \frac{2\beta}{\beta-1}(q-1)$. The minimality of w implies that $(|w|-2)q \leq |uvu|-2 = 2x + y - 2$. By the above we get that $|w| < \frac{2(q-1)(2\beta-1)}{q(\beta-1)}$, which completes the proof.

To obtain the results in Section 3, 4, and 5 we need to construct infinite words over Σ_e that satisfies a property \mathcal{P} consisting of some (β^+, n) -freeness properties and the avoidance of a set S of finite words. Such an infinite word is obtained as the *h*-image of any infinite α^+ -free word $t \in \Sigma_s^*$ by a synchronizing morphism $h: \Sigma_s^* \to \Sigma_e^*$ such that for every α^+ -free word $t \in \Sigma_s^*$, h(t) satisfies a property \mathcal{P} , where \mathcal{P} consists of some (β^+, n) -freeness properties and the avoidance of a set Sof finite words. It is easy to check that h is synchronizing and that h(t) avoids the set S. Using Lemma 2.1 with $\alpha \geq R_s$ allows us to check that the *h*-image of any (infinite) α^+ -free word over Σ_s is (β^+, n) -free with a finite amount of computation.

We fix $s, q \in \mathbb{N}$ and $\alpha \in \mathbb{Q}$ such that $s \leq 11$ and $R_s \leq \alpha < 2$, to ensure that there exist an infinite α^+ -free word over Σ_s . We use depth-first search to find a word w over Σ_e of size $s \times q$ which defines the q-uniform morphism h by posing $w = h(0)h(1) \dots h(s-1)$. Obviously, we can restrict the search to words satisfying $h(s-1) \prec \dots \prec h(1) \prec h(0)$, where \prec is the lexicographic order of Σ_e^q . We prune the search tree by checking property \mathcal{P} on the prefixes of a potential w. If no morphism is found, we increase the value of q and try again ¹.

3. PATTERN AVOIDANCE

We consider here the ternary patterns whose 2-avoidability was left open in Cassaigne's thesis [4]. One of them, namely *ABCBABC*, is shown to be 2-avoidable

¹The C++ sources of the programs used to find and check the morphisms discussed in this paper are available at: http://dept-info.labri.fr/~ochem/morphisms/

in [9]. We add to that list the binary pattern AABBA (resp. ABAAB) which was already known to be 2-avoidable, and is here 2-avoided together with its reverse ABBAA (resp. ABBAB). In particular, the 2-avoidability of ABCACB was one of Currie's open problems [6], which was mentioned mainly because ABCACB and its reverse are not simultaneously 2-avoidable.

Lemma 3.1. Any factor uvu of a (β^+, n) -free word w, with $\beta < 2$, is such that

$$|u| \le \max\left(n-1-|v|, \left\lfloor \frac{\beta-1}{2-\beta}|v| \right\rfloor\right).$$

Proof. If |uv| < n then $|u| \le n - 1 - |v|$ and we are done, so suppose $|uv| \ge n$. Since w is (β^+, n) -free, we have $\frac{|uvu|}{|uv|} \le \beta \Longrightarrow |u| \le \frac{\beta - 1}{2 - \beta} |v|$.

Theorem 3.2. The ternary patterns listed in Table 1 are 2-avoidable.

Proof. Suppose that we are given a synchronizing morphism $h: \Sigma_s^* \to \Sigma_e^*$ and a pattern P over the alphabet $\{A, B, \ldots\}$. We can try to prove that h(t) avoids P for every α^+ -free word $t \in \Sigma_s^*$ in three steps:

- (1) Check useful (β^+, n) -freeness properties of h(t) thanks to Lemma 2.1.
- (2) Consider a potential occurrence $\phi(P)$ of P, where ϕ is a non-erasing morphism. Then use Lemma 3.1 and the results of step (1) to obtain upper bounds on the quantities $a = |\phi(A)|, b = |\phi(B)|, \ldots$.
- (3) Use the bounds of step (2) to exhaustively check by computer that no occurrence of P appears in h(t).

