Avoiding conjugacy classes on the 5-letter alphabet

Golnaz Badkobeh ${ }^{\text {a,1 }}$, Pascal Ochem ${ }^{\text {b,2,* }}$
${ }^{a}$ Goldsmiths, University of London
${ }^{b}$ LIRMM, Université de Montpellier, CNRS, Montpellier, France

Abstract

We construct an infinite word w over the 5 -letter alphabet such that for every factor f of w of length at least two, there exists a cyclic permutation of f that is not a factor of w. In other words, w does not contain a non-trivial conjugacy class. This proves the conjecture in Gamard et al. [TCS 2018]

Keywords: Combinatorics on words, Conjugacy classes

1. Introduction

A pattern p is a non-empty finite word over an alphabet $\Delta=\{A, B, C, \ldots\}$ of capital letters called variables. An occurrence of p in a word w is a non-erasing morphism $h: \Delta^{*} \rightarrow \Sigma^{*}$ such that $h(p)$ is a factor of w. The avoidability index $\lambda(p)$ of a pattern p is the size of the smallest alphabet Σ such that there exists an infinite word over Σ containing no occurrence of p. Bean, Ehrenfeucht, and McNulty [3] and Zimin [8] characterized unavoidable patterns, i.e., such that $\lambda(p)=\infty$. However, determining the exact avoidability index of an avoidable pattern requires more work. Although patterns with index 4 [3] and 5 [4] have been found, the existence of an avoidable pattern with index at least 6 is an open problem since 2001.

Some techniques in pattern avoidance start by showing that the considered word avoids other structures, such as generalized repetitions [6, 7]. Let us say that a word has property P_{i} if it does not contain all the conjugates of the same word w with $|w| \geqslant i$. Recently, in order to study the avoidance of a kind of patterns called circular formulas, Gamard et al. [5] obtained that there exists

- a morphic binary word satisfying P_{5},
- a morphic ternary word satisfying P_{3},

[^0]- a morphic word over the 6-letter alphabet satisfying P_{2}.

Recall that a pure morphic word is of the form $m^{\omega}(0)$ and a morphic word is of the form $h\left(m^{\omega}(0)\right)$ for some morphisms m and h. Independently, Bell and Madill [1] obtained a pure morphic word over the 12-letter alphabet that also satisfies P_{2} and some other properties.

It is conjectured that the smallest alphabet allowing an infinite word satisfying P_{2} has 5 letters [5], which is best possible. In this paper, we prove this conjecture using a morphic word. This settles the topic of the smallest alphabet needed to satisfy P_{i}.

2. Main result

Let ε denote the empty word. We consider the morphic word $w_{5}=G\left(F^{\omega}(0)\right)$ defined by the following morphisms.

$$
\begin{array}{ll}
F(0)=01, & G(0)=\text { abcd } \\
F(1)=2, & G(1)=\varepsilon, \\
F(2)=03, & G(2)=\text { eacd } \\
F(3)=24, & G(3)=\text { becd } \\
F(4)=23 . & G(4)=\text { be. }
\end{array}
$$

Theorem 2.1. The morphic word $w_{5} \in \Sigma_{5}^{*}$ avoids every conjugacy class of length at least 2.

In order to prove this theorem, it is convenient to express w_{5} with the larger morphisms $f=F^{3}$ and $g=G \circ F^{2}$ given below. Clearly, $w_{5}=g\left(f^{\omega}(0)\right)$.

$$
\begin{array}{ll}
f(0)=01203, & g(0)=\text { abcdeacd }, \\
f(1)=0124, & g(1)=\text { abcdbecd }, \\
f(2)=0120323, & g(2)=\text { abcdeacdbe }, \\
f(3)=01240324, & g(3)=\text { abcdbecdeacdbecd }, \\
f(4)=01240323 . & g(4)=\text { abcdbecdeacdbe } .
\end{array}
$$

2.1. Avoiding conjugacy classes in $F^{\omega}(0)$

Here we study the pure morphic word and the conjugacy classes it contains.
Lemma 2.2. The infinite word $F^{\omega}(0)$ contains only the conjugacy classes listed in $C=\left\{F(2), F^{2}(2), F^{d}(4), f^{d}(0)\right\}$, for all $d \geqslant 1$.

