On non-repetitive sequences of arithmetic progressions: The cases $k \in\{4,5,6,7,8\}$

Borut Lužar ${ }^{\text {a,* }}$, Martina Mockovčiaková ${ }^{\text {b }}$, Pascal Ochem $^{\text {c }}$, Alexandre Pinlou ${ }^{\text {c }}$, Roman Soták ${ }^{\text {d }}$
${ }^{\text {a }}$ Faculty of Information Studies, Novo mesto, Slovenia
${ }^{\mathrm{b}}$ NTIS, University of West Bohemia, Pilsen, Czech Republic
${ }^{\text {c }}$ LIRMM, University of Montpellier, CNRS, Montpellier, France
${ }^{\text {d }}$ Institute of Mathematics, Faculty of Science, Pavol J. Šafárik University, Košice, Slovakia

ARTICLE INFO

Article history:

Received 16 November 2018
Received in revised form 15 September 2019
Accepted 9 October 2019
Available online xxxx

Keywords:

Non-repetitive sequence
k-Thue sequence
$(k+2)$-conjecture

Abstract

A d-subsequence of a sequence $\varphi=x_{1} \ldots x_{n}$ is a subsequence $x_{i} x_{i+d} x_{i+2 d} \ldots$, for any positive integer d and any $i, 1 \leqslant i \leqslant n$. A k-Thue sequence is a sequence in which every d-subsequence, for $1 \leqslant d \leqslant k$, is non-repetitive, i.e. it contains no consecutive equal subsequences. In 2002, Grytczuk proposed a conjecture that for any $k, k+2$ symbols are enough to construct a k-Thue sequence of arbitrary lengths. So far, the conjecture has been confirmed for $k \in\{1,2,3,5\}$. Here, we present two different proving techniques, and confirm it for all k, with $2 \leqslant k \leqslant 8$.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

A repetition in a sequence φ is a subsequence $\rho=x_{1} \ldots x_{2 t}$ of consecutive terms of φ such that $x_{i}=x_{t+i}$ for every $i=1, \ldots, t$. The length of a repetition is hence always even and comprised of two identical repetition blocks, $\rho_{1}=x_{1} \ldots x_{t}$ and $\rho_{2}=x_{t+1} \ldots x_{2 t}$. A sequence is called non-repetitive or Thue if it does not contain any repetition. Surprisingly, as shown by Thue [14] (see [2] for a translation), having three distinct symbols suffices to construct non-repetitive sequences of arbitrary lengths. This result is a fundamental piece in the theory of combinatorics on words. After that, a number of other concepts related to repetitions has been presented (see e.g. [3] for more details).

In this paper, we continue dealing with the following generalization. A (possibly infinite) sequence φ is k-Thue (or non-repetitive up to $\bmod k$) if every d-subsequence of φ is Thue, for $1 \leqslant d \leqslant k$. By a d-subsequence of φ we mean an arithmetic subsequence $x_{i} x_{i+d} x_{i+2 d} \ldots$ of φ. Consider a sequence

$$
a \underline{b} d \underline{c} b \underline{c}
$$

which is Thue, but not 2-Thue, since the 2-subsequence bcc is not Thue. On the other hand,

```
a}bc\underline{a}d
```

is 2-Thue, but not 3-Thue, due to the repetition in the 3-subsequence a a.
This generalization was introduced by Currie and Simpson [7] and has been immediately followed by an intriguing conjecture due to Grytczuk [9].

[^0]Conjecture 1 (Grytczuk, 2002). For any positive integer $k, k+2$ distinct symbols suffice to construct a k-Thue sequence of any length.

It is easy to show that having only $k+1$ symbols there is a repetition in any sequence of length at least $2 k+2$, so the bound $k+2$ is tight.

Since 1 -Thue sequences are simply Thue sequences, the above mentioned result establishes the conjecture for $k=1$. The conjecture has also been confirmed for $k=2$ in [7] and independently in [13], for $k=3$ in [7], and for $k=5$ in [5]. Although it has been considered also for the case $k=4$ by Currie and Pierce [6] using an application of the fixing block method, it remains open for all the cases except $k \in\{1,2,3,5\}$.

Several upper bounds have been established, first being $e^{33} k$ due to Grytczuk [9], and then substantially improved to $2 k+O(\sqrt{k})$ in [10]. Currently the best known upper bound is due to Kranjc et al. [13].

Theorem 1 (Kranjc et al. 2015). For any integer $k \geqslant 2,2 k$ distinct symbols suffice to construct a k-Thue sequence of any length.

The proof of the above is constructive and provides k-Thue sequences of given lengths.
The aim of this paper is two-fold. The main contribution is answering Conjecture 1 in affirmative for several additional values of k.

Theorem 2. For any $k \in\{4,5,6,7,8\}, k+2$ distinct symbols suffice to construct a k-Thue sequence of any length.
We present two different techniques of proving the above theorem. In the former, described in Section 3, we use exhaustive computer search to determine morphisms for each $k, k \in\{4,5,6,7,8\}$, from which we construct k-Thue sequences. In the latter, described in Section 5, we use concatenation of special blocks given by another morphism. The purpose of the latter one is to introduce its ability to deal with larger k 's, therefore we only prove the cases $k=4$ and $k=6$. We believe, in the future, it could be used for proving Conjecture 1 for infinitely many values of k.

2. Preliminaries

In this section, we introduce additional terminology and notation used in the paper. Throughout the paper, i and t are used to determine positive integers, unless more details are given.

An \mathbb{A}-sequence (or simply a sequence when the alphabet is known from the context or not relevant) of length t is an ordered tuple of t symbols from some alphabet \mathbb{A}. Let $\varphi=x_{1} \ldots x_{t}$ be a sequence. A subsequence of φ of consecutive terms $x_{i} \ldots x_{j}$, for some $i, j, 1 \leqslant i \leqslant j \leqslant t$, is denoted by $\varphi(i, j)$. A term indicates an element of a sequence at a specified index. A block is a subsequence of consecutive terms of some sequence. When we refer to a term as a term of a block, by its index we mean the index of a term in the block. We denote the term at index i in a sequence φ (resp. a block β) by $\varphi(i)$ (resp. $\beta(i)$).

A prefix of a sequence $\varphi=x_{1} \ldots x_{r}$ is a sequence $\pi=x_{1} \ldots x_{s}$, for some integer $s \leqslant r$. A suffix is defined analogously. In a sequence φ consider a pair of sequences π and ε such that $\pi \varepsilon$ is a subsequence of φ, π has length at least 1 , and ε is a prefix of $\pi \varepsilon$. The exponent of $\pi \varepsilon$ is

$$
\exp (\pi \varepsilon)=\frac{|\pi \varepsilon|}{|\pi|}
$$

If a sequence has exponent p, we call it a p-repetition. A sequence is q^{+}-free if it contains no p-repetition such that $p>q$. For sequences over 3-letter alphabets, Dejean [8] proved the following.

Theorem 3 (Dejean, 1972). Over 3-letter alphabets there exist $\frac{7}{4}^{+}$-free sequences of arbitrary lengths.
A morphism is a mapping μ which assigns to each symbol of an alphabet a sequence. Applied to a sequence $\varphi, \mu(\varphi)$ is the sequence obtained from φ where every symbol is replaced by its image according to μ. We say that a morphism is k-uniform if it maps every symbol from the domain to some sequence of length k.

Given a sequence $\varphi=\beta_{1} \ldots \beta_{t}$ comprised of blocks β_{i}, for $1 \leqslant i \leqslant t$, the covering subsequence $\hat{\sigma}$ of a subsequence σ in φ is the subsequence $\varphi(i, j)$, where i is the index of the first term of the block containing the first term of σ, and j is the index of the last term of the block containing the last term of σ.

An i-shift of φ is the sequence $\varphi^{i}=x_{i+1} \ldots x_{\ell} x_{1} \ldots x_{i}$, i.e. the sequence φ with the subsequence of the first i elements moved to the end. Let φ be a sequence of length ℓ. We define the circular sequence $\varphi_{\zeta}^{(\ell, t)}$ of order ℓ and length $\ell^{2} \cdot t$ as

$$
\varphi_{\zeta}^{(\ell, t)}=\underbrace{\varphi^{0} \varphi^{1} \ldots \varphi^{\ell-1} \ldots \varphi^{0} \varphi^{1} \ldots \varphi^{\ell-1}}_{t}
$$

We call each subsequence φ^{i} of $\varphi_{\zeta}^{(\ell, t)}$ a ζ-block.
Apart from concatenation of sequences, we define another sequence combining operation. Let φ_{1} and φ_{2} be sequences of lengths $\ell \cdot t$. A sequence wreathing of order ℓ of φ_{1} and φ_{2}, denoted by $\varphi_{1} \imath_{\ell} \varphi_{2}$, is consecutive concatenation of ℓ subsequent elements of φ_{1} and φ_{2}, i.e.

$$
\varphi_{1} z_{\ell} \varphi_{2}=\varphi_{1}(1, \ell) \varphi_{2}(1, \ell) \ldots \varphi_{1}((t-1) \ell+1, t \cdot \ell) \varphi_{2}((t-1) \ell+1, t \cdot \ell)
$$

We call the sequences φ_{1} and φ_{2} the base and the wrap of sequence wrapping $\varphi_{1} \imath_{\ell} \varphi_{2}$, respectively. Additionally, the blocks $\varphi_{1}(i \ell+1,(i+1) \ell)$ and $\varphi_{2}(i \ell+1,(i+1) \ell)$ are respectively called a base-block and a wrap-block.

