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Abstract of the Dissertation

Avoidable Formulas in Combinatorics on Words

by

Ronald James Clark

Doctor of Philosophy in Mathematics

University of California, Los Angeles, 2001

Professor Kirby Baker, Chair

The study of regularities in infinite words is a common theme in combinatorics

on words. One class of regularities concerns pattern words. A pattern word, or

pattern for short, is a finite word of variables. An infinite word W avoids a

pattern P if for any substitution h of the variables of P with nonempty words,

h(P ) is not a subword of W. A pattern is n-unavoidable if no infinite word with

n symbols avoids it.

A formula is a set of patterns. An infinite word W avoids a formula f =

{P1, P2, . . . , Pn } with the variable set Σ if for every substitution h of the variables

of Σ, some h(Pi) is not a subword of W. Thus, the formula f is a logical “and”

of patterns: any infinite word that fails to avoid f fails to avoid every pattern

in f . A formula is n-unavoidable if no infinite word with n symbols avoids it. A

formula is avoidable if it is not n-unavoidable for some n > 0.

The pattern P = P1x1P2x2 . . . xn−1Pn, where each xi is a variable which occurs

only once, is related to the formula f = {P1, P2, . . . , Pn }. It is known that P

is n-unavoidable if and only if f is n-unavoidable, a condition which is easier to

verify. The formula f can be viewed as a “fragmentation” of P : if W does not

avoid P for the substitution h, then the subwords h(P1), h(P2), . . . , and h(Pn)
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must occur in order in W; if W does not avoid f for the substitution h, then

the subwords h(P1), h(P2), . . . , and h(Pn) can occur arbitrarily in W.

This thesis answers various questions about avoidable formulas. The index

of a formula f is the smallest n for which f is not n-unavoidable. Of primary

importance is the search for avoidable formulas having index 5 or higher, none

of which have ever been found. Through our use of avoidance bases, we show

that any such formula has at least four letters. A certain class of formulas, called

locked formulas, have been proven to have index at most 4. We show that any

minimally locked formula of over four letters has index equal to 4. We finally

show the existence of an index 5 formula with an explicit example.
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CHAPTER 1

Preliminaries

1.1 Introduction

In the early 1900’s, the Norwegian mathematician Axel Thue [13, 14] showed that

there exists an infinite word on a three-letter alphabet which does not contain two

consecutive occurrences of the same subword. He also proved the existence of an

infinite word over a two-letter alphabet which does not contain three consecutive

occurrences of the same subword. Possibly because of the restricted availability

of the journal in which his papers were published, Thue’s results were mostly

ignored. They have been rediscovered several times.

In 1979, Zimin [15] and Bean, Ehrenfeucht, and McNulty [2] independently

generalized this idea to arbitrary patterns. They say that a word W avoids a

pattern such as aabba if for all possible substitutions A for a and B for b, the

word AABBA is not a subword of W . In this light, we can view Thue’s first

result as the following: there exists an infinite word on three letters avoiding aa,

or alternatively, aa is 3-avoidable. Bean et al. and Zimin went on to give an

algorithm for determining whether a given pattern can be avoided by an infinite

word from some finite alphabet.

Of obvious interest is determining the smallest n for which an avoidable pat-

tern P is n-avoidable. Such n is called the index of P . For example, aa has

index 3, while aaa has index 2. In fact, most avoidable patterns have index 3
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or smaller. In 1989, Baker, McNulty, and Taylor [1] showed that there exists a

pattern having index 4. It is still an open problem whether for all N , there exists

n ≥ N and a pattern P such that P has index n.

In 1994, Cassaigne [8] introduced formulas, which are finite sets of patterns.

To him, a word W avoids a formula f such as { aba, bab } if for all possible

substitutions A for a and B for b, either ABA or BAB is not a subword of W .

Thus, f is a logical “and” of aba and bab: a word fails to avoid f if and only

if it fails to avoid both aba and bab (under the same substitution). Cassaigne

showed that every formula can be associated in a natural way to a pattern with

the same index. Because of this fact, formulas can be used to find patterns with

index higher than 4.

We view this problem as the impetus for this thesis. Namely, is there an

index 5 formula? How rare are index 4 formulas? This chapter discusses the

basic notions and summarizes some previously discovered results.

1.2 Basic Definitions

An alphabet is a finite set. The elements of an alphabet are called letters. A

word is a finite sequence of letters from some alphabet. The length of word W

is the length of its sequence of letters, denoted |W |. If Σ is an alphabet, the set

of all words over Σ is denoted Σ∗. Included in Σ∗ is the empty word, ε. We use

Σ+ to mean Σ∗ \ { ε }. The product of two words U and V , written UV , is the

word consisting of the letters of U followed by the letters of V . For example,

the product of abcba and bc is abcbabc. Under this operation, we can view Σ∗

(resp. Σ+) as the free monoid (resp. semigroup) generated by Σ. If S is a set of

words, then S∗ (resp. S+) is the set of words which are products (resp. nonempty
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products) of words from S.

If Σ and ∆ are alphabets, a map h from Σ∗ to ∆∗ is called a homomorphism

if h(W ) = h(a1)h(a2) . . . h(an) for all words W = a1a2 . . . an in Σ∗. A homomor-

phism is determined by the images h(a), a ∈ Σ. A homomorphism is nonerasing

if h(a) 6= ε for all a ∈ Σ. A homomorphism is uniform of length k if |h(a)| = k

for all a ∈ Σ. An endomorphism is a homomorphism from Σ∗ to Σ∗. Given

U, V ∈ Σ∗, U is a subword of V if V = XUY for some X, Y ∈ Σ∗. If X = ε

(resp. Y = ε), we say that U is a prefix (resp. suffix ) of V . We write U ≤ V to

indicate that U is a subword of V and U < V to mean U ≤ V but U 6= V . For

example, ab < babc and ε ≤ V for any word V . The relation ≤ defines a partial

order on Σ∗.

An infinite word (over Σ) is an infinite sequence of letters from Σ. The set of

all infinite words over Σ is denoted by Σω. If U ∈ Σω, we say that word P is a

prefix of U if U = PV for some V ∈ Σω. Similarly, a word X is a subword of U

if U = PXV for some P ∈ Σ∗ and V ∈ Σω. Finally, we say that V ∈ Σω is a

suffix of U if U = PV for some P ∈ Σ∗. If S is a set of nonempty words (over

Σ), then Sω is the set of infinite products of words from S, that is, the subset of

Σω consisting of those infinite words which, for all n, have an element of Sn as a

prefix.

1.3 Formulas and Divisibility

Let ∆ be an alphabet. A formula (over ∆) is a finite set of words over ∆,

usually written in arbitrary order separated by dots, although sometimes we

revert to set notation for convenience. Some examples are abab.bba, abccba,

and ab.ba.ac.ca.bc.cb. The elements of a formula are called fragments. Since
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the “.” is suggestive of a multiplicative operation, we sometimes write a for-

mula as f = ΠPi, where each Pi is a fragment. Given formulas f = Πm
i=1Pi

and g = Πn
j=1Qj, define f.g to be f ∪ g, that is, the formula having fragments

P1, P2, . . . Pm, Q1, Q2, . . . Qn. A pattern is a formula with one fragment. It will

be convenient to identify a word P with the pattern {P }.

For any formula f , let alph(f) be the set of letters occurring in f . For example,

alph(abcba.bcbc) = { a, b, c }.

Definition 1.3.1. Let f and g be formulas.

1. We say that f divides g, written f | g, if there exists a nonerasing homo-

morphism ϕ : alph(f)∗ → alph(g)∗ such that for all P ∈ f , there exists

Q ∈ g such that ϕ(P ) ≤ Q. We say that f divides g via ϕ or that ϕ shows

the divisibility of f into g.

2. We say that f e-divides g, written f |e g, if there exists an injective ϕ

showing f | g with |ϕ(a)| = 1 for all a ∈ alph(f). (The e stands for embeds.)

3. We say that f i-divides g, written f |i g, if alph(f) ⊂ alph(g) and there

exists ϕ showing f | g with ϕ(a) = a for all a ∈ alph(f). (The i stands for

inclusion.)

For example, aba.bab | 011011 (via ϕ(a) = 0 and ϕ(b) = 11), aba.bab |e cdcd

(via ϕ(a) = c and ϕ(b) = d), and aba.bab |i abab. Note that f |i g implies f |e g,

which in turn implies f | g.

Two formulas are equivalent (resp. e-equivalent, i-equivalent) if they divide

(resp. e-divide, i-divide) each other. We may indicate this relation by ∼ (resp.