Let P^R denote the reverse of the pattern P. We have $\mu(P^R) = \mu(P)$ since a word w avoids P if and only the reverse of w avoids P^R . Notice that the bounds obtained in step (2) using Lemma 3.1 that hold for potential occurrences of a pattern P also hold for those of P^R . Thus we try, when possible, to avoid simultaneously P and P^R . The method discussed in Section 2 is thus used so that the set S contains the small occurrences of P (and maybe P^R). Each line of Table 1 contains one of these pattern P and informations about the morphism h we used to show that $\mu(P) = 2$: the q-uniform morphism $h : \Sigma_s^* \to \Sigma_2^*$ is such that for every α^+ -free word $t \in \Sigma_s^*$, h(t) avoids P. We also precise whether such a word h(t) also avoids P^R . Now, for each pattern, we give the bounds obtained in step (2) of the proof and the morphism found with the method in Section 2.

The following 8-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABAACBAAB.

The word h(t) is $\left(\frac{24}{13}^+, 3\right)$ -free. It contains no square of length at least three, and since the square AA occurs in the pattern, we have that $a \leq 2$. By Lemma 3.1, the factor BAAB implies $b \leq 11a$. For each occurrence of BAAB appearing in h(t), we have checked that the corresponding occurrence of AABAA does not appear. For instance, the occurrence $\phi(BAAB) = 0110$ (where $\phi(A) = 1$, $\phi(B) = 0$)

Pattern	s	α	q	Comments
AABAACBAAB	3	7/4	8	self-reverse
AABACCB	3	7/4	24	avoided with its reverse
AABBA	3	7/4	21	avoided with its reverse
AABBCABBA	3	7/4	102	unavoidable with its reverse
AABBCAC	3	7/4	86	avoided with its reverse
AABBCBC	3	7/4	34	avoided with its reverse
AABBCC	3	7/4	52	self-reverse
AABCBC	3	7/4	46	avoided with its reverse
AABCCAB	3	7/4	34	avoided with its reverse
AABCCBA	3	7/4	56	avoided with its reverse
ABAAB	3	7/4	10	avoided with its reverse
ABAACBC	4	7/5	17	avoided with its reverse
ABAACCB	3	7/4	74	avoided with its reverse
ABACACB	3	7/4	12	avoided with its reverse
ABACBC	4	7/5	29	self-reverse
ABACCAB	3	7/4	19	avoided with its reverse
ABACCBA	3	7/4	14	avoided with its reverse
ABBACCA	3	7/4	12	self-reverse
ABBACCB	3	7/4	42	avoided with its reverse
ABBCACB	4	7/5	16	avoided with its reverse
ABBCBAC	4	7/5	14	avoided with its reverse
ABBCBCA	3	7/4	22	avoided with its reverse
ABBCCAB	3	7/4	20	avoided with its reverse
ABCAACB	3	7/4	24	avoided with its reverse
ABCACAB	3	7/4	10	avoided with its reverse
ABCACB	6	5/4	810	unavoidable with its reverse
ABCBBAC	4	7/5	18	avoided with its reverse

TABLE 1. Table of 2-avoidable ternary patterns.

appears in h(t), but the factor $\phi(AABAA) = 11011$ does not.

$0\mapsto$	01101011
$1\mapsto$	00111010
$2\mapsto$	00101110

The following 24-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABACCB and its reverse. The word h(t) is $\left(\frac{31}{16}^+, 3\right)$ -free, so $a \leq 2$ and $c \leq 2$. The factor BACCB implies $b \le 15(a+2c).$

```
0\mapsto 0001010011010110010101111
1\mapsto 000101000111010111001011
2 \mapsto 000101000110100111001011
```

The following 21-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t)\in \Sigma_2^*$ avoids the pattern AABBA and its reverse. The word h(t) is $\left(\frac{33}{17}^+, 4\right)$ -free, so $a \le 3$ and $b \le 3$.

```
0\mapsto 001001011100011101101
1\mapsto 001000111000101101101
2 \mapsto 000111000100101101101
```

The following 102-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t)\in \Sigma_2^*$ avoids the pattern AABBCABBA.