We conclude this section with two lemmas we will use in the forthcoming sections. The former, due to Currie [4], states that insertion of non-repetitive subsequences (over distinct alphabets) into a non-repetitive sequence preserves non-repetitiveness.

Lemma 4 (Currie, 1991). Let $\varphi_{0}=x_{1} \ldots x_{t}$ be a non-repetitive \mathbb{A}-sequence, and $\varphi_{1}, \ldots \varphi_{t+1}$ be non-repetitive \mathbb{B}-sequences, where \mathbb{A}, \mathbb{B} are disjoint alphabets. Additionally, the length of any $\varphi_{i}, 1 \leqslant i \leqslant t+1$, may be 0 . Then, the sequence $\varphi_{1} x_{1} \ldots \varphi_{t} x_{t} \varphi_{t+1}$ is non-repetitive.

Proving that a non-repetitive sequence φ is k-Thue for some integer $k>1$, one needs to show that every ℓ-subsequence of φ is non-repetitive for every integer $\ell, 1 \leqslant \ell \leqslant k$. To prove that an ℓ-subsequence is non-repetitive, it suffices to have enough information about φ as we show in the next lemma. Let $\varphi=\beta_{1} \ldots \beta_{t}$ be a sequence comprised of blocks β_{i}, $1 \leqslant i \leqslant t$. We say that a block β_{i} is uniquely determined by a subset of terms if there is no block $\beta_{j}, \beta_{i} \neq \beta_{j}$, having the same terms at the same positions. E.g., from the construction of circular sequences, we have the following.

Observation 1. A ζ-block $\varphi^{i}, 0 \leqslant i \leqslant \ell-1$, is uniquely determined by one term, i.e., given at least one term of $a \varphi^{i}$, one can determine i.

We use the following lemma as a tool for proving that some d-subsequence of a Thue sequence does not contain a repetition.

Lemma 5. Let σ be an ℓ-subsequence of a sequence $\varphi=\beta_{1} \beta_{2} \ldots \beta_{t}$, for some positive integers ℓ and t. Let $\rho_{1} \rho_{2}$ be a repetition in σ, and let, for some $j, \gamma_{1}=\beta_{j+1} \ldots \beta_{j+r}, \gamma_{2}=\beta_{j+r+1} \ldots \beta_{j+2 r}$ be the covering sequences of ρ_{1} and ρ_{2}, respectively. If it holds that

- the terms of ρ_{1} uniquely determine the blocks β_{i}, for $i \in\{j+1, j+r\}$;
- the terms of ρ_{2} uniquely determine the blocks β_{i}, for $i \in\{j+r+1, j+2 r\}$;
- all the terms of ρ_{1}, ρ_{2} appear in γ_{1}, γ_{2} at the same indices within their blocks, respectively;
then $\gamma_{1} \gamma_{2}$ is a repetition in φ.
Proof. Since all the blocks are uniquely determined and $r>0$, it follows that $\beta_{j+i}=\beta_{j+r+i}$ for every j.

3. Technique \#1: exhaustive search for morphisms

The aim of this section is to present a compact proof of Theorem 2. For completeness, in the proof, we provide constructions of k-Thue sequences also for $k \in\{2,3\}$. We used an exhaustive computer search to determine appropriate morphisms which are then applied to appropriate sequences.

Proof of Theorem 2. Let \mathbb{A}_{3} and \mathbb{A}_{k+2} be alphabets on 3 and $k+2$ letters, respectively. For every $k, 2 \leqslant k \leqslant 8$, let a morphism $\mu_{k}: \mathbb{A}_{3}^{*} \rightarrow \mathbb{A}_{k+2}^{*}$ be defined as given below:

- $k=2$: a 7-uniform morphism
$\mu_{2}(0)=0310213$
$\mu_{2}(1)=0230132$
$\mu_{2}(2)=0120321$
- $k=3$: a 14-uniform morphism
$\mu_{3}(0)=10231402310243$
$\mu_{3}(1)=01243024130243$
$\mu_{3}(2)=01240312401234$
- $k=4$: a 12-uniform morphism
$\mu_{4}(0)=012350412534$
$\mu_{4}(1)=012345103245$
$\mu_{4}(2)=012340521345$
- $k=5$: a 27-uniform morphism
$\mu_{5}(0)=012345601235460235146023546$
$\mu_{5}(1)=012345601234650134625013465$
$\mu_{5}(2)=012345061234065123460152346$
- $k=6$: a 23-uniform morphism

$$
\begin{aligned}
& \mu_{6}(0)=01234560172436501243756 \\
& \mu_{6}(1)=01234560127354061235476 \\
& \mu_{6}(2)=01234560123746510324657
\end{aligned}
$$

- $k=7$: a 36-uniform morphism

$$
\begin{aligned}
& \mu_{7}(0)=012345670812345608721345687201345678 \\
& \mu_{7}(1)=012345670182345601872345618702345687 \\
& \mu_{7}(2)=012345670128345670281345762801345768
\end{aligned}
$$

- $k=8$: a 30 -uniform morphism

$$
\begin{aligned}
& \mu_{8}(0)=012345678902315647890312645789 \\
& \mu_{8}(1)=012345678902143675982014365789 \\
& \mu_{8}(2)=012345678019324568079123548679
\end{aligned}
$$

In what follows, we show that $\mu_{k}\left(\varphi^{\prime}\right)$ is k-Thue for every $\left(\frac{7}{4}\right)^{+}$-free sequence $\varphi^{\prime} \in \mathbb{A}_{3}^{*}$. Using a computer, we have verified the following.

Claim 1. Let φ be any non-repetitive sequence over \mathbb{A}_{3} of length at most 40 . For each morphism $\mu_{k}, \mu_{k}(\varphi)$ is k-Thue.
Next, for every k and d such that $2 \leqslant k \leqslant 8$ and $1 \leqslant d \leqslant k$, we consider every sequence $\delta=x_{1} x_{2} x_{3} x_{4}$ of length 4 over \mathbb{A}_{3} and every d-subsequence σ of $\mu_{k}(\delta)$ such that σ intersects both the prefix $\mu_{k}\left(x_{1}\right)$ and the suffix $\mu_{k}\left(x_{4}\right)$ of $\mu_{k}(\delta)$. We again used a computer to check that if such a d-subsequence appears in two sequences $\mu(\delta)$ and $\mu\left(\delta^{\prime}\right)$, where $\delta=x_{1} x_{2} x_{3} x_{4}$ and $\delta^{\prime}=x_{1}^{\prime} x_{2}^{\prime} x_{3}^{\prime} x_{4}^{\prime}$, then $x_{2} x_{3}=x_{2}^{\prime} x_{3}^{\prime}$.

Thus, long enough d-subsequences of $\mu_{k}(\varphi)$ allow to determine φ, except maybe for the first and the last term of φ. So, if a large repetition ρ occurs in some d-subsequence of $\mu_{k}(\varphi)$, then φ contains a factor $u v u$ such that u is large and $|v| \leqslant 2$. For $|u| \geqslant 7$, such a factor $u v u$ cannot appear in a $\left(\frac{7}{4}\right)^{+}$-free sequence. On the other hand, if $|u| \leqslant 6$, then the length of φ is at most 18 (including possible first and last term). For such sequences, $\mu_{k}(\varphi)$ are k-Thue by Claim 1 . This completes the proof.

4. Construction of Thue sequences using hexagonal morphism

Three decades after Thue, Aršon [1] presented another construction of infinite non-repetitive sequences using three symbols. The construction has later been subject of other studies; e.g. it has been shown that it is $\frac{7}{4}^{+}$free [11].