Proof. Notice that the factor 01 only occurs as the prefix of the f-image of every letter in $F^{\omega}(0)$. Moreover, every letter 1 only occurs in $F^{\omega}(0)$ as the suffix of the factor 01 . Let us say that the index of a conjugacy class is the number of occurrences of 1 in any of its elements. An easy computation shows that the set of complete conjugacy classes in $F^{\omega}(0)$ with index at most one is $C_{1}=\left\{F(2), F^{2}(2), F(4), F^{2}(4), f(4), f(0)\right\}$. Let us assume that $F^{\omega}(0)$ contains a conjugacy class c with index at least two. Let $w \in c$ be such that 01 is a prefix
of w. We write $w=p s$ such that the leftmost occurrence of 01 in w is the prefix of s. Then the conjugate $s p$ of w also belongs to c and thus is a factor of $F^{\omega}(0)$. This implies that the pre-image $v=f^{-1}(w)$ is a factor of $F^{\omega}(0)$, and so does every conjugate of v. Thus, $F^{\omega}(0)$ contains a conjugacy class c^{\prime} such that the elements of c with prefix 01 are the f-images of the elements of c^{\prime}. Moreover, the index of c^{\prime} is strictly smaller than the index of c.

Using this argument recursively, we conclude that every complete conjugacy class in $F^{\omega}(0)$ has a member of the form $f^{i}(x)$ such that x is an element of a conjugacy class in C_{1}.

Now we show that $F(2)$ does not generate larger conjugacy classes in $F^{\omega}(0)$. We thus have to exhibit a conjugate of $f(F(2))=F^{4}(2)=0120301240324$ that is not a factor of $F^{\omega}(0)$. A computer check shows that the conjugate 4012030124032 is not a factor of $F^{\omega}(0)$. Similarly, $F^{2}(2)$ does not generate larger conjugacy classes in $F^{\omega}(0)$ since the conjugate 301203012401203230124032 of $f\left(F^{2}(2)\right)=F^{5}(2)=012030124012032301240323$ is not a factor of $F^{\omega}(0)$.

2.2. Avoiding conjugacy classes in w_{5}

We are ready to prove Theorem 2.1. A computer check ${ }^{3}$ shows that w_{5} avoids every conjugacy class of length at most 1000. Let us assume that w_{5} contains a conjugacy class c of length at least 41. Consider a word $w \in c$ with prefix ab. Notice that ab only appears in w_{5} as the prefix of the g-image of every letter. Since $|w| \geqslant 41, w$ contains at least 2 occurrences of ab and we write $w=p s$ such that the rightmost occurrence of ab in w is the prefix of s. Then the conjugate $s p$ of w also belongs to c and thus is a factor of w_{5}. This implies that the pre-image $v=g^{-1}(w)$ is a factor of $F^{\omega}(0)$, and so does every conjugate of v. Thus, $F^{\omega}(0)$ contains a conjugacy class c^{\prime} such that the elements of c with prefix ab are the f-images of the elements of c^{\prime}.

To finish the proof, it is thus sufficient to show that for every $c^{\prime} \in C$, there exists a conjugate of $g\left(c^{\prime}\right)$ that is not a factor of w_{5}. Recall that $C=$ $\left\{F(2), F^{2}(2), F^{d}(4), f^{d}(0)\right\}$ for all $d \geqslant 1$. The computer check mentioned above settles the case of $F(2)$ and $F^{2}(2)$ since $|g(F(2))|<\left|g\left(F^{2}(2)\right)\right|=40<90$. It also settles the case of $f(4)$ and $f(0)$ since $|g(f(0))|<|g(f(4))|=90$.

The next four lemmas handle the remaining cases (with $d \geqslant 1$):

- $g\left(f^{d}(F(4))\right)=g\left(f^{d}(23)\right)$
- $g\left(f^{d}\left(F^{2}(4)\right)\right)=g\left(f^{d}(0324)\right)$
- $g\left(f^{d+1}(4)\right)=g\left(f^{d}(01240323)\right)$
- $g\left(f^{d+1}(0)\right)=g\left(f^{d}(01203)\right)$

Lemma 2.3. Let $p_{23}=e . g\left(3 f(3) \ldots f^{d-1}(3) . f^{d}(3)\right)$ and
$s_{23}=g\left(f^{d-1}(01203) \cdot f^{d-2}(01203) \ldots f(01203) 01203\right) . a b c d e a c d b$. For every

[^1]$d \geqslant 0$, the word $T_{23}=p_{23} s_{23}$ is a conjugate of $g\left(f^{d}(23)\right)$ that is not a factor of w_{5}.