The word h(t) is $\left(\frac{31}{16}^+, 27\right)$ -free, so $a \leq 26$ and $b \leq 26$. For each occurrence of AABB we have checked that the corresponding occurrence of ABBA does not appear. Notice that the k-avoidability of AABBCABBA implies the k-avoidability of AABBA. A simple backtracting algorithm shows that AABBCABBA and ABBAA (i.e. the reverse of AABBA) are not simultaneously 2-avoidable, so that the two previous results are tight, in a way.

```
11011100010110111011000101101110001011\\
110111000101101110110001011011100010111\\
11011100010110111011000101101110001011\\
```

The following 86-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABBCAC and its reverse. The word h(t) is $\left(\frac{43}{22}^+, 3\right)$ -free, so $a \leq 2$ and $b \leq 2$. The factor CAC implies $c \leq \max(2-a, 21a) = 21a$.

```
10001011101010011010101010101011101\\
1010101100101001101010101010101011101
10101100101010011010110010101011101\\
```

The following 34-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABBCBC and its reverse.

The word
$$h(t)$$
 is $\left(\frac{33}{17}^+, 3\right)$ -free, so $a \le 2$ and $b = c = 1$.
 $0 \mapsto 11101011100010100011100010100011$
 $1 \mapsto 11101011100010100011100010100011$
 $2 \mapsto 11101011100011100011100010100001$

The following 52-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern *AABBCC*. The word h(t) is $\left(\frac{59}{30}^+, 3\right)$ -free, so $a \leq 2, b \leq 2$, and $c \leq 2$.

The following 46-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABCBC and its reverse. The word h(t) is $\left(\frac{367}{184}^+, 3\right)$ -free, so $a \leq 2$ and b = c = 1. Notice that the only occurrences of AABB in h(t) are 0011 and 1100.

The following 34-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABCCAB and its reverse. The word h(t) is $\left(\frac{257}{136}^+, 4\right)$ -free, so $a \leq 3$ and $c \leq 3$. The factor ABCCAB implies $a + b \leq \lfloor \frac{242}{15}c \rfloor$, thus $b \leq \lfloor \frac{242}{15}c \rfloor - a$.

 $\begin{array}{c} 0 \mapsto 00001011111010000111111010001011111\\ 1 \mapsto 0000101110100001111010001011111100\\ 2 \mapsto 0000101110100000011110100010111111\end{array}$

The following 56-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern AABCCBA and its reverse. The word h(t) is $\left(\frac{36}{19}^+, 3\right)$ -free, so $a \leq 2$ and $c \leq 2$. The factor BCCB implies

b < 17c.

The following 10-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABAAB and its reverse. The word h(t) is $\left(\frac{39}{20}^+, 3\right)$ -free, so $a \le 2$. The factor *BAAB* implies $b \le 38a$.

$$\begin{array}{l} 0 \mapsto 0001110101 \\ 1 \mapsto 0000111101 \\ 2 \mapsto 0000101111 \end{array}$$

The following 17-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$,

 $h(t) \in \Sigma_2^*$ avoids the pattern ABAACBC and its reverse. The word h(t) is $\left(\frac{13}{7}^+, 7\right)$ -free, so $a \le 6$. The word h(t) is $\left(\frac{23}{16}^+, 20\right)$ -free. Suppose $b+c \ge 20$, then the factor CBC implies $c \le \lfloor \frac{7}{9}b \rfloor$ and the factor BAACB implies $b \leq \left| \frac{7}{9}(2a+c) \right|$. From these relations we can deduce $b \leq 22$ and $c \leq 17$. Thus we have $b \leq 22$ and $c \leq 18$.

$$\begin{array}{l} 0 \mapsto 01110000110000111\\ 1 \mapsto 01011100110011101\\ 2 \mapsto 01000110011000101\\ 3 \mapsto 00011110011110001\end{array}$$

The following 74-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABAACCB and its reverse. The word h(t) is $\left(\frac{193}{104}^+, 3\right)$ -free, so $a \leq 2$ and $c \leq 2$. The factor *BAACCB* implies $b \le \left| \frac{89}{15}(a+c) \right|.$

```
10100011001011111
10100011001011111
10100011001011111
```

The following 12-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABACACB and its reverse. The word h(t) is $\left(\frac{15}{8}^+, 3\right)$ -free, so a = c = 1. The factor *BACACB* implies $b \le 14(a+c) = 28.$

 $0\mapsto 001010011111$ $1 \mapsto 000110100111$ $2 \mapsto 000001101011$

The following 29-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABACBC.