Recently, in his master's thesis [12], Kočiško rediscovered Aršon's construction. Namely, they presented a uniform morphism κ, which maps a term x of a sequence to a block of three symbols regarding the mapping of the predecessor of x. In particular, instead of using an alphabet $\mathbb{A}=\{1,2,3\}$ an auxiliary alphabet

$$
\overline{\mathbb{A}}=\{\overline{1}, \underline{1}, \overline{2}, \underline{2}, \overline{3}, \underline{3}\}
$$

is used. The morphism κ is then defined as

$$
\begin{array}{lll}
\kappa(\overline{1})=\overline{1} \underline{2} \overline{3}, & \kappa(\overline{2})=\overline{2} \underline{3} \overline{1}, & \kappa(\overline{3})=\overline{3} \underline{1} \overline{2}, \\
\kappa(\underline{1})=\underline{3}^{2} \underline{1}, & \kappa(\underline{2})=\underline{1} \overline{3} \underline{2}, & \kappa(\underline{3})=\underline{2} \overline{1} \underline{3} .
\end{array}
$$

For a positive integer t, we recursively define the sequence

$$
\bar{\varphi}_{\kappa}^{t}=\kappa\left(\bar{\varphi}_{\kappa}^{t-1}\right)
$$

where $\bar{\varphi}_{\kappa}^{0}=\overline{1}$. So, for example, we have

$$
\begin{aligned}
& \bar{\varphi}_{\kappa}^{1}=\kappa(\overline{1})=\overline{1} \underline{2} \overline{3} \\
& \bar{\varphi}_{\kappa}^{2}=\kappa(\overline{1} \underline{2} \overline{3})=\overline{1} \underline{2} \overline{3} \quad \underline{1} \overline{3} \underline{2} \quad \overline{3} \underline{2}
\end{aligned}
$$

Notice that for every t, every symbol from $\overline{\mathbb{A}}$ is a neighbor of at most two symbols of $\overline{\mathbb{A}}$ (if $t>3$, then precisely two); we say that neighboring symbols are adjacent. The adjacency is also preserved between the blocks of three symbols to which the symbols from $\overline{\mathbb{A}}$ are mapped by κ; we denote these blocks $\bar{\kappa}$-triples. Due to its structure, we refer to κ as the hexagonal morphism. In Fig. 1, the adjacencies between the symbols and the $\bar{\kappa}$-triples, and the mappings of κ are depicted.

Let $\pi: \overline{\mathbb{A}} \rightarrow \mathbb{A}$ be a projection of symbols from the auxiliary alphabet $\overline{\mathbb{A}}$ to \mathbb{A} defined as $\pi(\bar{a})=a$ and $\pi(\underline{a})=a$, for every $a \in\{1,2,3\}$. By φ_{κ}^{t}, we denote the projected sequence $\bar{\varphi}_{\kappa}^{t}$, i.e. $\varphi_{\kappa}^{t}=\pi\left(\bar{\varphi}_{\kappa}^{t}\right)$; similarly a projected $\bar{\kappa}$-triple τ, $\pi(\tau)$, is referred to as a κ-block.

By the definition of $\varphi_{\kappa}^{t}=\left\{x_{i}\right\}_{i=1}^{3^{t}}$ and the mapping κ, one can easily derive the following basic properties:

Fig. 1. The graph of adjacencies between the symbols of $\overline{\mathbb{A}}$ and $\bar{\kappa}$-triples, and the mappings defined by κ.
(K_{1}) For every pair of adjacent κ-blocks τ and σ, the sequence $\tau \sigma$ is Thue.
$\left(K_{2}\right)$ The length of φ_{κ}^{t} is 3^{t}, and $x_{3 i+1} x_{3 i+2} x_{3 i+3}$ is a κ-block for every $i, 0 \leqslant i<3^{t-1}$.
$\left(K_{3}\right)\left\{x_{3 i+1}, x_{3 i+2}, x_{3 i+3}\right\}=\{1,2,3\}$ for every $i, 0 \leqslant i<3^{t-1}$.
(K_{4}) $x_{3 i+2} \neq x_{3(i+1)+2}$ for every $i, 0 \leqslant i<3^{t-1}-1$.
(K_{5}) Any three consecutive terms $x_{j+1} x_{j+2} x_{j+3}$ of φ_{κ}^{t}, which do not belong to the same κ-block, uniquely determine the two κ-blocks they belong to.
$\left(K_{6}\right)$ For a pair τ_{1}, τ_{2} of adjacent κ-blocks it holds that the first term of τ_{1} is distinct from the third term of τ_{2}.
$\left(K_{7}\right)$ If a pair of distinct κ-blocks has the same first or last term, then they are adjacent.
$\left(K_{8}\right)$ A pair of adjacent κ-blocks is not adjacent to any other common κ-block.
$\left(K_{9}\right)$ The middle term of the κ-block $\pi(\kappa(i)), i \in \overline{\mathbb{A}}$, equals $\pi(i)+1$ (modulo 3).
(K_{10}) A pair of distinct κ-symbols x_{1} and x_{2}, where x_{1} and x_{2} are the first (last) terms of adjacent κ-blocks τ_{1} and τ_{2}, uniquely determines τ_{1} and τ_{2}.
(K_{11}) A κ-block τ_{1} and at least one term of a κ-block τ_{2} adjacent to τ_{1} uniquely determine τ_{2}.
(K_{12}) A pair of adjacent κ-blocks is in φ_{κ}^{t} always separated by an even number of κ-blocks, since the graph of adjacencies is bipartite.

We use (some of) the properties above, to prove the following theorem.
Theorem 6 (Kočiško, 2013). The sequence φ_{κ}^{t} is Thue, for every non-negative integer t.
For the sake of completeness, we present a short proof of Theorem 6 here also.
Proof. We prove the theorem by induction. Clearly, φ_{κ}^{0} is Thue. Consider the sequence $\varphi_{\kappa}^{t}=\left\{x_{i}\right\}_{i=1}^{3^{t}}$ and suppose that φ_{κ}^{j} is Thue for every $j<t$. Suppose for a contradiction that there is a repetition in φ_{κ}^{t} and let $\rho_{1} \rho_{2}=y_{1} \ldots y_{r} y_{r+1} \ldots y_{2 r}$ be a repetition with the minimum length (for later purposes we distinguish two repetition factors, although $\left.\rho_{1}=\rho_{2}\right)$. By $\left(K_{1}\right)$, we have that $r \geqslant 3$. We consider two subcases regarding the length r of $\rho_{1}\left(=\rho_{2}\right)$.

Suppose first that r is divisible by 3 . Then, as we show in the following claim, we may assume that the term y_{1} is the first term of some κ-block.

Claim 2. Let r be divisible by 3. If $y_{1}=x_{3 i+2}$ (resp. $y_{1}=x_{3 i+3}$) for some $i, 0 \leqslant i<3^{t-1}$, then $x_{3 i+1} x_{3 i+2} \ldots x_{3 i+2 r}$ (resp. $\left.x_{3(i+1)+1} x_{3(i+1)+2} \ldots x_{3(i+1)+2 r}\right)$ is also a repetition.

Proof. Suppose that $y_{1}=x_{3 i+2}$. By (K_{3}), every κ-block is uniquely determined by two symbols. So $x_{3 i+1}=y_{r}$ and hence $x_{3 i+1} \ldots x_{3 i+2 r}=y_{r} y_{1} \ldots y_{2 r-1}$ is a repetition. A proof for the case $y_{1}=x_{3 i+3}$ is analogous.

Hence, we have that $\rho=\tau_{1} \ldots \tau_{\frac{r}{3}}$, where τ_{j} are κ-blocks for every $j, 1 \leqslant j \leqslant \frac{r}{3}$. But in this case, there is a repetition already in φ_{κ}^{t-1}, contradicting the induction hypothesis.

Therefore, we may assume that r is not divisible by 3 . This means that the first terms y_{1} and y_{r+1} of the two repetition factors ρ_{1} and ρ_{2}, respectively, are at different positions within the κ-blocks they belong to. For example, if $r=3 k+1$, and y_{1} is the first term of the κ-block $y_{1} y_{2} y_{3}$, then y_{r+1} is the second term of the κ-block $y_{r} y_{2 r+1} y_{2 r+2}$. There are hence six possible cases regarding the position of y_{1} and y_{r+1} in their κ-blocks.

Suppose first that y_{1} is the first term of the κ-block $x_{1} x_{2} x_{3}$. By (K_{3}), x_{1}, x_{2}, and x_{3} are pairwise distinct. Since $\rho_{1}=\rho_{2}$, we thus know three consecutive elements of two κ-blocks (the one of y_{r+1} and the subsequent one). By (K_{5}), we can
determine both κ-blocks, which gives us information about the term y_{4}. Using $\left(K_{5}\right)$ again, we can determine the κ-block $y_{4} y_{5} y_{6}$, namely $y_{4} y_{5} y_{6}=x_{2} x_{1} x_{3}$ in the case when $r \equiv 1 \bmod 3$, and $y_{4} y_{5} y_{6}=x_{1} x_{3} x_{2}$ in the case when $r \equiv 2$ mod 3 . Using the information obtained by determining κ-blocks using $\left(K_{5}\right)$, we infer that every κ-block of ρ_{1} ends with x_{3} in the former case, or starts with x_{1} in the latter case. As ρ_{1} and ρ_{2} are concatenated, this leads us to contradiction on the existence of a repetition. With a similar argument, we obtain a contradiction in the case when y_{r+1} is the first term of its κ-block.