Proof. It is easy to check that T_{23} is indeed a conjugate of $g\left(f^{d}(23)\right)$. Let us assume that T_{23} appears in w_{5}.
The letter 3 in $f^{\omega}(0)$ appears after either 0 or 2 . However e is a suffix of $g(2)$ and not of $g(0)$. Therefore, e. $g(3)$ is a suffix of $g(23)$ only. Since 23 is a suffix of $f(2)$ and not of $f(0)$, then $g(23 f(3))$ is a suffix of $g(f(23))$ only. Using this argument recursively, p_{23} is a suffix of $g\left(f^{d}(23)\right)$ only.

Now, the letter 3 in $f^{\omega}(0)$ appears before either 0 or 2 , however abcdeacdb is a prefix of $g(2)$ and not of $g(0)$. Thus $g(01203)$.abcdeacdb is a prefix of $g(012032)$ only. Since 012032 is a prefix of $f(2)$ and not of $f(0)$, then $g(f(01203) 012032)$ is a prefix of $g(f(012032))$ only. Using this argument recursively, s_{23} is a prefix of $g\left(f^{d-1}(012032)\right)$ only. Thus, if T_{23} is a factor of w_{5}, then $g\left(f^{d}(232)\right)$ is a factor of w_{5}. This is a contradiction since 232 is not a factor of $f^{\omega}(0)$.

Lemma 2.4. Let $\left.p_{0324}=a c d b e c d . g\left(24 f(24) \ldots f^{d-1}(24)\right) \cdot f^{d}(24)\right)$ and $s_{0324}=$ $g\left(f^{d-1}(01240) \ldots f(01240) .01240\right) . a b c d b e c d e$. For every $d \geqslant 0$, the word $T_{0324}=$ $p_{0324} g\left(f^{d}(0)\right) s_{0324}$ is a conjugate of $g\left(f^{d}(0324)\right)$ that is not a factor of w_{5}.

Proof. Let us assume that T_{0324} appears in w_{5}.
The letter 2 in $f^{\omega}(0)$ appears after either 1 or 3 . However acdbecd is a suffix of $g(3)$ and not of $g(1)$. Therefore acdbecd. $g(24)$ is a suffix of $g(324)$ only. Since 324 is a suffix of $f(3)$ and not of $f(1)$, then $g(324 f(24))$ is a suffix of $g(f(324))$ only. Using this argument recursively, p_{0324} is a suffix of $g\left(f^{d}(324)\right)$ only.

Now, the letter 0 in $f^{\omega}(0)$ appears before either 1 or 3 . However abcdbecde is a prefix of $g(3)$ and not of $g(1)$. Thus $g(01240)$.abcdbecde is a prefix of $g(012403)$ only. Since 012403 is a prefix of $f(3)$ and not of $f(1)$, then $g(f(01240) 012403)$ is a prefix of $g(f(012403))$ only. Using this argument recursively, s_{0324} is a prefix of $g\left(f^{d-1}(012403)\right)$ only. Thus, if T_{0324} is a factor of w_{5}, then $g\left(f^{d}(32403)\right)$ is a factor of w_{5}. This is a contradiction since 32403 is not a factor of $f^{\omega}(0)$.

Lemma 2.5. Let $p_{01240323}=$ ecdeacdbe.g(0323f(0323) $\left.\cdots f^{d-1}(0323) . f^{d}(0323)\right)$ and $s_{01240323}=g\left(f^{d}(012) f^{d-1}(012) . \cdots f(012) 012\right) . a b c d b$. For every $d \geqslant 0$, the word $T_{01240323}=p_{01240323} s_{01240323}$ is a conjugate of $g\left(f^{d}(01240323)\right.$ that is not a factor of w_{5}.

Proof. Let us assume that $T_{01240323}$ appears in w_{5}.
The factor 03 in $f^{\omega}(0)$ appears after either 2 or 4 . However ecdeacdbe is a suffix of $g(4)$ and not of $g(2)$. Therefore ecdeacdbe. $g(0323)$ is a suffix of $g(40323)$ only. Since 40323 is a suffix of $f(4)$ and not of $f(2)$, then $g(40323 f(0323))$ is a suffix of $g(f(40323))$, using this argument recursively, $p_{01240323}$ is a suffix of $g\left(f^{d}(40323)\right)$ only.