The word h(t) is $\left(\frac{41}{29}^+, 291\right)$ -free. Suppose $a+b \ge 291$ and $b+c \ge 291$. The factors *ABA*, *CBC*, and *BACB* respectively imply that $17a \le 12b$ (*i*), $17c \le 12b$ (*ii*), and $17b \le 12(a+c)$ (*iii*). The combination $17 \times (i) + 17 \times (ii) + 24 \times (iii)$ gives $a+c \le 0$, a contradiction. So we can suppose without loss of generality that $b+c \le 290$ (*iv*). If $291 \le a+b$ (*v*) then (*i*) and (*iii*) still hold and the combination $2324 \times (i) + 1649 \times (iii) + 19788 \times (iv) + 19720 \times (v)$ gives $213b \le 0$. This contradiction shows that $a+b \le 290$ and $b+c \le 290$.

 $\begin{array}{l} 0\mapsto 00011010110000111100101001110\\ 1\mapsto 0001101010000011100101001111\\ 2\mapsto 00001101011000111101110011110\\ 3\mapsto 00001101011000011110011101111\end{array}$

The following 19-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABACCAB and its reverse. The word h(t) is $\left(\frac{35}{19}^+, 5\right)$ -free, so $c \leq 4$. The factor ACCA implies $a \leq \max\left(4 - 2c, \lfloor \frac{32}{3}c \rfloor\right) = \lfloor \frac{32}{3}c \rfloor$. The factor ABACCAB implies $a + b \leq \lfloor \frac{16}{3}(a + 2c) \rfloor$, thus $b \leq \lfloor \frac{13a+32c}{3} \rfloor$.

 $\begin{array}{l} 0 \mapsto 0101110010100000111 \\ 1 \mapsto 0101100000010011100 \\ 2 \mapsto 010001011101000011 \end{array}$

The following 14-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABACCBA and its reverse. If w is an occurrence of ABACCBA such that a > 1, then the suffix of w of size |w| - a + 1 is a smaller occurrence of ABACCBA such that a = 1. So we assume without loss of generality that a = 1. The word h(t) is $\left(\frac{23}{12}^+, 3\right)$ -free, so $c \leq 2$. The factor BACCBA implies $a + b \leq 22c$, thus $b \leq 22c - 1$.

 $\begin{array}{l} 0 \mapsto 10101100001110 \\ 1 \mapsto 01010111100011 \\ 2 \mapsto 01010000111110 \end{array}$

The following 12-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBACCA.

The word h(t) is $\left(\frac{31^+}{16}, 4\right)$ -free, so $b \leq 3$ and $c \leq 3$. The factor *ABBA* implies $a \leq \max(3-2b, 30b) = 30b$.

 $\begin{array}{c} 0 \mapsto 000111001011 \\ 1 \mapsto 000101111010 \\ 2 \mapsto 000100111011 \end{array}$

The following 42-uniform morphism h is such that for any $\frac{7}{4}$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBACCB and its reverse.

The word h(t) is $\left(\frac{53}{28}^+, 3\right)$ -free, so $b \leq 2$ and $c \leq 2$. The factor ABBA implies $a \leq \left|\frac{50}{3}b\right|.$

The following 16-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t)\in \Sigma_2^*$ avoids the pattern ABBCACB and its reverse.

The word h(t) is $\left(\frac{9}{5}^+, 4\right)$ -free, so $b \leq 3$. The word h(t) is $\left(\frac{233}{160}^+, 49\right)$ -free. Suppose $a + c \geq 49$. The factors *ABBCA* and *CAC* respectively imply that $a \leq \left|\frac{73}{87}(2b+c)\right|$ and $c \leq \left|\frac{73}{87}a\right|$. From these relations we can deduce $a \leq 15$ and $c \leq 12$. This contradiction shows that $a + c \leq 48$.

$0 \mapsto$	0010000001101111
$1 \mapsto$	0000111010001111
$2 \mapsto$	0000100111111011
$3 \mapsto$	0000001001101011

The following 14-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$,

The following 14-aniform interprism *h* is such that for any $\frac{1}{5}$ -free word $t \in \mathbb{Z}_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBCBAC and its reverse. The word h(t) is $\left(\frac{18}{11}^+, 7\right)$ -free, so $b \leq 6$. The word h(t) is $\left(\frac{29}{20}^+, 43\right)$ -free. Suppose $a + b + c \geq 43$. The factors ABBCBA and CBAC respectively imply that $a \leq 10^{-10}$ mm/s and $b = 10^{-10}$ mm/s. $\lfloor \frac{9}{11}(3b+c) \rfloor$ and $c \leq \lfloor \frac{9}{11}(a+b) \rfloor$. From these relations we can deduce $a \leq 54$ and $c \leq 49.$

$$\begin{array}{c} 0 \mapsto 00101010101010111\\ 1 \mapsto 00010001110111\\ 2 \mapsto 000000101011111\\ 3 \mapsto 00000010111111\end{array}$$

The following 22-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t)\in \Sigma_2^*$ avoids the pattern ABBCBCA and its reverse.