Suppose now that $r=3 k+1$, for some positive integer k, and y_{1} is the second term of its κ-block, say $x_{3} x_{1} x_{2}$. Then $y_{r+1}=x_{1}$ and $y_{r+2}=x_{2}$, where y_{r+1} and y_{r+2} belong to distinct κ-blocks. Notice that there are two possibilities for the value of y_{r+3}, namely x_{1} and x_{3}. However, regardless the choice, after determining the κ-block $y_{r+2} y_{r+3} y_{r+4}$ by (K_{5}), and continue by alternately determining κ-blocks in ρ_{1} and ρ_{2}, as described above, we infer that in both cases, every κ-block in ρ_{1} ends with x_{2}, a contradiction. An analogous analysis may be performed in the last case, when $r=3 k+2$ and y_{1} being the third term of its κ-block.

5. Technique \#2: transposition \& cyclic blocks

In this section, we present alternative proofs to answer Conjecture 1 in affirmative for the cases $k=4$ and $k=6$. For each of the two cases we present a special morphism and apply it on a non-repetitive sequence. Then, we use sequence wreathing to extend the sequence by circular blocks.

5.1. The case $k=4$

In this part, to prove the case $k=4$ in Theorem 2, we combine the sequence φ_{κ}^{t} obtained by the hexagonal morphism and the circular sequence $\varphi_{\zeta}^{\left(3,3^{t}\right)}$ by wreathing. For every positive integer t, we construct the sequence φ_{κ}^{t} over the alphabet $\{1,2,3\}$, and the sequence $\varphi_{\zeta}^{\left(3,3^{t-1}\right)}$ with $\varphi=456$. We then define

$$
\varphi_{4}^{t}=\varphi_{\kappa}^{t+1} \imath_{3} \varphi_{\zeta}^{\left(3,3^{t-1}\right)}
$$

So, for example, we have

$$
\begin{aligned}
\varphi_{4}^{1} & =\varphi_{\kappa}^{2} \imath_{3} \varphi_{\zeta}^{\left(3,3^{0}\right)}=123132312 \imath_{3} 456564645 \\
& =123456132564312645 \\
\varphi_{4}^{2} & =\varphi_{\kappa}^{3} \imath_{3} \varphi_{\zeta}^{\left(3,3^{1}\right)}= \\
& =123456 \quad 132564312645 \\
& =321456312564132645 \\
& =312456321564
\end{aligned}
$$

For clarity, we refer to the base-blocks of φ_{4}^{t} as κ-blocks (recall that the wrap-blocks are called ζ-blocks). Additionally, the terms from κ-blocks (resp. ζ-blocks) are called κ-terms (resp. ζ-terms).

Lemma 7. The sequence φ_{4}^{t} is 4-Thue for every positive integer t.
Proof. Since φ_{κ}^{t+1} is Thue by Theorem 6, φ_{4}^{t} is also Thue by Lemma 4. Thus, it remains to prove that every d-subsequence of φ_{4}^{t} is Thue, for every $d \in\{2,3,4\}$. Observe first that by $\left(K_{1}\right),\left(K_{6}\right)$, and the definition of circular sequences, every five consecutive terms of φ_{4}^{t} are distinct. This in particular means that
$\left(P_{1}\right)$ there are no repetitions of length 2 or 4 in any d-subsequence of φ_{4}^{t}.
Moreover,
$\left(P_{2}\right)$ in every d-subsequence of φ_{4}^{t} there are at most two consecutive κ-terms or ζ-terms;
$\left(P_{3}\right)$ in every d-subsequence of φ_{4}^{t} any repetition contains κ-terms and ζ-terms;
$\left(P_{4}\right)$ if a κ-term (resp. ζ-term) in a d-subsequence σ of φ_{4}^{t}, whose predecessor and successor in σ are ζ-terms (resp. κ-terms), is at index i within its κ-block (resp. ζ-block), then every κ-term (resp. ζ-term) in σ is at index i within its κ-block (resp. ζ-block).
All the latter three properties are direct corollaries of $\left(P_{1}\right)$ and the fact that every κ-block and ζ-block is of length 3 .
Now, we prove that every d-subsequence of φ_{4}^{t} is non-repetitive, considering three cases with regard to d. In each case, we assume there is a repetition $\rho_{1} \rho_{2}=y_{1} \ldots y_{r} y_{r+1} \ldots y_{2 r}$ in some d-subsequence σ and eventually reach a contradiction on its existence.

By $\left(P_{3}\right)$, there is at least one ζ-term in ρ_{1}. Moreover, by the definition of circular sequences and φ_{4}^{t}, every three consecutive ζ-terms in ρ_{1} (ignoring the κ-terms) are distinct, unless $d=4$ and the ζ-terms of ρ_{1} are at indices 1 and 3 in ζ-blocks. However, in such a case, by construction of circular sequences, without loss of generality, consecutive ζ-terms of ρ_{1} are $445566 \ldots$, which means that r must be divisible by 6 , to have the same sequence of ζ-terms in ρ_{2}. This implies that
$\left(P_{5}\right)$ the number of ζ-terms in ρ_{1} is divisible by 3,
and consequently, since in ζ-blocks the symbols repeat at the same indices in every third block:
(P_{6}) the number of ζ-blocks to which the ζ-terms of ρ_{1} belong to in φ_{4}^{t} is divisible by 3 .
Observe that, by the above properties,
$\left(P_{7}\right)$ the first terms of ρ_{1} and ρ_{2} are either both κ-terms or ζ-terms, and moreover, they appear at the same index within their blocks in φ_{4}^{t}.
Now, we start the analysis regarding d :

- $d=2$.

Suppose first that y_{1} is the first term of some κ-block. Then, ρ_{1} is comprised alternately of two κ-terms (the first and the third terms of a κ-block in φ_{4}^{t}) and one ζ-term (the second term of its ζ-block in φ_{4}^{t}). Consequently, y_{r+1} is the first term of a κ-block also, and the last term of ρ_{1} must be a ζ-term. By (K_{3}), every κ-block is uniquely determined by two of its terms, hence one can determine all κ-blocks to which the κ-terms of ρ_{1} and ρ_{2} belong to in φ_{4}^{t}. Similarly, all the ζ-blocks, to which ζ-terms of ρ_{1} and ρ_{2} belong, are uniquely determined by Observation 1. Moreover, since the terms y_{r} and y_{r+1} belong to different blocks, we can apply Lemma 5 obtaining a contradiction on the existence of $\rho_{1} \rho_{2}$.
Suppose now that y_{1} is the third term of some κ-block. A similar argument as in the paragraph above shows that y_{r} is the first term of some κ-block γ_{r} of φ_{4}^{t}, while y_{r+1} is the third term of β_{r}. Note that the terms y_{2}, y_{3} and y_{r+2}, y_{r+3} uniquely determine the same block γ_{2}. Consider now the κ-block γ_{1} to which y_{1} belongs. By $\left(K_{7}\right)$, it is one of the two possible κ-blocks that end with y_{1}, and since γ_{1} and γ_{r} are adjacent to γ_{2}, by $\left(K_{8}\right)$, we infer that $\gamma_{1}=\gamma_{r}$. Thus, taking the first term z of γ_{1}, we have a repetition $z y_{1} \ldots y_{r-1} y_{r} \ldots y_{2 r-1}$ in σ, which satisfies the assumptions of Lemma 5 . Hence, there is a repetition in φ_{4}^{t}, a contradiction.
Next, suppose that y_{1} is the second term of some κ-block. Then, by $\left(P_{4}\right)$, all the κ-terms in ρ_{1} and ρ_{2} are the second terms of κ-blocks in φ_{4}^{t}. By $\left(K_{9}\right)$, we have that the second terms of κ-blocks in φ_{4}^{t} are exactly the terms of φ_{κ}^{t-1} shifted by 1 , and thus form a non-repetitive sequence. Using Lemma 4, we infer that the sequence σ is also non-repetitive, a contradiction.
Finally, suppose that y_{1} is a ζ-term. Let γ be the last ζ-block in φ_{4}^{t} to which some term of ρ_{2} belongs. Since a ζ-block is uniquely determined by at least one of its terms, using $\left(P_{5}\right)$, we infer that the ζ-block of φ_{4}^{t} following γ is equal to the ζ-block uniquely determined by y_{1}. Let $y \in\left\{y_{2}, y_{3}\right\}$ be the first κ-term of ρ_{1}. The observation above implies that there exists a repetition in σ starting with y and ending with the ζ-terms before y in ρ_{1}. Such a repetition cannot exist due to the analysis of the cases above.