∼e, ∼i). For example, ab.ba and ab.ba.ac.ca are equivalent, while ab and ac are

e-equivalent.
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If a formula f divides a word W , then we say that W encounters f or that

W contains f .

Definition 1.3.2. A formula f is irredundant if, for all fragments P and Q,

P ≤ Q implies P = Q.

For a formula f , let irr(f) = { P ∈ f | Q ∈ f and P ≤ Q implies P = Q }.

For example, if f = aba.ab.baab, then irr(f) = aba.baab.

Proposition 1.3.3. irr(f) is irredundant and i-equivalent to f .

Proof. Let P, Q ∈ irr(f), and suppose P ≤ Q. Since irr(f) ⊂ f , we have Q ∈ f .

By the definition of irr(f), we have P = Q.

If P ∈ f , then P ≤ Q for some Q ∈ irr(f), so f |i irr(f). Clearly, irr(f) |i f .

This means that irr(f) ∼i f .

Lemma 1.3.4. Let f and g be irredundant formulas. Then, f and g are i-

equivalent if and only if f = g.

Proof. Suppose f |i g and g |i f . Let P ∈ f . Since f |i g, there exists Q ∈ g such

that P ≤ Q. Since g |i f , there exists P ′ ∈ f such that Q ≤ P ′. The relation ≤ is

transitive, so P ≤ P ′. By irredundancy, we have P = P ′, which implies P = Q.

Thus, f ⊂ g. A symmetric argument shows g ⊂ f .

The other direction is obvious.

For a formula f , let fact(f) = {P ∈ alph(f)∗ | P ≤ Q for some Q ∈ f }.

Proposition 1.3.5. The set of all irredundant formulas over ∆ forms a lattice

under i-divisibility.
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Proof. Reflexivity and transitivity are clear. Lemma 1.3.4 shows antisymmetry.

The sup of two formulas f and g is irr(f ∪ g). The inf of f and g is irr(fact(f)∩

fact(g)).

Let f be a formula and let P ∈ f have length greater than one. Let P1

(resp. P2) be the prefix (resp. suffix) of P of length |P | − 1. The formula

Simp(f, P ) = {Q ∈ f | Q 6= P } ∪ {P1, P2 } is the P -simplification of f . A

formula g is a simplification of f if g = Simp(f, P ) for some P ∈ f . For example,

ab.ba.acb is a simplification of aba.acb.

Clearly, Simp(f, P ) |i f , while a little thought shows f |i Simp(f, P ) if and

only if P ≤ Q for some Q ∈ f , Q 6= P . In particular, if f is irredundant, then

every simplification of f properly i-divides it.

Proposition 1.3.6. Let f and g be formulas. Suppose g has no fragments of

length 1. Then, f |i g if and only if f ∼i g or f i-divides a simplification of g.

Proof. Suppose f |i g. If, for all Q ∈ g, there exists P ∈ f such that Q ≤ P , then

g |i f , and so f ∼i g. If this fails for some Q, then Q is not a subword of any

P ∈ f . In particular, Q /∈ f , which implies f |i Simp(g,Q).

The reverse implication is obvious.

1.4 Avoidability

Avoidability measures the complexity of a formula. Generally speaking, formulas

built from small alphabets, having many fragments, or having long fragments are

easier to avoid, while formulas from large alphabets, having few fragments, or

having only short fragments are harder to avoid.

A word W avoids formula f if f does not divide W . An infinite word avoids
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f if every prefix of it avoids f . For example, abcab avoids aa but not ab.ba

(ϕ(a) = ab and ϕ(b) = c gives an encounter).

Definition 1.4.1. Let Σ be an alphabet. A formula f is Σ-avoidable if, for any

M > 0, there exists W ∈ Σ∗ with |W | > M such that W avoids f .

The following proposition is proven in Cassaigne [8]. A variation appears in

Bean et al. [2].

Proposition 1.4.2. Let f be a formula. The following are equivalent:

1. f is Σ-avoidable.

2. The set {W ∈ Σ∗ | W avoids f } is infinite.

3. There exists an infinite word U over Σ avoiding f .

Proof. For 1 implies 2: let f be Σ-avoidable. We set M1 = 1. There ex-

ists W1 ∈ Σ∗ avoiding f with |W1| > M1. Having defined M1, M2, . . . ,Mk

and W1, W2, . . . ,Wk, we set Mk+1 = |Wk| and choose Wk+1 ∈ Σ∗ avoiding f

with |Wk+1| > Mk+1. By construction, {W1, W2, . . . } is an infinite subset of

{W ∈ Σ∗ | W avoids f }.

For 2 implies 3: we show inductively that there exists a sequence of words

{Wi } such that (1) each Wi is a prefix of infinitely many words in {W ∈ Σ∗ |

W avoids f }, (2) each Wi has length i, and (3) each Wi is a prefix of Wi+1. Let

Σ = { a1, a2, . . . , an }. We may take W1 = a1. Having defined Wk, we claim that

Wk+1 can be chosen from among Wka1, Wka2, . . . ,Wkan. Indeed, properties (2)

and (3) clearly hold no matter which choice is made. Observing that

{W ∈ Σ∗ | W avoids f and Wk is a prefix of W }
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is the disjoint union

{Wk } ∪
⋃

1≤i≤n

{W ∈ Σ∗ | W avoids f and Wkai is a prefix of W },

we see that one of the sets on the right must be infinite.

For 3 implies 1: choose M > 0. The prefix of U of length M + 1 works.

If Σ and Σ′ are two alphabets of the same cardinality, then clearly f is Σ-

avoidable if and only if f is Σ′-avoidable. Because of this, we say that f is

n-avoidable if f is Σ-avoidable for any alphabet Σ of size n.

If f is not n-avoidable, we say f is n-unavoidable. We say that f is avoidable

if f is n-avoidable for some n. Otherwise, if f is n-unavoidable for all n, then

f is unavoidable. If f is n-avoidable, then f is (n + 1)-avoidable. Taking the

contrapositive, if f is (n+1)-unavoidable, then f is n-unavoidable. We define the

index (of avoidability) of f , written ind(f), to be the smallest n such that f is n-

avoidable if f is avoidable, or∞ if f is unavoidable. If f | g, then ind(f) ≥ ind(g).

In particular, if two formulas are equivalent, they have the same index.

Every formula is 1-unavoidable. Indeed, let f be a formula, and let k =

maxP∈f |P |. Every word of length k or larger in { a }∗ contains an encounter of

f via ϕ(x) = a for all x ∈ alph(f).

Many formulas have index 2. It is known that aaa and ababa do [Thue [14]].

Some formulas have index 3: the classic example is aa [Thue [13]]. Few known

formulas have index 4. The first example discovered was abxbayaczcawbc by

Baker, McNulty, and Taylor [1] in 1989.

Until now, no known formulas have been discovered having finite index higher

than 4. We prove their existence in Chapter 4.

Formulas having infinite index—that is, unavoidable formulas—are well un-

derstood [Zimin [15] and Bean et al. [2]]. An easy example is aba: for any n, a
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word of length 2n + 1 over an alphabet of size n has two nonconsecutive occur-

rences of the same letter. Sending a to that letter and b to the subword separating

them yields an encounter with aba. An algorithm that determines which formulas

have infinite index will be discussed in the next section.

A simple corollary of Proposition 1.4.2 is the following.

Corollary 1.4.3. Let f be a formula, and let f̃ be the formula whose fragments

are the reversals of those of f . Then, ind(f) = ind(f̃).

Proof. Suppose f is n-avoidable. Let Σ be an alphabet of size n. By the propo-

sition, the set S of words over Σ∗ avoiding f is infinite. Let S̃ be the set of words

of S reversed. The words of S̃ avoid f̃ , so f̃ is n-avoidable. The result follows by

reversing this argument.

Formulas were first introduced in Cassaigne’s thesis [8] based on an idea of

Kirby Baker. The connection with the historical notion of a pattern is based on

the following theorem. An isolated letter of a formula is a letter that appears

only once.

Theorem 1.4.4 (Cassaigne [8]). Let P be a pattern. Let f be the formula

obtained by replacing all isolated letters by “.” (That is, let f be the set of

subwords of P between isolated letters.) Then, ind(P ) = ind(f).

Proof. If P is k-unavoidable, then every sufficiently long word on k letters is

divisible by P . Since f divides P , by transitivity we have that f divides every

sufficiently long word on k letters. This means that f is k-unavoidable. Hence,

ind(f) ≥ ind(P ).