The word h(t) is $\left(\frac{173}{88}^+, 3\right)$ -free, so b = c = 1. The factor ABBCBCA implies $a \leq \left| \frac{85}{3}(3b+2c) \right| = 141.$

> $0\mapsto 0001101011001010100111$ $1\mapsto 00011010101010100101$ $2\mapsto 00011010100111001010111$

The following 20-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABBCCAB and its reverse.

The word h(t) is $\left(\frac{15}{8}^+, 4\right)$ -free, so $b \leq 3$ and $c \leq 3$. The factor *ABBCCAB* implies $a + b \leq 7(b + 2c)$, thus $a \leq 6b + 14c$.

 $\begin{array}{c} 0 \mapsto 00010100100101011111 \\ 1 \mapsto 00010010001110110111 \\ 2 \mapsto 000001010101101101111 \end{array}$

The following 24-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABCAACB and its reverse. The word h(t) is $\left(\frac{187}{96}^+, 4\right)$ -free, so $a \leq 3$. The word h(t) is $\left(\frac{355}{192}^+, 97\right)$ -free. The factor CAAC implies $c \leq \max\left(96 - 2a, \lfloor \frac{326a}{29} \rfloor\right) = 96 - 2a$. The factor BCAACB implies $b \leq \max\left(96 - 2a - 2c, \lfloor \frac{326(a+c)}{29} \rfloor\right)$.

 $\begin{array}{c} 0 \mapsto 000001011111001000110111 \\ 1 \mapsto 000001011111000100111011 \\ 2 \mapsto 000001010111110010011011 \end{array}$

The following 10-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABCACAB and its reverse. The word h(t) is $\left(\frac{79}{40}^+, 3\right)$ -free, so a = c = 1. The word h(t) is $\left(\frac{149}{80}^+, 41\right)$ -free. The factor ABCACAB implies $a + b \leq \max\left(40 - a - 2c, \lfloor \frac{69}{11}(a + 2c) \rfloor\right)$,

thus $b \le 40 - 2a - 2c = 36$.

 $0 \mapsto 0001110101 \qquad 1 \mapsto 0001011101 \qquad 2 \mapsto 0001010111$

The 810-uniform morphism $h = m_{4,2} \circ m_{6,4}$ is such that for any $\frac{5}{4}^+$ -free word $t \in \Sigma_{6}^*$, $h(t) \in \Sigma_{2}^*$ avoids the pattern *ABCACB*.

The word h(t) is $\left(\frac{1073}{810}^+, 3241\right)$ -free. Suppose $a + c \ge 3241$. The factors *ABCA*, *BCACB*, and *CAC* respectively imply that $547a \le 263(b+c)$ (*i*), $547b \le 263(a+2c)$ (*ii*), and $547c \le 263a$ (*iii*). The combination $2 \times (i) + (ii) + 2 \times (iii)$ gives $305a + 568b + 42c \le 0$. This contradiction shows that $a + c \le 3240$ (*iv*). The word h(t) is $\left(\frac{29}{14}^+, 4\right)$ -free, so the factor *CAC* implies $c \le 14a$ (*v*). Suppose now $3238 \le b$ (*vi*), so that $a + b + 2c \ge 3241$ and (*ii*) still holds. The combination $15 \times (ii) + 7627 \times (iv) + 263 \times (v) + 7632 \times (vi)$ gives $573b + 936 \le 0$. This contradiction shows that $b \le 3237$.