- $d=3$.

Suppose that y_{1} is the first term of some κ-block. Clearly, the first term of ρ_{2} is also a κ-term, and thus the number of κ-terms in ρ_{1} is divisible by 3 , by $\left(P_{5}\right)$. Therefore, there are at least six κ-terms in $\rho_{1} \rho_{2}$, meaning there are two distinct consecutive κ-terms. Using $\left(K_{10}\right)$ and (K_{11}), we can uniquely determine all κ-blocks to which the κ-terms of ρ_{1} and ρ_{2} belong. So, by Lemma 5, we obtain a contradiction.
If y_{1} is the third term of some κ-block, we use the same argument as in the paragraph above.
The argument when y_{1} is the second term of some κ-block is analogous to the subcase in the case $d=2$, where y_{1} is the second term of some κ-block.
In the case when y_{1} is a ζ-term, we can again translate the analysis to the one of the above cases, since the ζ-triples have period 3 .

- $d=4$.

Suppose that y_{1} is the first term of some κ-block. By $\left(P_{1}\right)$, the length of ρ_{1} is at least 3 . Furthermore, y_{2} and y_{3} are ζ-terms (the second terms of some ζ-block) and a κ-term (the third term of some κ-block), respectively. By $\left(P_{4}\right)$, all ζ-terms in ρ_{1} are the second terms of ζ-blocks. Thus, by $\left(P_{5}\right)$ and the fact that for every ζ-term in ρ_{1} there are two ζ-blocks in $\hat{\rho}_{1}$, we have that the number of ζ-blocks in $\hat{\rho}_{1}$ is divisible by 6 . By $\left(P_{7}\right), y_{r+1}$ is also the first term of some κ-block in φ_{4}^{t}, meaning that the number of κ-blocks in $\hat{\rho}_{1}$ is also divisible by 6 and that the number of κ-blocks between the blocks of y_{1} and y_{r+1} is odd. Hence, by $\left(K_{12}\right)$, the κ-blocks of y_{1} and y_{r+1} are the same. Analogously, all the blocks of the κ-terms y_{i} in ρ_{1} are the same as the κ-blocks of y_{i+r} in ρ_{2}. Thus, there is a repetition in φ_{4}^{t} also, a contradiction.
Suppose now that y_{1} is the second term of some κ-block. Similarly as in the case above, we notice that all κ-terms of ρ_{1} are the second terms in their κ-blocks in $\hat{\rho}_{1}$, and that the number of κ-blocks in $\hat{\rho}_{1}$ is divisible by 6 . Again, we deduce that for every two κ-terms y_{i} and y_{j} in σ, there are even number of κ-blocks between the κ-blocks of y_{i} and y_{j} in $\hat{\sigma}$. It follows that every pair of equal κ-symbols in σ belongs to the same κ-block, and hence $\left(\rho_{1}\right)=\hat{\rho_{2}}$, a contradiction.
The cases, when y_{1} is the third term of some κ-block, or the second term of some ζ-block are analogous to the first case. The cases, when y_{1} is the first or the third term of some ζ-block are analogous to the second case.

ARTICLE IN PRESS

Fig. 2. The graph of adjacencies between the symbols of \mathbb{B} and λ-blocks, and the mappings defined by λ.

5.2. The case $k=6$

In this part, we present a construction of a 6 -Thue sequence using 8 symbols, in a similar way as for the case $k=4$. Again, we wreath a Thue sequence with a circular sequence, but now, the base sequence is formed by blocks of four symbols, where in each block we only permute symbols in fixed pairs.

Similarly as in Section 4, we start by constructing a Thue sequence over an alphabet

$$
\mathbb{B}=\{1,2,3,4\}
$$

of 4 symbols. Let a morphism λ, mapping a symbol from the sequence to a block of four distinct symbols, be defined as

$$
\lambda(1)=1234, \quad \lambda(2)=2143, \quad \lambda(3)=1243, \quad \lambda(4)=2134
$$

For a positive integer t, we recursively define the sequence

$$
\varphi_{\lambda}^{t}=\lambda\left(\varphi_{\lambda}^{t-1}\right)
$$

where $\varphi_{\lambda}^{0}=1$. Notice that for every positive integer t, every symbol from \mathbb{B} is a neighbor of all symbols of \mathbb{B}. The blocks of four symbols to which the symbols from \mathbb{B} are mapped by λ, are referred to as λ-blocks. In Fig. 2, the mappings of λ are depicted.

We first observe some basic properties of the sequence φ_{λ}^{t}, for any positive integer t.
$\left(L_{1}\right)$ For any pair of adjacent λ-blocks γ_{1} and γ_{2}, the sequence $\gamma_{1} \gamma_{2}$ is Thue.
$\left(L_{2}\right)$ The length of φ_{λ}^{t} is 4^{t}, and $x_{4 i+1} x_{4 i+2} x_{4 i+3} x_{4 i+4}$ is a λ-block for every $i, 0 \leqslant i \leqslant 4^{t-1}-1$.
$\left(L_{3}\right)\left\{x_{4 i+1}, x_{4 i+2}\right\}=\{1,2\}$ and $\left\{x_{4 i+3}, x_{4 i+4}\right\}=\{3,4\}$ for every $i, 0 \leqslant i \leqslant 4^{t-1}-1$. Consequently, by knowing at least one term at index 1 or 2 , and at least one term at index 3 or 4 , the λ-block is uniquely determined.
(L_{4}) For every $i, 0 \leqslant i \leqslant 4^{t-1}-3$, it holds: $x_{4 i+1} x_{4 i+2} x_{4 i+3} x_{4 i+4} \neq x_{4 i+9} x_{4 i+10} x_{4 i+11} x_{4 i+12}$ (this is in fact a consequence of $\left(L_{3}\right)$).
(L_{5}) Two consecutive λ-blocks with the same first two terms are mapped from $\{1,3\}$ or $\{2,4\}$. Similarly, two consecutive λ-blocks with the same last two terms are mapped from $\{1,4\}$ or $\{2,3\}$.
(L_{6}) Let γ_{1} and γ_{2} be distinct λ-blocks with equal terms at indices 1 and 2 or at indices 3 and 4 . For λ-blocks γ_{3}, γ_{4}, and γ_{5}, in φ_{λ}^{t}, there is at most one of the subsequences $\gamma_{1} \gamma_{3} \gamma_{5}$ and $\gamma_{2} \gamma_{4} \gamma_{5}$, since otherwise the property (L_{3}) would be violated in φ_{λ}^{t-1}.
(L_{7}) If for two λ-blocks $\gamma_{1}=x_{4 i+1} x_{4 i+2} x_{4 i+3} x_{4 i+4}$ and $\gamma_{2}=x_{4 j+1} x_{4 j+2} x_{4 j+3} x_{4 j+4}$ there is such $\ell \in\{1,2,3,4\}$ that $x_{4 i+\ell}=x_{4 j+\ell}$ and 4 divides $|j-i|$, then $\gamma_{1}=\gamma_{2}$. On the other hand, if 4 does not divide $|j-i|$, but $|j-i|$ is even, then $\gamma_{1} \neq \gamma_{2}$.
(L_{8}) If for a λ-block γ one term is known, then it is one of two possible λ-blocks. In particular, if the known term is at index 1 or 2 in γ, then either $\lambda^{-1}(\gamma) \in\{1,3\}$ or $\lambda^{-1}(\gamma) \in\{2,4\}$. If the known term is at index 3 or 4 in γ, then either $\lambda^{-1}(\gamma) \in\{1,4\}$ or $\lambda^{-1}(\gamma) \in\{2,3\}$.
We leave the above properties to the reader to verify and proceed by proving that φ_{λ}^{t} is Thue.
Lemma 8. The sequence φ_{λ}^{t} is Thue for every non-negative integer t.
Proof. Suppose the contrary, and let t be the minimum such that there is a repetition in φ_{λ}^{t}. Denote the i th term of φ_{λ}^{t} by x_{i}. Let $\rho_{1} \rho_{2}=y_{1} \ldots y_{r} y_{r+1} \ldots y_{2 r}$ be a repetition of minimum length. We first show that $r>4$. The cases with $r \leqslant 3$ are trivial, so suppose $r=4$. By $\left(L_{1}\right)$, we have that y_{1} is not at index $4 i+1$ in φ_{λ}^{t} (for any $i, 0 \leqslant i \leqslant 4^{t-1}-1$), and by (L_{3}), it
is not at index $4 i+2$ nor $4 i+4$. Hence, assume y_{1} is at index $4 i+3$. Denote the λ-block $x_{4 i+5} x_{4 i+6} x_{4 i+7} x_{4 i+8}\left(=y_{3} y_{4} y_{5} y_{6}\right)$ by γ_{1}. By $\left(L_{1}\right)$, we have that $\gamma_{0}=x_{4 i+1} x_{4 i+2} x_{4 i+3} x_{4 i+4}=y_{4} y_{3} y_{5} y_{6}$ and similarly, $\gamma_{2}=x_{4 i+9} x_{4 i+10} x_{4 i+11} x_{4 i+12}=y_{3} y_{4} y_{6} y_{5}$. By $\left(L_{5}\right)$, this means that if $\gamma_{1} \in\{1,2\}$, then $\gamma_{0}, \gamma_{2} \in\{3,4\}$, and analogously, if $\gamma_{1} \in\{3,4\}$, then $\gamma_{0}, \gamma_{2} \in\{1,2\}$, a contradiction to $\left(L_{3}\right)$. Hence, $r>4$.