Now, suppose f = ΠQj is k-unavoidable. Let n = | alph(f)|. Every suffi-

ciently long word, say of length M , on k letters is divisible by f . Let W be an
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infinite word on k letters. We write W = X1Y1X2Y2 . . . , where |Xi| = M and

|Yi| = |P | for all i. For every i, there exists a homomorphism ϕi which shows f

dividing Xi. The number of such homomorphisms is bounded by kMn. By the

pigeonhole principle, there must be an infinite sequence ϕi1 , ϕi2 , . . . of identical

homomorphisms, which we denote simply by ϕ. This means that ϕ(Q1) is a

subword of Xi1 , ϕ(Q2) is a subword of Xi2 , and so on. If we send the isolated

letters of P to the spaces between these subwords, we can extend ϕ to show an

encounter of P in W. Thus, ind(P ) ≥ ind(f).

As a simple example, we show that since aba.bab is 2-unavoidable, so is

abacbab. It is not hard to verify that every word having length 9 over { 0, 1 }

encounters aba.bab. The set of all such encounters can be described as pairs

(ϕ(a), ϕ(b)): (01, 1), (0, 0), (0, 11), etc. Only finitely many pairs exist, say N . Let

W be a word of length 16N + 9, and write W = U1V1U2V2 . . . VNUN+1, with

|Ui| = 9 and |Vj| = 7 for all i, j. There are two Ui’s that f divides via the same

homomorphism ϕ, say Uj and Uk, j < k. In particular, Uj contains ϕ(aba) and Uk

contains ϕ(bab). Letting ϕ(c) be the subword of W between these two encounters

yields an encounter of abacbab.

1.5 A Known Algorithm to Determine Avoidability

As stated in the introduction, Zimin [15] and Bean, Ehrenfeucht, and McNulty [2]

proved a result that effectively determines whether a formula is avoidable. In this

section, we summarize their findings. We begin with some definitions.

Let f be a formula. For every a ∈ alph(f), we make two copies aL and aR,

and let V = { aL | a ∈ alph(f) }∪{ aR | a ∈ alph(f) }. The adjacency graph of f ,

denoted AG(f), is the bipartite graph with V as the vertex set such that { aL, bR }
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is an edge if and only if ab is a transition of f , that is, ab is a subword of some

fragment of f . We may indicate an adjacency graph by listing the associated

transitions. For example, { ab, ac, bc } refers to the adjacency graph with the

edge set { { aL, bR }, { aL, cR }, { bL, cR } }.

A set S ⊂ alph(f) is free in formula f if for all a, b ∈ S, aL and bR lie in

different components of AG(f). We say that formula f reduces to f ′ if f ′ is the

formula obtained by deleting all the variables of a free set from f , discarding

any empty word fragments. We denote this deletion by σS(f) = f ′ (or σx(f) if

S = {x }). A formula is reducible if there is a sequence f = f1, f2, . . . , fn = ∅,

where for i < n, fi reduces to fi+1.

Theorem 1.5.1 (Zimin [15] or Bean et al. [2]). A formula is unavoidable if

and only if it is reducible.

Hence, a formula f is avoidable if and only if the deletion of every free set

from f is also avoidable. For example, f = abca.bcab.cac is avoidable. The free

sets of f are { a } and { c }. Deleting { a }, we get bc.bcb.cc, which is equivalent

to bcb.cc. This formula has no free sets and so by Proposition 1.5.1 it must be

avoidable. Deleting { c } from abca.bcab.cac yields aba.bab.a, which is equivalent

to aba.bab. This formula has two free sets: { a } and { b }. Deleting { a } gives

b.bb ∼ bb, which has no free sets and so must be avoidable. Deleting { b } is

analogous.

An example of an unavoidable formula is abca.cabc.cbc. Deleting the free set

{ c } gives us aba.ab.b ∼ aba. The formula aba has { a } as a free set, so deleting

it yields b. Finally, deleting free set { b } from b produces ∅.

Theorem 1.5.2 (see [15] or [2]). Every unavoidable pattern has an isolated

letter.
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Proof. Let P be a pattern. We prove the contrapositive: every pattern with no

isolated letters is avoidable. The proof is by induction on n = | alph(P )|. If

n = 1, then aa |P , and so P is avoidable. We assume the result is true for n = k

and that P is a pattern on k + 1 letters. If P has no free sets, we are done.

Otherwise, let S be any free set of P . We note that S 6= alph(P ) since |P | > 1.

(If ab is a subword of P , then a and b cannot be in the same free set of P .)

Deleting S, we get σS(P ), which by induction is avoidable.

Theorem 1.5.3 (see [15] or [2]). Every pattern on n letters of length 2n or

more is avoidable.

Proof. The proof is by induction on n. If n = 1, the result is clear. We assume

the theorem is true for n = k. Let P be a pattern on k + 1 letters of length 2k+1.

If P has no isolated letters, then P is avoidable by Theorem 1.5.2. Otherwise,

P must have an isolated letter, say a. We can write P = RaS, with R and S

patterns on k letters. At least one of them must have length at least 2k, say R.

By induction, R is avoidable. Since R |P , P is avoidable.

Corollary 1.5.4 (Cassaigne [8]). If f is an unavoidable formula, then every

fragment must have an isolated letter (for that fragment). If any fragment of a

formula f has only n letters but has length 2n or larger, then f is avoidable.

1.6 Finding the Index of Avoidability

The preceding section gave a test for determining whether a formula is avoidable,

but it offers no help finding the actual index of avoidability. In general, given an

avoidable formula f , there are two things to prove to show ind(f) = n:

1. ind(f) < n: every sufficiently long word on n− 1 letters contains f .

12



Input: a formula f

Output: if f is n-unavoidable, the words over { a1, . . . , an } which avoid f .

W ← ε.

Repeat:

While f divides W

While the last letter of W is an

Erase the last letter of W .

If W = ε, terminate.

Replace the last letter of W , say ai, by ai+1.

Display W .

W ← Wa1.

Table 1.1: Cassaigne’s Backtracking Algorithm

2. ind(f) ≥ n: there exist arbitrarily long words on n letters avoiding f .

Proving (1) can be difficult by hand, and often we resort to enumerating

all words avoiding f . The backtracking algorithm of Cassaigne [8] described in

Table 1.1 is a common way to do this. The algorithm will fail to end if f is

n-avoidable.

Using backtracking, one can show, for example, that the only words over

{ 0, 1 } avoiding aba.bab are 0, 00, 001, 0010, 00100, 0011, 00110, 001100, 0011001,

00110010, 001101, 01, 010, 0100, 01001, 010011, 0100110, 01001100, 011, 0110,

01100, 011001, 0110010, 0110011, and 01101; and their inverses (replace 0 by 1

and 1 by 0). Hence, aba.bab is 2-unavoidable.

If a formula f is n-avoidable, then the set of infinite words avoiding f on an

alphabet of size n is nonempty. Therefore, if we are interested in demonstrating
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that f is n-unavoidable but not in the actual number of words avoiding f on n

letters, the backtracking can be improved by insisting that no suffix of any word

be (after possibly relabeling) lexicographically smaller than the corresponding

prefix of the same length. For example, 011 cannot be the prefix of some infinite

word avoiding aba.bab unless 00 is.

Proving (2) generally involves the construction of an HD0L-system. (HD0L

refers to a “homomorphic image of a deterministic and 0-context Lindenmayer-

system”. The “0” is in fact a zero.) An HD0L-system is a 5-tuple (Σ, g, W, Σ′, h),

where W is a word over Σ, g is an endomorphism from Σ∗ to Σ∗, and h is a

homomorphism from Σ∗ to Σ
′∗. One then shows that h(gn(W )) avoids a formula

f for all n > 0. A special case of an HD0L-system is a D0L-system, where Σ = Σ′

and h is the identity map. Equivalently, we may identify a D0L-system by the

triple (Σ, g, W ).

We may write the images of g separated by “/” as an abbreviation for a

D0L-system, with W implicitly understood to be 0. For example 012/02/1 (or

g = 012/02/1 to be more specific) refers to the D0L-system ({ 0, 1, 2 }, g, 0), where

g(0) = 012, g(1) = 02, and g(2) = 1.

The words g(x), x ∈ Σ, are called building blocks of g. Any word of the form

g(U), for some U ∈ Σ+, is called simply a block.

If g is a D0L-system such that, for some x ∈ Σ, g(x) begins with x, then g is

said to be prefix-preserving with respect to x. The reason for the name is that

one can show gn(x) is a prefix of gn+1(x) for all n > 0. If g is prefix-preserving

with respect to x and |gn(x)| → ∞, define gω(x) to be the unique infinite word

having gn(x) as a prefix for all n > 0.