The 135-uniform morphism $m_{4,2}$ is given by:

The 6-uniform morphism $m_{6,4}$ is given by:

$0\mapsto 032131$	$1\mapsto 031232$	$2\mapsto 023121$
$3 \mapsto 021323$	$4 \mapsto 013212$	$5\mapsto 012313$

The following 18-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_4^*$, $h(t) \in \Sigma_2^*$ avoids the pattern ABCBBAC and its reverse. The word h(t) is $\left(\frac{8}{5}^+, 7\right)$ -free, so $b \leq 6$. The word h(t) is $\left(\frac{527}{378}^+, 181\right)$ -free. Suppose $a + 2b + c \geq 181$. The factors CBBAC and ABCBBA respectively imply that $c \leq \lfloor \frac{149}{229}(a+2b) \rfloor$ and $a \leq \lfloor \frac{149}{229}(3b+c) \rfloor$. From these relations we can deduce $a \leq 28$ and $c \leq 26$. This contradiction shows that $a + 2b + c \leq 180$.

$0 \mapsto$	010000011011011011
$1 \mapsto$	001001001001111101
$2 \mapsto$	00100000111111011
$3 \mapsto$	000000101010111111

4. Application to repetition-free words

The repetition threshold for binary words is 2, and this result is tight in the following senses:

- (1) There exist polynomially many 2^+ -free binary words.
- (2) There exist arbitrarily large squares in any infinite 2^+ -free binary word.

In this section we show that no similar situation occurs for ternary and 4-ary words. We use the following easy lemma, which is already implicitly used in [10].

Lemma 4.1. There are at least $2^{\left\lceil \frac{n}{k} \right\rceil} R_k^+$ -free words of length n over Σ_{k+1} .

12

Proof. Consider an R_k^+ -free word w in Σ_k^n . At least one letter in Σ_k , say 0, occurs at least $\left\lceil \frac{n}{k} \right\rceil$ times in w. The letter k belongs to Σ_{k+1} but does not belong to Σ_k . Notice that replacing zero or more occurrences of 0 by an occurrence of k in w produces an R_k^+ -free word of length n over Σ_{k+1} , and that we can obtain at least $2^{\left\lceil \frac{n}{k} \right\rceil}$ such words.

Theorem 4.2.

- (1) There exist exponentially many $\frac{7}{4}^+$ -free ternary words with no large repetition of exponent $\frac{7}{4}$.
- (2) There exist exponentially many $\frac{7}{5}^+$ -free 4-ary words with no large repetition of exponent $\frac{7}{5}$.

Proof. By Lemma 4.1, there exist exponentially many $\frac{7}{5}^+$ -free words over Σ_5 and exponentially many $\frac{5}{4}^+$ -free words over Σ_6

The following 59-uniform morphism h is such that for any $\frac{7}{5}^+$ -free word $t \in \Sigma_5^*$, $h(t) \in \Sigma_3^*$ is $\frac{7}{4}^+$ -free and $\left(\frac{3}{2}^+, 10\right)$ -free.

The following 132-uniform morphism h is such that for any $\frac{5}{4}^+$ -free word $t \in \Sigma_6^*$, $h(t) \in \Sigma_4^*$ is $\frac{7}{5}^+$ -free and $\left(\frac{61}{44}^+, 11\right)$ -free.

Corollary 4.3. For each pattern P listed in Table 1, there exist exponentially many words avoiding P over Σ_2 .

Proof. Binary words avoiding *ABCACB* are constructed from $\frac{5}{4}^+$ -free words over Σ_6 , and there are exponentially many such words by Lemma 4.1. For each other pattern *P* listed in Table 1, binary words avoiding *P* are constructed from either $\frac{7}{4}^+$ -free words over Σ_3 , or $\frac{7}{5}^+$ -free words over Σ_4 . In both cases, there are exponentially many such words by Theorem 4.2.

We have not been able to extend Theorem 4.2 to Σ_5 . However, we believe that the following strong form of Dejean's conjecture holds.

Conjecture 4.4. for every $k \ge 5$, there exist exponentially many $\frac{k}{k-1}^+$ -free words over Σ_k .

5. BINARY WORDS AVOIDING LARGE SQUARES

Fraenkel and Simpson constructed in [8] an infinite binary word containing only three squares. Another construction using uniform morphisms is given in [14]. Shallit [15] also gives uniform morphisms for binary words avoiding:

- squares of length at least 3 and 3⁺-repetitions (10-uniform),
- squares of length at least 4 and $\frac{5}{2}^+$ -repetitions (1560-uniform),
- squares of length at least 7 and $\frac{7}{3}^+$ -repetitions (252-uniform).