Let j be the index of y_{1} in φ_{λ}^{t}, i.e. $y_{1}=x_{j}$. If j is odd, then by $\left(L_{3}\right)$, either $x_{j} x_{j+1}=\{1,2\}$ or $x_{j} x_{j+1}=\{3,4\}$, and without loss of generality, we may assume the former. Thus, also $x_{j+r} x_{j+r+1}=\{1,2\}$, which implies that r must be even. In the case when j is even, $\left(L_{3}\right)$ similarly implies that $x_{j} \in\{1,2\}$ and $x_{j+1} \in\{3,4\}$, and hence $x_{j+r} \in\{1,2\}$ and $x_{j+r+1} \in\{3,4\}$. Consequently, r is again even. Finally observe that by $\left(L_{2}\right)$, from r being even and $x_{j}=x_{j+r}$ it follows that r is divisible by 4.

Suppose now that $j=4 i+1$, for some i. Then, since r is divisible by $4, \rho_{1}$ and ρ_{2} are comprised of $\frac{r}{4} \lambda$-blocks each, the first starting with x_{j}. This in turn means that there is a repetition in φ_{λ}^{t-1} as every λ-block represents one term in φ_{λ}^{t-1}, a contradiction to the minimality of t.

Next, suppose $j=4 i+2$. By $\left(L_{3}\right)$, we have that $x_{j-1}=x_{j+r-1}$, and hence $\rho_{1}^{\prime} \rho_{2}^{\prime}=x_{j-1} x_{j} \ldots x_{j+r-1} x_{j+r} \ldots x_{j+2 r-2}$ is also a repetition in φ_{λ}^{t}, where $j-1=4 i+1$, and hence the reasoning in the above paragraph applies.

Suppose $j=4 i+4$. Then, analogous to the previous case, we infer $x_{j+r}=x_{j+2 r}$, and hence $\rho_{1}^{\prime} \rho_{2}^{\prime}=x_{j+1} \ldots x_{j+r} x_{j+r+1} \ldots$ $x_{j+2 r}$ is also a repetition in φ_{λ}^{t}, where $j+1=4(i+1)+1$, so the reasoning for $j=4 i+1$ applies again.

Finally, consider the case with $j=4 i+3$. If $r=8$, from $x_{j+2} x_{j+3} x_{j+4} x_{j+5}=x_{j+10} x_{j+11} x_{j+12} x_{j+13}$ it follows that the λ-block $x_{j+6} x_{j+7} x_{j+8} x_{j+9}$ is surrounded by the same λ-blocks, which contradicts (L_{4}). Hence, we may assume $r \geqslant 12$. Since the λ-blocks $x_{j+6} x_{j+7} x_{j+8} x_{j+9}$ and $x_{j+r+6} x_{j+r+7} x_{j+r+8} x_{j+r+9}$ are equal, and r is divisible by 4 , it follows that also $x_{j-2} x_{j-1} x_{j} x_{j+1}=x_{j+r-2} x_{j+r-1} x_{j+r} x_{j+r+1}$ and we may apply the reasoning for the case with $j=4 i+1$ on the repetition $x_{j-2} \ldots x_{j+2 r-3}$. Hence, φ_{λ}^{t} is Thue.

Now, take the circular sequence $\varphi_{\zeta}^{\left(4,4^{t-1}\right)}$, with $\varphi=5678$, and use sequence wreathing on φ_{λ}^{t+1} and $\varphi_{\zeta}^{\left(4,4^{t-1}\right)}$ to obtain the sequence

$$
\varphi_{6}^{t}=\varphi_{\lambda}^{t+1} \imath_{4} \varphi_{\zeta}^{\left(4,4^{t-1}\right)}
$$

Similarly as above, we refer to the base-blocks of φ_{6}^{t} as λ-blocks, and to the wrap-blocks as ζ-blocks. The terms of λ-blocks (resp. ζ-blocks) are referred to as λ-terms (resp. ζ-terms). The sequence φ_{6}^{1} is hence:

$$
\underbrace{1234}_{\lambda(1)} 5678 \underbrace{2143}_{\lambda(2)} 6785 \underbrace{1243}_{\lambda(3)} 7856 \underbrace{2134}_{\lambda(4)} 8567
$$

It remains to prove that φ_{6}^{t} is also 6-Thue.
Lemma 9. The sequence φ_{6}^{t} is 6-Thue for every positive integer t.
Proof. By Lemmas 4 and 8 , we have that φ_{6}^{t} is Thue. Thus, we only need to prove that every d-subsequence of φ_{6}^{t} is also Thue, for every $d \in\{2,3,4,5,6\}$. First, we list some general properties and then consider d-subsequences separately regarding the values of d.

By $\left(L_{3}\right)$ and the definition of circular sequences, every seven consecutive terms of φ_{6}^{t} are distinct. Hence,
$\left(R_{1}\right)$ there are no repetitions of length 2 or 4 in any d-subsequence φ_{6}^{t}.
Furthermore, since the length of any λ-block and ζ-block in φ_{6}^{t} is 4 , one can deduce that:
$\left(R_{2}\right)$ in every d-subsequence of φ_{6}^{t} there are at most two consecutive λ-terms or ζ-terms;
$\left(R_{3}\right)$ in every d-subsequence of φ_{6}^{t} any repetition contains λ-terms and ζ-terms;
Given a d-subsequence $\sigma=z_{1} z_{2} \ldots z_{n}$ of φ_{6}^{t} consisting of n elements, we define a mapping $\vartheta: \Sigma \rightarrow\{N, C\}^{n}$, where Σ represents the set of all d-subsequences of φ_{6}^{t}, mapping σ to an n-component vector, i th component being N if z_{i} belongs to a λ-block and C otherwise (N and C standing for a non-cyclic and cyclic element, respectively). We call $\vartheta(\sigma)$ the type vector of σ.
$\left(T_{1}\right)$ The type vector of any 2-subsequence contains CCNN or NNCC in the first five components (depending on the position of the first term in the sequence).
(T_{2}) The type vector of any 4 -subsequence equals $N C N C$ or $C N C N$ in the first four components.
Now, suppose the contrary, and let $\rho=\rho_{1} \rho_{2}=y_{1} \ldots y_{r} y_{r+1} \ldots y_{2 r}$ be a repetition in some d-subsequence of φ_{6}^{t}. We start by analyzing possible values of r.

By $\left(R_{1}\right), r \geqslant 3$, so suppose first that $r=3$. We will consider the cases regarding the type vectors of ρ. By $\left(R_{2}\right)$ and $\left(R_{3}\right)$, there are six possible type vectors for ρ, namely: CCN CCN, CNC CNC, CNN CNN, NCC NCC, NCN NCN, and NNC NNC. By (T_{1}) and (T_{2}), such a sequence does not appear in any ℓ-sequence for $\ell \in\{2,4\}$. Hence, it remains to consider $\ell \in\{3,5,6\}$. Let $j, j \in\{1,2,3,4\}$, be the index of y_{1} in the λ - or ζ-block it belongs to.