Now, the factor 12 in $f^{\omega}(0)$ appears before either 0 or 4 . However abcdb is a prefix of $g(4)$ and not of $g(0)$. Thus $g(012)$.abcdb must only be a prefix of $g(0124)$ and since 0323 is a prefix of $f(4)$ and not of $f(0)$ then $g(f(012) 0124)$ is
a prefix of $g(f(0124))$ only. Using this argument recursively, $s_{01240323}$ is a prefix of $g\left(f^{d}(0124)\right)$ only. Thus, if $T_{01240323}$ is a factor of w_{5}, then $g\left(f^{d}(403230124)\right)$ is a factor of w_{5}. This is a contradiction since 403230124 is not a factor of $f^{\omega}(0)$.

Lemma 2.6. Let $p_{01203}=d . g\left(3 f(3) \ldots f^{d-1}(3) . f^{d}(3)\right)$ and
$s_{01203}=g\left(f^{d}(012) f^{d-1}(012) \cdot f^{d-2}(012) \ldots f(012) 012\right) . a b c d e a c$. For every $d \geqslant$ 0 , the word $T_{01203}=p_{01203} s_{01203}$ is a conjugate of $g\left(f^{d}(01203)\right)$ that is not a factor of w_{5}.

Proof. Let us assume that T_{01203} appears in w_{5}.
The letter 3 in $f^{\omega}(0)$ appears after either 0 or 2 . however d is a suffix of $g(0)$ and not of $g(2)$. Therefore d. $g(2)$ is a suffix of $g(12)$ only. Since 12 is a suffix of $f(1)$ and not of $f(3)$, then $g(12 f(2))$ is a suffix of $g(f(12))$ only. Using this argument recursively, p_{01203} is a suffix of $g\left(f^{d}(12)\right)$ only.

Now, 012 in $f^{\omega}(0)$ appears before either 1 or 4 , however abcdeac is only a prefix of $g(1)$ and not of $g(4)$. Thus $g(012)$.abcdeac is a prefix of $g(0120)$ only. Since 0120 is a prefix of $f(1)$ and not of $f(4)$, then $g(f(012) 0120)$ is a prefix of $g(f(0120))$ only. Using this argument recursively, s_{01203} is a prefix of $g\left(f^{d}(0120)\right)$. Thus, if T_{01203} is a factor of w_{5}, then $g\left(f^{d}(030120)\right)$ is a factor of w_{5}. This is a contradiction since 030120 is not a factor of $f^{\omega}(0)$.

References

[1] J.P. Bell and B.W. Madill. Iterative Algebras. Algebr. Represent. Theor. 18(6) (2015), 1533-1546. https://doi.org/10.1007/ s10468-015-9550-y
[2] K. A. Baker, G. F. McNulty, and W. Taylor. Growth problems for avoidable words. Theoret. Comput. Sci., 69(3) (1989), 319-345.
[3] D. R. Bean, A. Ehrenfeucht, and G. F. McNulty. Avoidable patterns in strings of symbols. Pacific J. Math., 85 (1979), 261-294.
[4] R. J. Clark. Avoidable formulas in combinatorics on words. PhD thesis, University of California, Los Angeles, 2001. Available at http://www.lirmm.fr/~ochem/morphisms/clark_thesis.pdf
[5] G. Gamard, P. Ochem, G. Richomme, and P. Séébold. Avoidability of circular formulas. Theoret. Comput. Sci. 726 (2018), 1-4.
[6] L. Ilie, P. Ochem, and J.O. Shallit. A generalization of repetition threshold. Theoret. Comput. Sci. $92(2)$ (2004) 71-76.
[7] P. Ochem. A generator of morphisms for infinite words. RAIRO - Theor. Inform. Appl. 40 (2006), 427-441.
[8] A. I. Zimin. Blocking sets of terms. Math. USSR Sbornik, 47(2) (1984), 353-364.

[^0]: * Corresponding author

 Email addresses: g.badkobeh@gold.ac.uk (Golnaz Badkobeh), ochem@lirmm.fr (Pascal Ochem)
 ${ }^{1}$ Golnaz Badkobeh is supported by the Leverhulme Trust on the Leverhulme Early Career Scheme.
 ${ }^{2}$ This work is supported by the ANR project CoCoGro (ANR-16-CE40-0005).

[^1]: ${ }^{3}$ See the program at http://www.lirmm.fr/~ochem/morphisms/conjugacy.htm