In this section we give small $\Sigma_3^*\to \Sigma_2^*$ uniform morphisms producing words having these properties.

The following 50-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ contains only the squares in $\{0^2, 1^2, (01)^2\}$ and is $\left(\frac{37}{19}^+, 3\right)$ -free.

The following 8-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ is 3⁺-free, $\left(\frac{5}{2}^+, 2\right)$ -free, and $\left(\frac{59}{32}^+, 3\right)$ -free.

 $0\mapsto 01101011 \qquad 1\mapsto 00111010 \qquad 2\mapsto 00101110$

The following 103-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ is $\frac{5}{2}^+$ -free, $\left(\frac{7}{3}^+, 3\right)$ -free, and $\left(\frac{823}{412}^+, 4\right)$ -free.

The following 30-uniform morphism h is such that for any $\frac{7}{4}^+$ -free word $t \in \Sigma_3^*$, $h(t) \in \Sigma_2^*$ is $\frac{7}{4}^+$ -free and $\left(\frac{79}{40}^+, 7\right)$ -free.

$\begin{array}{c} 0\mapsto 001011001011010011011001001101\\ 1\mapsto 00101100101101001011001011001101\\ 2\mapsto 001011001001101100101101001101\end{array}$

References

- K.A. Baker, G.F. McNulty, and W. Taylor, Growth Problems for Avoidable Words, *Theoret. Comput. Sci.* 69 (1989) 319–345.
- [2] D.R. Bean, A. Ehrenfeucht, and G.F. McNulty, Avoidable Patterns in Strings of Symbols, *Pacific J. of Math.* 85 (1979 261–294.
- [3] J. Berstel, Axel Thue's Papers on Repetitions in Words: a Translation. Number 20 in Publications du Laboratoire de Combinatoire et d'Informatique Mathématique. Université du Québec à Montréal, February 1995.
- [4] J. Cassaigne, Motifs évitables et régularité dans les mots, Thèse de Doctorat, Université Paris VI, Juillet 1994.
- [5] R.J. Clark. Avoidable formulas in combinatorics on words, Ph.D. Thesis, University of California, Los Angeles (2001).
- [6] J. D. Currie, Open problems in pattern avoidance, Amer. Math. Monthly 100 (1993) 790– 793.
- [7] F. Dejean. Sur un théorème de Thue, J. Combin. Theory. Ser. A 13 (1972) 90-99.
- [8] A. S. Fraenkel and R. J. Simpson. How many squares must a binary sequence contain? Electronic J. Combinatorics 2 (1995), #R2.
- [9] L. Ilie, P. Ochem, and J.O. Shallit. A generalization of Repetition Threshold, *Theoret. Comput. Sci.* To appear.
- [10] J. Karhumäki and J. O. Shallit. Polynomial versus exponential growth in repetition-free binary words, J. Combinatorial Theory Ser. A 105 (2004) 335–347.
- [11] M. Lothaire. Algebraic Combinatorics on Words. Cambridge Univ. Press, 2002.
- [12] J. Moulin-Ollagnier. Proof of Dejean's conjecture for alphabets with 5,6,7,8,9,10 and 11 letters, *Theoret. Comput. Sci.* 95 (1992) 187–205.
- [13] J.-J. Pansiot. A propos d'une conjecture de F. Dejean sur les répétitions dans les mots, Disc. Appl. Math. 7 (1984) 297–311.
- [14] N. Rampersad, J.O. Shallit, and M.-w. Wang. Avoiding large squares in infinite binary words. *Theoret. Comput. Sci.* 339 (2005), 19–34.
- [15] J.O. Shallit. Simultaneous avoidance of large squares and fractional powers in infinite binary words, Internat. J. Found. Comput. Sci. 15 (2004) 317–327.

TITLE WILL BE SET BY THE PUBLISHER

- [16] A. Thue. Über unendliche Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 7 (1906), 1–22. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 139–158.
- [17] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67. Reprinted in Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Universitetsforlaget, Oslo, 1977, pp. 413–478.
- [18] A.I. Zimin. Blocking sets of terms, Math. USSR Sbornik 47(2) (1984) 353–364. English translation.

Communicated by (The editor will be set by the publisher). (The dates will be set by the publisher).