A finite set of words L ∈ Σ∗ is a prefix code (resp. suffix code) if no word in

L is a prefix (resp. suffix) of another. A set of words is a biprefix code if it is
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both a prefix and suffix code. A D0L-system g is a prefix (resp. suffix, biprefix )

if the set { g(x) | x ∈ Σ } is a prefix (resp. suffix, biprefix) code. If g is a prefix

and g(Y ) is a prefix of g(Z), with Y, Z ∈ Σ∗, then Y must be a prefix of Z. In

particular, if X = g(Z), then Z is the unique word producing X under g. An

analogous statement holds if g is a suffix.

If L is a prefix code, R is an element of L+, and W is a subword of R, we define

a cut of W to be a pair (X, Y ) such that (1) W = XY and (2) for any words P, Q

such that R = PWQ, we have PX ∈ L+. For example, let L = { 01, 2, 031, 3 }

and R ∈ L+. Suppose that W = 301 is a subword of R. By examination, we see

that the letter 0 only occurs at the beginning of words from L. Therefore, (3, 01)

is a cut of W . The other cuts of W are (ε, 301) and (301, ε). We use the symbol

| to show a cut, as in W = 3|01 for the cut (3, 01).

If L is a biprefix code, often a series of deductions allows us to determine

where cuts go. For example, let L = { 01, 2, 031, 3 } and suppose 120A and

0A30 are both subwords of R for some word A. We have 120A = 1|2|0A and

0A30 = |0A3|0, since 0 only begins the words of L and 1 only ends the words of L.

The letter 3 occurs two different ways, either as the word 3 or as the middle letter

of 031. In |0A3|0, the second possibility is excluded, so we have |0A3|0 = |0A|3|0.

Since L is a biprefix code, the first word, 1|2|0A, must be 1|2|0A|.

If g is a prefix, n is a positive integer, and W is a subword of gn(x), we define

cuts of W as we did for prefix codes, with L = { g(x) | x ∈ Σ } and R = gn(x).

To show that a D0L-system g avoids a formula f , we argue by contradiction.

We assume that f | gm(0), for m minimal, with ϕ showing the divisibility. We

then modify ϕ, creating a new homomorphism ϕ′ which shows f | gm(0) with

the following property: if P = x1x2 . . . xn is a fragment of f , then ϕ′(P ) =

ϕ′(x1)ϕ
′(x2) . . . ϕ′(xn) = |ϕ′(x1)|ϕ′(x2)| . . . |ϕ′(xn)|. That is, each ϕ′(x) is a block
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of g and, in the context of ϕ′(P ), bordered by cuts. This gives a contradiction

since f | gm−1(0) via ϕ′′(x) = g−1(ϕ′(x)), x ∈ alph(f). Proposition 1.6.3 below

describes how ϕ′ is typically constructed. We need the following definitions.

Definition 1.6.1. A slide setup is a 4-tuple (L, R, f, ϕ), where L is a finite set

of words, R is an element of L+, and f is a formula which divides R via ϕ. If,

in addition, L is a prefix (resp. suffix, biprefix) code, (L, R, f, ϕ) is called a prefix

(resp. suffix, biprefix) slide setup.

Definition 1.6.2.

1. A prefix slide setup (L, R, f, ϕ) satisfies the prefix slide condition if for

every a ∈ alph(f) there exists a word P ′
a which is a proper prefix of some

element of L such that for every fragment BaC of f containing a and

every way of writing R = Xϕ(B)ϕ(a)ϕ(C)Y , there exists Z ∈ L∗ such that

Xϕ(B) = ZP ′
a.

2. A suffix slide setup (L, R, f, ϕ) satisfies the suffix slide condition if for every

a ∈ alph(f) there exists a word S ′a which is a proper suffix of some element

of L such that for every fragment BaC of f containing a and every way of

writing R = Xϕ(B)ϕ(a)ϕ(C)Y , there exists Z ∈ L∗ such that ϕ(C)Y =

S ′aZ.

Proposition 1.6.3. Suppose the prefix slide setup (L, R, f, ϕ) satisfies the pre-

fix slide condition. Then, there exists a homomorphism ϕ′ such that if Q is a

fragment of f , then ϕ′(Q) is a subword of R. Moreover, if Q = a1a2 . . . an, then

ϕ′(Q) = ϕ′(a1)ϕ
′(a2) . . . ϕ′(an) = |ϕ′(a1)|ϕ′(a2)| . . . |ϕ′(an)|

Thus, if f ′ represents the formula obtained by deleting those a ∈ alph(f) such

that ϕ′(a) = ε, then f ′ |R via ϕ′.
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Proof. Let a ∈ alph(f), P ′
a be the word produced by the prefix slide condition,

and BaC be a fragment of f containing a. Suppose R = Xϕ(B)ϕ(a)ϕ(C)Y .

Since (L, R, f, ϕ) satisfies the prefix slide condition, there exists Z ∈ L∗ such

that ZP ′
a = Xϕ(B). Substituting, we have R = ZP ′

aϕ(a)ϕ(C)Y . Since L is a

prefix code, there exists a unique element Wa of L∗ and a unique proper prefix

Ua of some element of L such that ZP ′
aϕ(a) = ZWaUa. We define ϕ′(a) to be

Wa.

Let Q = a1a2 . . . an be a fragment of f . Since f |R via ϕ, we have R =

Xϕ(Q)Y for some words X and Y . Viewing Q as a1C1, by the slide condition

we have X = Z1P
′
a1

for some Z1 ∈ L∗. Thus, we can write

R = ZP ′
a1

ϕ(a1)ϕ(a2) . . . ϕ(an)Y

= Zϕ′(a1)Ua1ϕ(a2) . . . ϕ(an)Y

Viewing Q as B2a2C2, by the slide condition we have Zϕ′(a1)Ua1 = Z ′P ′
a2

for

some Z ′ ∈ L∗. Since L is prefix, this implies that Ua1 = P ′
a2

. Hence,

R = Zϕ′(a1)Ua1ϕ(a2) . . . ϕ(an)Y

= Zϕ′(a1)Pa2ϕ(a2) . . . ϕ(an)Y

= Zϕ′(a1)ϕ
′(a2)Ua2 . . . ϕ(an)Y

Continuing in this fashion, we see that

R = Zϕ′(a1)ϕ
′(a2) . . . ϕ′(an)UanY

Hence ϕ′(Q) is a subword of R.

The remainder of the proof is clear.

An analogous version of Proposition 1.6.3 holds for suffix slide setups satisfy-

ing the suffix slide condition.
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1.7 Locked Formulas

A locked formula is a formula having no free sets. In their 1989 paper, Baker,

McNulty, and Taylor [1] proved the following result.

Proposition 1.7.1. Every locked formula is 4-avoidable.

They actually showed something stronger: every locked formula f is avoided

by the D0L-system Ω = 01/21/03/23. Set W = Ωω(0). We reprove their result,

isolating some lemmas that will be useful both here and in Chapter 2.

Lemma 1.7.2. Let X be a subword of W having at least length 2. If X begins

with 1 or 3, then every occurrence of X in W is preceded by the same letter.

Proof. In W, the odd index positions are either 0 or 2 and the even index positions

are either 1 or 3. Moreover, since g(W) = W, we see that the odd index positions

alternate between 0 and 2. Wherever X occurs in W, it must be preceded by

the alternate of its second letter.

Say that letter x ∈ { 0, 1, 2, 3 } is even (resp. odd) if x is 0 or 2 (resp. 1 or 3).

Lemma 1.7.3. Suppose formula f divides Ωm(0) via ϕ. If x1x2, x3x2, x3x4,

x5x4, . . . , x2n−1x2n is a sequence of transitions in f , then either

1. Every ϕ(xi), i odd, ends with an odd letter and every ϕ(xj), j even, begins

with an even letter, or

2. Every ϕ(xi), i odd, ends with an even letter and every ϕ(xj), j even, begins

with an odd letter.

Proof. This result is an immediate consequence of the alternation of even and

odd letters in Ωm(0).
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Corollary 1.7.4. Let ϕ show f |Ωm(0). If a ∈ alph(f) is not free, then |ϕ(a)| is

even.

Proof. If a is not free in f , there exists a sequence of transitions ax2, x3x2, x3x4,

x5x4, . . . , x2n−1a. Applying Lemma 1.7.3 with x1 = x2n = a, we see that ϕ(a)

begins and ends with letters of opposite parity.

Lemma 1.7.5. Suppose that f |Ωn(0). Then, there exists a homomorphism ϕ

which shows f |Ωn(0) with |ϕ(a)| = 1 for some a ∈ alph(f).