Table 1
The type vectors of ρ regarding j 's and ℓ 's in the case $r=3$, assuming the first term y_{1} lies in a λ-block. In the symmetric case, when y_{1} is in a ζ-block, the type vector values are simply interchanged.

j / ℓ	3	5	6	
1	NNC NCC	NCN CCN	NCC NNC	
2	NCC NCN	NCN NCN	NCC NNC	
3	NCN	NCN	NCC	NCN

In Table 1, we present type vectors regarding j 's and ℓ 's. The only two type vectors matching the possibilities for the type vectors of ρ are in the cases $(j, \ell) \in\{(3,3),(2,5)\}$. In the case $(3,3)$, the indices of y_{1}, \ldots, y_{6} within their blocks are respectively $3,2,1,4,3,2$. When y_{1} belongs to a λ-block, y_{2} and y_{5} must belong to consecutive ζ-blocks. But, then $y_{2} \neq y_{5}$, due to the construction of circular sequences. On the other hand, if y_{1} belongs to a ζ-block, then y_{2} is at index 2 in a λ-block and y_{5} is at index 3 in a λ-block, so again $y_{2} \neq y_{5}$, due to $\left(L_{3}\right)$.

In the case $(2,5)$, the indices of y_{1}, \ldots, y_{6} within their blocks are respectively $2,3,4,1,2,3$. Suppose first that y_{1} belongs to a ζ-block. Then, y_{2} is at index 3 in a λ-block and y_{5} is at index 2 in a λ-block, and hence $y_{2} \neq y_{5}$, due to $\left(L_{3}\right)$. Finally, suppose y_{1} belongs to a λ-block. Then, y_{2} is at index 3 in a ζ-block and y_{5} is at index 2 in a ζ-block, however, the two ζ-blocks are not consecutive, and hence $y_{2} \neq y_{5}$. It follows that $r \geqslant 4$.

Using the construction properties of circular sequences, we can obtain additional properties of r regarding the structure of type vectors.

Claim 3. If there are two consecutive ζ-terms in ρ_{1}, then 32 divides $d \cdot r$
Note that we do not require the two terms being in the same ζ-block.

Proof. We prove the claim by showing that having two consecutive ζ-terms, x_{i} and x_{i+d}, in ρ_{1} imply that the corresponding two ζ-terms, x_{j} and x_{j+d}, in ρ_{2} must appear at the same indices in their ζ-blocks. This fact further implies that the difference between i and j is ($8 \cdot 4) t$ (8 since each pair of λ - and ζ-blocks has 8 terms, and 4 , since ζ-blocks have period 4 in $\varphi_{\zeta}^{\left(4,4^{t}\right)}$), for some positive integer t. On the other hand, there are $d \cdot r$ terms between x_{i} and x_{j}, and hence 32 divides $d \cdot r$.

We consider the cases regarding d. For $d=1$, the claim is trivial. For $d=2$, the pair of terms x_{i} and x_{i+2} can appear twice in four distinct ζ-blocks. However, since the parity of the indices i and j must be the same in this case, they must appear in the same ζ-block in ρ_{2}.

In the case $d=3$ a pair of two symbols appear only once in four distinct ζ-blocks, hence there is nothing to prove. In the case $d=4$, it is not possible to have two consecutive ζ-terms.

In the cases $d=5$ and $d=6$, the two terms belong to two consecutive ζ-blocks. In the former, there is again only one appearance of each pair per four blocks, so it remains to consider the case $d=6$. There are two possible appearances of a pair, but since the indices must have the same parity, the pair must appear in the same two ζ-blocks. This completes the proof of the claim.

We continue by considering the cases regarding d.

- $d=2$.

If there are no two consecutive terms of ρ_{1} that belong to the same ζ-block, then $r=4$ and y_{1} is a part of a ζ-block. But in this case, there are two consecutive λ-blocks, uniquely determined by y_{2}, y_{3} and y_{6}, y_{7}, which must be equal as $y_{2}=y_{6}$ and $y_{3}=y_{7}$, a contradiction to Lemma 8 .
So, there is at least one ζ-block which contains two terms of ρ_{1}. By Claim $3, r$ is divisible by $32 / 2=16$. Suppose y_{1} is the first (resp. the second) term of some λ-block. Then, y_{2}, y_{r+1}, and y_{r+2} are also λ-terms, and hence every λ-block of ρ is uniquely determined. By Lemma 5 , it follows there is a repetition in φ_{λ}^{t}, a contradiction to Lemma 8 . Now, suppose y_{1} is the third (resp. the fourth) term of some λ-block γ_{1}. Let γ_{2} be the λ-block determined by y_{r} and $y_{r}+1$. Clearly, $\gamma_{1} \neq \gamma_{2}$, otherwise there is a repetition in φ_{λ}^{t}, by Lemma 5 . However, since the third and fourth terms of γ_{1} and γ_{2} are equal, they are either mapped by λ from $\{1,4\}$ or $\{2,3\}$. As the λ-block in σ_{1} following γ_{1} is the same as the λ-block in σ_{2} following γ_{2}, we obtain a contradiction due to $\left(L_{6}\right)$.
Finally, suppose y_{1} is a part of a ζ-block. Since r is divisible by 16 , the number of λ-blocks in each of ρ_{1} and ρ_{2} is divisible by 4 , and since all of them are uniquely determined, we have a repetition in φ_{λ}^{t} (in fact already in φ_{λ}^{t-1}), a contradiction.

- $d=3$.

We first show that there are two consecutive ζ-terms in ρ_{1}. Suppose the contrary. Then, since $r>3$ and the fact that the type vectors of ρ_{1} and ρ_{2} must match, there are two consecutive λ-terms in ρ_{1}. But, in the type vector, between two pairs of two consecutive λ-terms, for $d=3$, there are two consecutive ζ-terms, a contradiction.

Hence, we may assume there are two consecutive ζ-terms in ρ_{1} and by Claim 3, 32 divides $3 r$. Observe also that for $d=3$, there is at least one term from ρ in every λ-block of the covering sequence of ρ. Then, by $\left(L_{7}\right)$, we infer that all λ-blocks in the covering sequences of ρ_{1} are equal to the corresponding λ-blocks in the covering sequences of ρ_{2}, and hence there is a repetition in φ_{λ}^{t-1}, a contradiction.

- $d=4$.

In this case, all the terms of ρ are at the same indices in their λ - and ζ-blocks. As there is at least one ζ-term, by construction of circular sequences, we have that 32 divides $4 r$, and hence 8 divides r. Thus, by $\left(L_{7}\right)$, all λ-blocks in the covering sequences of ρ_{1} are equal to the corresponding ones in the covering sequences of ρ_{2}, and hence there is a repetition in φ_{λ}^{t-1}, a contradiction.

- $d=5$.

In this case, λ - and ζ-blocks of the covering sequence of ρ_{1} contain precisely one term from ρ_{1} with an exception of every fifth block, which is being skipped. Hence, there are two consecutive λ - or ζ-terms in ρ_{1} as soon as $r>4$. As $r>3$, the only possible ρ_{1} with no consecutive terms of the same type has length 4 . However, in such a case, the terms y_{1} and y_{r+1} are not of the same type, so $r>4$.
Suppose first there are no consecutive ζ-terms in ρ_{1}. In that case, there are two consecutive λ-terms in ρ_{1}, and hence also in ρ_{2}. Moreover, since between every pair of consecutive λ-terms there are two consecutive ζ-terms, the only possible r for such ρ, satisfying also that the type vectors of ρ_{1} and ρ_{2} are the same, is 8 . However, then y_{1} and y_{r+1} are both ζ-terms but the difference between their indices in the covering sequence is $5 \cdot 8=40$, meaning that $y_{1} \neq y_{r+1}$.
So, we may assume there are two consecutive ζ-terms in ρ_{1} and, by Claim 3, 32 divides $5 r$ (hence 32 divides r also). By $\left(L_{7}\right)$, all λ-blocks in the covering sequence of ρ_{1} that contain one term from ρ_{1} are equal to the corresponding λ-blocks in the covering sequence of ρ_{2}. Furthermore, since in the covering sequence of ρ three out of every four λ-blocks contain one term from ρ, also the λ-block γ_{0} without a term is uniquely determined, unless it is the first λ-block of $\hat{\rho}_{1}$ or the last λ-block of $\hat{\rho_{2}}$. In the case when γ_{0} is determined, the covering sequence of ρ_{1} contains the same sequence of λ-blocks as the covering sequence of ρ_{2}, and so there is a repetition in φ_{λ}^{t-1}, a contradiction.
Hence, we may assume γ_{0} is not uniquely determined, and without loss of generality, suppose it is the first λ-block of $\hat{\rho}_{1}$. Since γ_{0} is not uniquely determined, it is mapped from either the third or the fourth symbol of some λ-block ξ_{0} of φ_{λ}^{t-1}. In the former case, ξ_{0} is completely determined, since $r \geqslant 32$ and one can determine the λ-block following ξ_{0} in φ_{λ}^{t-1}, and hence also γ_{0} is completely determined. In the latter case, observe that, $y_{2} \ldots y_{r+1} y_{r+2} \ldots y_{2 r} x_{j+5}$ (with $y_{2 r}=x_{j}$) is also a repetition, and considering it, we have all λ-blocks in $\hat{\rho}$ determined, a contradiction.