Proof. Suppose f |Ωm(0), with m minimal, and let ϕ show the divisibility. By

assumption, m ≤ n. Suppose |ϕ(a)| ≥ 2 for all a ∈ alph(f). We take L to

be { 01, 03, 21, 23 } and set R = Ωm(0), and we consider the prefix slide setup

(L, R, f, ϕ). If ϕ(a) begins with 1 or 3, set P ′
a to be the letter determined by

Lemma 1.7.2 for X = ϕ(a); otherwise, set P ′
a = ε. It is routine to check that the

prefix slide condition holds. Hence, there exists ϕ′ which shows f |Ωm(0) with

ϕ′(a) ∈ L∗ for all a ∈ alph(f). A simple check shows ϕ′(a) 6= ε for all a. Thus, ϕ′

induces a homomorphism which shows f |Ωm−1(0), contradicting the minimality

of m. Since Ωm(0) is a prefix of Ωn(0), the result is shown.

We now prove Proposition 1.7.1.

Proof. Suppose ϕ shows f |Ωm(0) for some m. On one hand, we may assume that

|ϕ(a)| = 1 for some a ∈ alph(f). On the other hand, since f is locked, a is not

free, and so ϕ(a) must have even length. This, of course, is a contradiction.

We close this chapter with the following result of Cassaigne [8].

Proposition 1.7.6. Let f be a formula having only fragments of length 2. Then,

f is either unavoidable or contains a locked subformula. Hence, either ind(f) ≤ 4

or ind(f) =∞.
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CHAPTER 2

Avoidance Bases

2.1 Introduction

In this chapter, we begin the search for an avoidable formula having index 5

or higher. Since f | g implies ind(f) ≥ ind(g), the avoidable formulas with the

highest indices should be those not divisible by any other avoidable formula. To

this end, we define an “avoidance basis”—a collection of formulas having this

property.

After proving some basic results, we construct an avoidance basis for avoidable

formulas on three letters. We then show that every element in it is 4-avoidable.

Thus, any index 5 formula must be on an alphabet of 4 or more letters.

2.2 Avoidance Bases

Let Av(n) be the set of avoidable formulas on the alphabet ∆n = { a1, a2, . . . , an }.

Definition 2.2.1. A subset S of Av(n) is an n-avoidance basis if:

1. For all f ∈ Av(n), there exists g ∈ S, not necessarily unique, such that

g |e f .

2. If f, g ∈ S, then f |e g implies f = g.
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If f is a member of an n-avoidance basis, then f is n-minimal. A formula f

is minimal if f is n-minimal for some n.

Theorem 2.2.2. n-avoidance bases exist for every n.

Proof. Let T = { f ∈ Av(n) | every fragment of f has length at most 2n }.

Since T is a subset of the power set of {W ∈ ∆∗
n | |W | ≤ 2n }, T is finite.

T has property (1). To see this, choose f ∈ Av(n). If f ∈ T, we can take

g = f . Otherwise, f has a fragment P of length greater than 2n. Let Q be a

subword of P having length 2n. Regarding Q as a pattern, we see that Q ∈ T by

Theorem 1.5.3. Clearly, Q |e f .

Let T ′ be a subset of T of minimal size satisfying property (1). We claim T ′

has property (2). Let f and g be distinct elements of T ′. If f |e g, then T ′ \ { g }

has property (1), which contradicts the minimality of T ′.

Lemma 2.2.3. Let f be minimal and let g be avoidable. Then, g |e f if and only

if g ∼e f . In particular, g |e f implies that alph(g) = alph(f).

Proof. Let f be in n-avoidance basis S and let g be avoidable. If g |e f , then

| alph(g)| ≤ | alph(f)| ≤ n. After relabeling the letters of g, we can assume

that g ∈ Av(n). Since g is avoidable, there exists f ′ ∈ S such that f ′ |e g. By

transitivity, we have f ′ |e f . Since f, f ′ ∈ S, we must have f = f ′. This implies

that f ∼e g. The converse is clear.

The following proposition shows that n-avoidance bases are unique up to e-

equivalence of their elements.

Proposition 2.2.4. Let S be an n-avoidance basis and let T ⊂ Av(n). Then, T

is an n-avoidance basis if and only if there exists a bijection Ψ : S → T such that

f ∼e Ψ(f) for all f ∈ S.
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Proof. Suppose T is an n-avoidance basis. Let f ∈ S. Since f is avoidable, there

exists g ∈ T such that g |e f . By Lemma 2.2.3, f ∼e g. If g′ ∈ T also e-divides f ,

then g′ ∼e f ∼e g. In particular, g′ |e g. Since T is an n-avoidance basis, g′ = g.

Define Ψ(f) = g. If Ψ(f) = Ψ(f ′) = g, then f ′ ∼e g ∼e f , so f = f ′. Thus,

Ψ is injective. If g ∈ T , there exists f ∈ S such that f |e g. Since T is an

n-avoidance basis, there exists g′ ∈ T such that g′ |e f . Transitivity implies that

g′ = g, and so Ψ(f) = g. Therefore, Ψ is surjective.

Now, suppose there exists a bijection Ψ : S → T such that f ∼e Ψ(f) for all

f . If h ∈ Av(n), there exists f ∈ S such that f |e h. By assumption, Ψ(f) |e f ,

so by transitivity, Ψ(f) |e h and property (1) of the definition of an n-avoidance

basis is satisfied. If g, g′ ∈ T and g |e g′, then Ψ−1(g) |e Ψ−1(g′). This implies

Ψ−1(g) = Ψ−1(g′), so g = g′. Property (2) is satisfied. Hence, T is an n-avoidance

basis.

Proposition 2.2.5. If f is n-minimal, then f is (n+1)-minimal. Hence, we can

construct a chain S1 ⊂ S2 ⊂ S3 ⊂ . . . , where each Sn is an n-avoidance basis.

Proof. Suppose f is n-minimal. Let S be an (n + 1) -avoidance basis. Since

f ∈ Av(n + 1), there exists g ∈ S such that g |e f . By the Lemma 2.2.3, this

implies that g ∼e f . By Lemma 2.2.4, we can substitute f for g in the avoidance

basis S. This means that f is (n + 1) -minimal.

Proposition 2.2.5 does not hold if standard divisibility were used instead of e-

divisibility in Definition 2.2.1. Indeed, Proposition 2.2.5 directly relies on Lemma

2.2.3, which uses the crucial fact that f |e g implies | alph(f)| ≤ | alph(g)|.

The following lemma provides an intrinsic test for minimality.

Lemma 2.2.6. Let f be an irredundant formula. Then, f is minimal if and only

if all of the following hold:
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1. The formula f is avoidable

2. Every fragment of f has at least length 2

3. Every simplification of f is unavoidable

Proof. Let f be irredundant and set n = | alph(f)|.

Suppose every fragment of the avoidable formula f has at least length 2 and

every simplification of f is unavoidable. Let S be an n-avoidance basis. There

exists g ∈ S such that g |e f . The formula g is e-equivalent to an irredundant for-

mula g′ which i-divides f . By Proposition 1.3.6, either g′ ∼i f or g′ |i Simp(f, P )

for some P ∈ f . The latter is impossible by assumption, so f is minimal.

If f is unavoidable, then f is not minimal.

If f is avoidable, but has a fragment of length 1, then f = g.x for some

x /∈ alph(g), since f is irredundant. Deleting the free set x from f yields g.

Since f is avoidable, g is avoidable. By Lemma 2.2.3, f cannot be minimal since

alph(g) < alph(f).

Finally, suppose Simp(f, P ) is avoidable for some P ∈ f . If f were minimal,

then by Lemma 2.2.3, f |e Simp(f, P ), say via ϕ. We show that in fact f i-

divides Simp(f, P ). Since Simp(f, P ) |i f and f |e Simp(f, P ), we have ϕ showing

Simp(f, P ) |e Simp(f, P ). This means ϕ−1 shows Simp(f, P ) |e Simp(f, P ), too.

Combining f |e Simp(f, P ) via ϕ and Simp(f, P ) |e Simp(f, P ) via ϕ−1, we have

f |i Simp(f, P ) as desired. This contradicts f being irredundant.

2.3 Finding Avoidance Bases

We proved the existence of n-avoidance bases in Theorem 2.2.2. In this section,

we describe a constructive way of generating them. Intuitively, the deletion of
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any free set from a minimal formula should result in a formula which is not

only avoidable, but “close” to being minimal itself. Reversing this idea, if we

have collection of minimal formulas on a small alphabet, we can try to insert

letters into them hoping to obtain a minimal formula on a larger alphabet. This

process, formalized below, forms “principal divisors”, which are ideal candidates

for minimality. We then apply Lemma 2.2.6 to decide which ones are minimal.

In Chapter 1, we defined the adjacency graph of a formula. We now generalize

this idea. Let Σ be an alphabet, and let ∆L = { aL | a ∈ Σ } and ∆R = { aR | a ∈

Σ }. An adjacency graph over Σ is a bipartite graph G with vertex set ∆L ∪∆R

containing only edges between ∆L and ∆R. We sometimes write xy for an edge

{xL, yR } of G. If G is an adjacency graph over Σ, a subset S ⊂ Σ is free if

for all a, b ∈ S, aL and bR lie in different components of G. Clearly, if f is a

formula, then AG(f) is an adjacency graph, and S is free in f if and only if S

is free in AG(f). A graph G is an avoidable adjacency graph if G = AG(f) for

some avoidable formula f . If G is an adjacency graph, let form(G) be the formula

{xy | xy is an edge in G }.

Definition 2.3.1. Suppose G is an adjacency graph, and let S be a free set of

G. A formula f is an S-subformula of G if:

1. The adjacency graph of f , AG(f), is a subgraph of G.

2. The formula σS(f) obtained by deleting the letters of S from f is minimal.

3. No simplification of f satisfies (1) and (2).

For example, consider G = { ab, bc, ca, cb }. The free sets are { b } and { c }.

The { b }-subformulas are abca.cabc and cbc. The { c }-subformulas are abca.bcab

and bcb. As another example, let f = abcabc, and set G = AG(f) = { ab, bc, ca }.

The set { a } is free in G, and the { a }-subformula is bcab.cabc.
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If G is an avoidable adjacency graph, then for every free S in G, S-subformulas

exist. Indeed, suppose G = AG(f). Since σS(f) is avoidable, it must be i-

divisible by some minimal formula g. This means some formula g′—which is g

with elements of S inserted in its fragments—must i-divide f . This formula g′ is

an S-subformula.

If G is an adjacency graph over ∆n and f is an S-subformula of G, then σS(f)

is a minimal formula over n − |S| letters. Let σS(f) = ΠPi and f = ΠQi. By

property (3), each Qi can be written a1B1a2B2 . . . Bm−1am, with each Bj either

ε or an element of S, and Pi = a1a2 . . . am. Thus, the set of S-subformulas of G

can be constructed as follows:

1. Choose an avoidance basis T over (n− |S|) letters.

2. For every g ∈ T , let U(g) be the set of formulas over ∆n \ S which are

irredundant and e-equivalent to g.

3. For every g′ ∈ U(g), let V (g′) be the set of formulas g′′ such that:

(a) σS(g′′) = g′. That is, g′′ is g′ with letters from S inserted in its

fragments.

(b) AG(g′′) is a subgraph of G

4. The set of S-subformulas of G is the union of V (g′) over all g′ ∈ U(g) and

g ∈ T .

Definition 2.3.2. Let G be an avoidable adjacency graph. A principal divisor of

G is any formula f of the form

f = irr((ΠfS). form(G)),

where the product ranges over all free sets S in G and each fS is an S-subformula

of G. If G has no free sets, then form(G) is its only principal divisor.
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A principal divisor of G is irredundant and avoidable.

Lemma 2.3.3. The formula aa is minimal.

Proof. Apply Lemma 2.2.6.

Lemma 2.3.4. Let f be a minimal formula with | alph(f)| > 1. Then, AG(f)

satisfies the following:

1. It has no isolated vertices.

2. If it has no free sets, then it must be a tree.

3. It does not contain the edge { aL, aR } for any a ∈ alph(f).

Proof. If AG(f) had an isolated vertex, say aL, then a would be free in f . Let f ′ =

σa(f). Since aL is isolated, whenever a appeared in a fragment, it appeared in

the rightmost position. This means that f ′ |i f . Moreover, f ′ must be avoidable,

contradicting Lemma 2.2.3.

Suppose AG(f) has no free sets. If AG(f) has more than one component,

then f is divisible by an avoidable formula whose adjacency graph has only one

component. If f has a fragment P having at least length 3, then we could simplify

on P and f would still be avoidable. If f has only fragments of size 2 but is not a

tree, then AG(f) contains a circuit. Simplifying on any edge in the circuit would

still leave a tree, and so f would still be avoidable.

We can assume that aa is an element of any avoidance basis and, hence, no

other minimal formula can be divisible by it. Thus, AG(f) does not contain the

edge { aL, aR }.

Theorem 2.3.5. Let T be an (n − 1)-avoidance basis, and let A be the set of

all principal divisors of all avoidable adjacency graphs on ∆n. If A′ = { f ∈ A |

f is minimal }, then A′ ∪ T contains an n-avoidance basis.
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Proof. Every n-minimal formula f is a principal divisor of G = AG(f).

In the preceding theorem, we could restrict ourselves to those avoidable ad-

jacency graphs having the properties listed in Lemma 2.3.4.

2.4 Avoidance Bases on Small Alphabets

In this section, we give an n-avoidance basis for n = 1, 2, 3. We prove directly

that a 1-avoidance basis must be { aa }, and then use Theorem 2.3.5 to generate

2- and 3-avoidance bases. For notational convenience, we write a for a1, b for a2,

and c for a3.

Theorem 2.4.1. { aa } is a 1-avoidance basis.

Proof. By Lemma 2.3.3, aa is minimal. If f ∈ Av(1), then the formula f must

have a fragment of length at least 2, so f is e-divisible by aa.

Theorem 2.4.2. { aa, aba.bab } is a 2-avoidance basis.

Proof. The only adjacency graph satisfying the conditions of Lemma 2.3.4 is

{ ab, ba }. The free sets are { a } and { b }. The only { a }-subformula is bab,

while the only { b }-subformula is aba. Therefore, the only principal divisor is

aba.bab. Simplifying on aba, we get ab.ba.bab ∼ bab, which is clearly unavoidable.

Similarly, simplifying on bab yields an unavoidable formula. By Lemma 2.2.6,

aba.bab is minimal.

Now, we consider 3-letter formulas. For 3-minimal formulas which are not

2-minimal, there are four adjacency graphs (up to permutation of the letters)

satisfying the conditions of Lemma 2.3.4:

1. { ab, bc, ca }
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2. { ab, ba, bc, cb }

3. { ab, bc, ca, cb }

4. { ab, ac, ba, ca, cb }

{ ab, bc, ca }. The free sets are { a }, { b }, and { c }. The only { a }-subformula

is bcab.cabc. Similarly, the only { b }-subformula is cabc.abca and the only { c }-

subformula is abca.bcab. Hence, abca.bcab.cabc is the only principal divisor. By

Lemma 2.2.6, it is minimal.

{ ab, ba, bc, cb }. The free sets are { a }, { b }, { c }, and { a, c }. There is

one possibility for the { a }-subformula, namely bab. Similarly, for the { c }-

subformula, we have bcb. There are several { b }-subformulas: aba, cbc, and

abcba.cbabc. Finally, there are two { a, c }-subformulas, bab and bcb. Of the six

possible principal divisors that can be formed, only abcba.cbabc is minimal.

{ ab, bc, ca, cb }. The free sets are { b } and { c }. The { b }-subformulas are

cbc and abca.cabc and the { c }-subformulas are bcb and abca.bcab. Thus, for

the principal divisors, we have bcb.cbc.ab.ca, abca.cabc.bcb, abca.bcab.cbc, and

abca.bcab.cabc.cb. The first and last of these are clearly not minimal. Using

Lemma 2.2.6, we see that the middle two are minimal.

{ ab, ac, ba, ca, cb }. This graph has no free sets, and so ab.ac.ba.ca.cb is the

only principal divisor. A quick check shows that it is minimal.

The result is summarized Table 2.1

2.5 Formulas on Three Letters Are 4-Avoidable

In this section, we show that every 3-minimal formula is 4-avoidable. Hence, any

index 5 formula, if it exists, must have four letters.
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aa

aba.bab

abca.bcab.cabc

abcba.cbabc

abca.cabc.bcb

abca.bcab.cbc

ab.ac.ba.ca.cb

Table 2.1: A 3-Avoidance Basis

Define the n-th circular formula Cn to be

Cn = { akak+1 . . . ana1a2 . . . ak | ak ∈ ∆n and 1 ≤ k ≤ n }.

Using the convention a = a1, b = a2, c = a3, and so forth, we see that the first

few circular formulas are aa, aba.bab, and abca.bcab.cabc.

Proposition 2.5.1. Every circular formula is 4-avoidable.

Proof. We show that every circular formula is avoided by Ω = 01/21/03/23. The

proof is by induction on n.

If n = 1, we have C1 = a1a1, which is locked. By Proposition 1.7.1, the result

follows.