- $d=6$.

In this case, ρ_{1} alternately contains two consecutive λ - and two consecutive ζ-terms, with a possible shift in the beginning depending on the index of first term in the covering sequence of ρ. Hence, as $r>3$, there are always two consecutive ζ-terms in ρ_{1} unless $r=4$ and the type vector of ρ_{1} is CNNC. However, in that case $y_{1} \neq y_{r+1}$ by the construction of circular sequences.
Thus, we may assume there are two consecutive ζ-terms in ρ_{1} and, by Claim 3, 32 divides $6 r$, hence 16 divides r. Let $r=16 t$; then the length of the covering sequence of ρ_{1} is $6 \cdot 16 t=96 t$ and therefore there are $12 t \lambda$-blocks, where every two out of three consecutive λ-blocks contain a term from ρ_{1}. By $\left(L_{7}\right)$, all λ-blocks in the covering sequence of ρ_{1} that contain one term from ρ_{1} are equal to the corresponding λ-blocks in the covering sequence of ρ_{2}. Recall that a λ-block is not uniquely determined by one term; it can be one of two possible (see $\left(L_{8}\right)$).
Let σ^{t} be the covering sequence of ρ with all ζ-blocks removed and let $\sigma^{t-1}=\lambda^{-1}(\sigma)$. Clearly, σ^{t-1} is a subsequence of φ_{λ}^{t-1}. Let σ_{1}^{t-1} and σ_{2}^{t-1} be the sequences defined analogously for ρ_{1} and ρ_{2}, respectively. As we deduced above, $\sigma_{1}^{t-1}=z_{1} z_{2} \ldots z_{12 t}$ has $12 t$ elements. We consider four subcases regarding the index of z_{1} in φ_{λ}^{t-1}. Note that in each of the four cases, for every z_{i} that is a preimage of some λ-block with one term from ρ, we can uniquely determine which symbol z_{i} represents simply by $\left(L_{8}\right)$ and the position of z_{i} in the λ-block of φ_{λ}^{t-1}. Consequently, every "complete" λ-block of σ_{1}^{t-1} is uniquely determined by $\left(L_{3}\right)$, since we know at least two of its terms, and in the case, when two terms are known, they are at indices 2 and 3 .
Suppose first z_{1} is at index $4 i+1$ in λ^{t-1} for some i. Then, there are $3 t$ complete uniquely determined λ-blocks in σ_{1}^{t-1}, and hence by Lemma 5 , there is a repetition also in φ_{λ}^{t-1}, a contradiction.
Next, suppose z_{1} is at index $4 i+4$ in λ^{t-1}. There are $3 t-1$ complete uniquely determined λ-blocks in σ_{1}^{t-1} and one λ-block, with 3 terms $z_{12 t-2} z_{12 t-1} z_{12 t}$. However, as argued above, the latter is also uniquely determined, which means that $z_{2} \ldots z_{24 t} w$, where w is the element at index $4 i+4+24 t+1$ in φ_{λ}^{t-1}, is also a repetition, and hence we may use the argumentation for z_{1} being at index $4 i+1$.
Suppose z_{1} is at index $4 i+3$ in λ^{t-1}. In this case, there are $3 t-2$ complete uniquely determined λ-blocks in σ_{1}^{t-1}, and two λ-blocks having two terms in σ_{1}^{t-1}. The second one, $z_{12 t-1} z_{12 t} z_{12 t+1} z_{12 t+2}$ has the other two terms in σ_{2}^{t-1}. Now, if $3 t$ is divisible by 4 , then the λ-block $z_{-1} z_{0} z_{1} z_{2}$ equals $z_{12 t-1} z_{12 t} z_{12 t+1} z_{12 t+2}$ and we again can shift the sequence to the left as above, obtaining a repetition. Hence $3 t$ is not divisible by 4 . Consider the λ-blocks $\alpha_{1}=z_{3} z_{4} z_{5} z_{6}$ and $\alpha_{1}=z_{7} z_{8} z_{9} z_{10}$. They are uniquely determined and they must be equal to the λ-blocks $z_{3+12 t} z_{4+12 t} z_{5+12 t} z_{6+12 t}$ and $z_{7+12 t} z_{8+12 t} z_{9+12 t} z_{10+12 t}$, which is not possible due to the parity condition and (L_{6}).
Finally, suppose z_{1} is at index $4 i+2$ in λ^{t-1}. Again, if $3 t$ is divisible by 4 , then we shift the sequence by one to the right as the first (incomplete) λ-block in σ_{1}^{t-1} must match the first (incomplete) λ-block in σ_{2}^{t-1}, and we obtain
a repetition in φ_{λ}^{t-1}. Otherwise, $3 t$ is not divisible by 4 , and we obtain a contradiction on the equality of first two complete λ-blocks in σ_{1}^{t-1} and σ_{2}^{t-1}.

6. Discussion

In this paper, we improve the current state of Conjecture 1 by showing that it is true for every integer k between 1 and 8. In particular, we present two proving techniques, which are in their essence similar, but very much different in practice. Namely, the proving technique presented in Section 3 is (provided there are available computing resources) efficient for confirming Conjecture 1 for small k 's, since one can employ computing resources to verify small instances, while the statement of the conjecture then holds almost trivially for larger instances. However, to be able to prove Conjecture 1 in general or at least for an infinite number of integers, it will fail.

On the other hand, the method described in Section 5 is more promising. We are using a special construction of Thue sequences with properties allowing to prove that they are also k-Thue. This technique needs more argumentation for proving that the generated sequences are indeed k-Thue, but allows for establishing properties for a bigger set of k 's, possibly infinite.

Acknowledgments

BL and RS were partly supported by the Slovenian Research Agency Program P1-0383. BL also acknowledges partial support of the joint Austrian-Slovenian project N1-0057. MM was supported by the project GA17-04611S of the Czech Science Foundation and by the project LO1506 of the Czech Ministry of Education, Youth and Sports. PO was partially supported by the ANR project CoCoGro (ANR-16-CE40-0005). RS was supported by the Slovak Research and Development Agency under the Contract No. APVV-15-0116 and by the Science Grant Agency, Slovakia - project VEGA 1/0368/16.

References

[1] S.E. Aršon, A proof of the existence of infinite asymmetric sequences on n symbols, Mat. Sbornik 2 (1937) 769-779 (in Russian).
[2] J. Berstel, Axel Thue's papers on repetitions in words: a translation, in: Publications du LACIM, vol. 20, Université du Quebec à Monréal, 1994, pp. 1-22.
[3] J. Berstel, D. Perrin, The origins of combinatorics on words, European J. Combin. 28 (2007) 996-1022.
[4] J.D. Currie, Which graphs allow infinite nonrepetitive walks? Discrete Math. 87 (1991) 249-260.
[5] J.D. Currie, E. Moodie, A word on 7 letters which is non-repetitive up to mod 5, Acta Inform. 39 (2003) 451-468.
[6] J.D. Currie, C.W. Pierce, The fixing block method in combinatorics on words, Combinatorica 23 (4) (2003) 571-584.
[7] J.D. Currie, J. Simpson, Non-repetitive tilings, Electron. J. Combin. 9 (2002) \#R28.
[8] F. Dejean, Sur un théorème de Thue, J. Combin. Theory Ser. A 13 (1972) 90-99.
[9] J. Grytczuk, Thue-like sequences and rainbow arithmetic progressions, Electron. J. Combin. 9 (2002) \#R44.
[10] J. Grytczuk, J. Kozik, M. Witkowski, Nonrepetitive sequences on arithmetic progressions, Electron. J. Combin. 18 (2011) \#R209.
[11] A.V. Klepinin, E.V. Sukhanov, On combinatorial properties of the Arshon sequence, Discrete Appl. Math. 114 (1) (2001) 155-169.
[12] M. Kočiško, Nerepetitívne farbenia grafov (Master’s thesis), P. J. Šafárik University in Košice, Slovakia, 2013.
[13] J. Kranjc, B. Lužar, M. Mockovčiaková, R. Soták, On a generalization of Thue sequences, Electron. J. Combin. 22 (2) (2015) \#R33.
[14] A. Thue, Über unendliche Zeichenreichen, Norske Vid. Selsk. Skr., I Mat. Nat. Kl., Christiana 7 (1906) 1-22.

[^0]: * Corresponding author.

 E-mail addresses: borut.luzar@gmail.com (B. Lužar), mmockov@ntis.zcu.cz (M. Mockovčiaková), pascal.ochem@lirmm.fr (P. Ochem), alexandre.pinlou@lirmm.fr (A. Pinlou), roman.sotak@upjs.sk (R. Soták).