Suppose the result holds for n < k but not for n = k. Suppose Ck divides

Ωm(0) via ϕ, with m minimal. This means ϕ(ajaj+1 . . . aka1a2 . . . aj−1aj) is a

subword of Ωm(0) for j = 1, 2, . . . , k. There are two cases to consider.

First, suppose that for some ai, say a1, we have ϕ(ai) = 0 or ϕ(ai) = 2.

Since ϕ(a1 . . . aka1) ≤ Ωm(0), Lemma 1.7.2 implies that every occurrence of

X = ϕ(a2 . . . aka1) is preceded by ϕ(a1). In particular, the image of the sec-

ond fragment, ϕ(a2 . . . aka1a2), must be preceded by ϕ(a1). This fact contradicts
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the induction hypothesis since Ck−1 divides Ωm(0) via ϕ′, where ϕ′(a1) = ϕ(a1a2)

and ϕ′(ai) = ϕ(ai+1) for i = 2, 3, . . . , k − 1.

Now, suppose ϕ(ai) 6= 0 and ϕ(ai) 6= 2 for all i > 0. For convenience, let

a0 = ak and ak+1 = a1. Set L = { 01, 21, 03, 23 } and R = Ωm(0), and consider

the prefix slide setup (L, R, Ck, ϕ). Let ai ∈ ∆k. If ϕ(ai) begins with 0 or 2, set

P ′
ai

= ε; otherwise, set P ′
ai

to be the letter determined by Lemma 1.7.2 for the

word ϕ(ai)ϕ(ai+1). Since ϕ(ai−1aiai+1) is a subword of Ωm(0), ϕ(ai−1) must end

with P ′
ai

. With this fact, one can verify the prefix slide condition. By Proposition

1.6.3, there exists ϕ′ which shows f |R such that ϕ′(a) ∈ L+ for all a ∈ ∆k. (A

simple argument shows ϕ′(a) 6= ε for all a.) This implies Ck |Ωm−1(0), which

contradicts the choice for m.

Corollary 2.5.2. aa, aba.bab, and abca.bcab.cabc are 4-avoidable.

The above result is not tight. For example, Thue [13] showed that aa is 3-

avoidable and Cassaigne [8] later showed aba.bab is also 3-avoidable. It appears

likely that abca.bcab.cabc is 3-avoidable as well.

Now we will show that the remaining three formulas are 4-avoidable. Both

abcba.cbabc and abca.cabc.bcb are avoided by g = 01/2/031/3. Since abca.bcab.cbc

is e-equivalent to the reversal of abca.cabc.bcb, they will have the same index by

Corollary 1.4.3.

Let G = gω(0) and observe that g is biprefix.

Lemma 2.5.3. The only subwords of G of length 3 are 012, 013, 031, 101, 120,

123, 130, 132, 201, 203, 230, 301, 303, 310, 313, 320, and 323.

Proof. G begins 012 . . . . Let S be the set of subwords of G of length 3. This set

is determined by two properties:
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1. 012 ∈ S

2. S = {U | U ≤ g(V ) for some V ∈ S and |U | = 3 }

The above list of words satisfies both these properties.

Corollary 2.5.4. Every subword of G except 3 contains a cut. Consequently,

every subword other than 3 can be decomposed as S|X|P , where S is one of ε, 1,

or 31; X ∈ { 01, 2, 031, 3 }∗; and P is one of ε, 0, or 03.

Proof. If a word contains a 0, the cut must preceed the 0; if a word contains a 1,

the cut must follow the 1; and if a word contains a 2, then there are cuts before

and after the 2. Since 33 is not a subword of G, any word having length greater

than one contains a 0, 1, or 2, and so must have a cut.

Lemma 2.5.5.

1. If XS is a subword of G with |X| ≥ 4 and S one of ε, 1, or 31, then every

occurrence of X in G is followed by S.

2. If PX is a subword of G with |X| ≥ 4 and P one of ε, 0, or 03, then every

occurrence of X in G is preceded by P .

Proof. We prove only the first statement, the proof of the second being similar.

If S = ε, the result is trivially true. If X ends with 03, then X can only be

followed by 1. So, we can assume that X ends with 0.

If X ends with 10, then X must be followed by 1 since 103 is not a subword

of G by Lemma 2.5.3.

If X ends with 120, then X must be followed by 31. Otherwise, 1201 = 1|2|01|

would be a subword of G. Pulling back (that is, applying g−1), this implies that

either 010 or 210 is a subword of G, which contradicts Lemma 2.5.3.
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If X ends with 320, then X must be followed by 1. Otherwise, 32031 =

|3|2|031| would be subword of G. This is impossible since the pullback, 312, is

not a subword of G.

If X ends with 130, then X must be followed by 1. Otherwise, 13031 =

1|3|031| is a subword of G. Pulling back, we get either 032 or 232, both of which

are not subwords of G.

If X ends with 1230, then X must be followed by 31. Otherwise, 12301 would

be a subword of G, and so would one of its pullbacks—0130 or 2130. The latter

is impossible. Pulling back 0130 yields 030 or 032, both of which are impossible.

If X ends with 3230, then X must be followed by 1. Otherwise, 323031 is a

subword of G. Its pullback is 3132 = 31|3|2|, which pulls back to 231, which is

not a subword of G.

Lemma 2.5.6. G avoids aa.

Proof. Suppose aa divides gm(0) via ϕ, with m minimal. One can verify by

exhaustion that |ϕ(a)| < 4 is impossible. Assuming |ϕ(a)| ≥ 4, we can write

ϕ(a) as S|A|P as in Corollary 2.5.4. Substituting, we get S|A|PS|A|P . By

Lemma 2.5.5 with X = S|A|P , we can infer that S|A|PS|A|P is preceded by

P . Thus, we can conclude that |PS|A|PS|A| is a nonempty subword of G. This

implies that aa divides gm−1(0), which contradicts the choice of m.

Lemma 2.5.7. G avoids aba.bab.

Proof. Suppose aba.bab divides gm(0) via ϕ, with m minimal. One can verify by

exhaustion that |ϕ(a)| + |ϕ(b)| < 4 is impossible. Now, assume that |ϕ(a)| +

|ϕ(b)| ≥ 4. Since ϕ(a) = ϕ(b) = 3 is impossible, we may assume without loss

of generality that ϕ(a) 6= 3, and hence it can be written as ϕ(a) = S|A|P as in

32



Corollary 2.5.4. Substituting, we get S|A|PBS|A|P and BS|A|PB as subwords

of gm(0). By Lemma 2.5.5, we can infer that BS|A|PB must be preceded by P

and followed by S, yielding |PBS|A|PBS|. If A = ε, then we have a square,

which would contradict Lemma 2.5.6. If A 6= ε, then aba.bab divides gm−1(0) via

ϕ′(a) = g−1(A) and ϕ′(b) = g−1(PBS).

Lemma 2.5.8. If X ∈ { 0, 1, 2, 3 }+, then G does not contain X3X.

Proof. Suppose gm(0) contains X3X, with m minimal. Since G avoids aa, X 6= 3.

Hence, we can write X = S|Y |P as in Corollary 2.5.4. Substituting, we get

X3X = S|Y |P3S|Y |P . If P = ε, then we have S = ε, so Y 6= ε. Pulling back,

gm−1(0) would also contain a subword of the form X3X, which contradicts the

minimality of m. So, we assume that P 6= ε, which implies P must be 0 and

S must be 1. Since 103 is not a subword of gm(0), Y 6= ε. If Y = 2, then

1|2|031|2|0 would be a subword of gm(0). This word, however, contains 203,

which is impossible. If Y = 3, we would have 1|3|031|3|0, which pulls back to

03230, 23230, 03232, or 23232. The first one contains 032 as a subword, which is

impossible. The last three contain squares, which is impossible by Lemma 2.5.6.

Hence, |Y | > 1, and so Lemma 2.5.5 applies. The word must be preceded by P3

and followed by 3S. This gives |P3S|Y |P3S|Y |P3S|, which is impossible since

it is divisible by aa.

Lemma 2.5.9. Suppose X|Y |X is a subword of G for some words X and Y .

Then, X|Y |X = |X|Y |X|.

Proof. If X = ε, the result is clear. If X = |X, the result holds because G is

prefix implies |X|Y |X = |X|Y |X|. This takes care of the cases where X begins

with 0, 2, 30, or 32. If X = 3, then clearly 3|Y |3 = |3|Y |3|. Finally, we note that

X cannot begin with 1.
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Lemma 2.5.10. If 0X1 is a subword of G, then X is ε, 3, or a word having at

least length 3. In particular, if 0X31 is subword of G, then X is either ε or a

word having at least length 2.

Proof. Suppose 0X1 ≤ G. If |X| = 1, then X must be 3. If |X| = 2, then X

could only possibly be 10, but this implies aa |G.

Lemma 2.5.11. For all words X, Y ∈ { 0, 1, 2, 3 }∗ and all letters z ∈ { 0, 1, 2 },

G does not contain both XzY 3Xz and zY 3XzY .

Proof. Suppose gm(0) contains XzY 3Xz and zY 3XzY for some choice of X, Y ,

and z. We assume that m is minimal with respect to this property. Neither X

nor Y can be ε by Lemma 2.5.8. We examine the possibilities for z.

Case 1: z = 0. Substituting, we get X0Y 3X0 = X|0Y 3X|0 and 0Y 3X0Y =

|0Y 3X|0Y . Since Y cannot be 3, so we can write Y = S|Y ′|P as in Corollary

2.5.4. Substituting, we get X|0S|Y ′|P3X|0 and |0S|Y ′|P3X|0S|Y ′|P . If P = ε,

we have |X|0S|Y ′|3|X|0 and |0S|Y ′|3|X|0S|Y ′|. Lemma 2.5.5 applies, so the first

of these words must be followed by S. Pulling back, we get words of the form

XzY 3Xz and zY 3XzY , z 6= 3, which contradicts the choice for m. If P 6= ε,

then P = 0. Again by Lemma 2.5.5, the words must be |P3X|0S|Y ′|P3X|0S|

and |0S|Y ′|P3X|0S|Y ′|P . However, aba.bab divides this.

Case 2: z = 1. Plugging in, we get X1Y 3X1 = X1|Y 3X1| and 1Y 3X1Y =

1|Y 3X1|Y . We have that X 6= 3, so we can write it as S|X ′|P . After re-

placing, we have S|X ′|P1|Y 3S|X ′|P1| and 1|Y 3S|X ′|P1|Y . If S = ε, we get

|X ′|P1|Y |3|X ′|P1| and 1|Y |3|X ′|P1|Y |. Lemma 2.5.5 implies that the latter is

preceded by P . Pulling back, we get words of the form XzY 3Xz and zY 3XzY ,

with z 6= 3, which contradicts the choice for m. If S 6= ε, then S = 1. By Lemma
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2.5.5, we get S|X ′|P1|Y 3S|X ′|P1| and |P1|Y 3S|X ′|P1|Y 3S|, which is divisible

by aba.bab.

Case 3: z = 2. Substituting, we get X|2|Y 3X|2| and |2|Y 3X|2|Y . We have

that Y 6= 3, so we can write Y as either Y = |Y | or Y = |Y ′|0. In the first

case, we get |X|2|Y |3|X|2| and |2|Y |3|X|2|Y |, which pulls back to X1Y 3X1 and

1Y 3X1Y , violating the choice for m. In the second case, we get X|2|Y ′|03X|2|

and |2|Y ′|03X|2|Y ′|0. Since 312 is not a subword of G, |X| > 1. This allows us

to conclude that |03X|2|Y ′|03X|2| and |2|Y ′|03X|2|Y ′|0 are subwords. However,

this means aba.bab divides G.

Lemma 2.5.12. Suppose XY X is a subword of G. If the length of Y is small,

there are only a small number of choices for X. Specifically, the results are

summarized in Table 2.2.

Proof. The proof is straightforward. We note that the result of Lemma 2.5.8 is

included in the table.

Theorem 2.5.13. G avoids abcba.cbabc.

Proof. Suppose abcba.cbabc divides gm(0) via ϕ, with m minimal. One can show

that |ϕ(a)| + |ϕ(b)| + |ϕ(c)| < 4 is impossible. Therefore, we suppose that

|ϕ(abc)| ≥ 4. Let A = ϕ(a) and C = ϕ(c). There are two cases:

1. ϕ(b) 6= 3. Write ϕ(b) = S|B|P as in Corollary 2.5.4. Thus, we have

AS|B|PCS|B|PA and CS|B|PAS|B|PC as subwords of G. By Lemma

2.5.5, we can conclude that each word must be preceded by P and followed

by S. This gives |PAS|B|PCS|B|PAS| and |PCS|B|PAS|B|PCS|. If

B = ε, then aba.bab divides gm(0), contradicting Lemma 2.5.7. Otherwise,

abcba.cbabc divides gm−1(0), which contradicts the choice for m.
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Y X

ε ε

0 ε, 1, 3, 13

1 ε, 3, 20, 230

3 ε

03 ε

10 ε

12 ε, 0, 0310, 30, 03130

13 ε

20 ε, 3101, 31301

30 ε, 1

31 ε, 0, 30

130 ε

Table 2.2: Possibilities for X if XY X ≤ G
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2. ϕ(b) = 3. Plugging in, we get A3C3A and C3A3C as subwords. Since A

cannot be 3, we can write A = S|A′|P as in Corollary 2.5.4. There are

several subcases:

(a) Both S and P are ε. The subwords are |A′|3|C|3|A′| and |C|3|A′|3|C|.

This implies abcba.cbabc divides gm−1(0), which violates the the mini-

mality of m.

(b) Both S and P are not ε. We get S|A′|P3C3S|A′|P and C3S|A′|P3C.

By Lemma 2.5.5, the latter must be preceded by P3 and followed by

3S. This gives S|A′|P3C3S|A′|P and |P3C3S|A′|P3C3S|. If A′ = ε,

then aa divides gm(0), which contradicts Lemma 2.5.6. If A′ 6= ε, then

aba.bab divides gm(0), which is impossible by Lemma 2.5.7.

(c) S is ε but P is not. Here, we get |A′|P3C|3|A′|P and C|3|A′|P3C|. We

see that P must be 0 and that C = 1|C ′|, yielding |A′|031|C ′|3|A′|0

and 1|C ′|3|A′|031|C ′|. Also, either C ′ 6= ε or A′ 6= ε. Otherwise,

we would have |031|3|0 and 1|3|031|. A simple proof shows that the

latter is impossible. Hence Lemma 2.5.5 applies, and we can infer that

|A′|031|C ′|3|A′|031| and |031|C ′|3|A′|031|C ′| are subwords of gm(0).

Pulling back, this implies that X2Y 3X2 and 2Y 3X2Y are subwords

of G, with g(X) = A′ and g(Y ) = C ′. This violates Lemma 2.5.11.

(d) P is empty but S. This subcase is similar to (c).

Theorem 2.5.14. G avoids abca.cabc.bcb.

Proof. Assume that abca.cabc.bcb divides gm(0) via ϕ, where m is minimal.

First assume that |ϕ(c)| ≥ 3. There are several cases:
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1. ϕ(a) 6= 3 and ϕ(b) 6= 3. We can write ϕ(a) = S1|A|P1, ϕ(b) = S2|B|P2, and

ϕ(c) = S3|C|P3 as in Corollary 2.5.4. Substituting, we get:

S1|A|P1S2|B|P2S3|C|P3S1|A|P1,

S3|C|P3S1|A|P1S2|B|P2S3|C|P3,

and S2|B|P2S3|C|P3S2|B|P2

for the words. Since |ϕ(c)| ≥ 3, we can apply Lemma 2.5.5 to conclude that

the following are subwords of gm(0):

|P3S1|A|P1S2|B|P2S3|C|P3S1|A|P1S2|,

|P2S3|C|P3S1|A|P1S2|B|P2S3|C|P3S1|,

and |P1S2|B|P2S3|C|P3S2|B|P2.

Since ϕ(bca) and ϕ(bcb) are both subwords of G, we can also infer that

S1 = S2 from Lemma 2.5.5. If AP1S2B is empty, we have a square in

the second word. If AP1S2 is empty but B is not, the second and third

words contain aba.bab, with ϕ′(a) = P2S3CP3S1 and ϕ′(b) = B. If AP1S2

is not empty but B is, the first and second words contain aba.bab, with

ϕ′(a) = AP1S2 and ϕ′(b) = P2S3CP3S1. Finally, if neither AP1S2 nor B are

empty, we have that abca.cabc.bcb divides gm−1(0) via ϕ′(a) = g−1(AP1S2),

ϕ′(b) = g−1(B), and ϕ′(c) = g−1(P2S3CP3S1).

2. ϕ(a) = 3 and ϕ(b) 6= 3. We write ϕ(b) = S2|B|P2 and ϕ(c) = S3|C|P3,

substitute, and apply Lemma 2.5.5 to get the following subwords of gm(0):

|P33S2|B|P2S3|C|P33S2|,

|P2S3|C|P33S2|B|P2S3|C|P3,

and S2|B|P2S3|C|P3S2|B|P2.
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(a) If P3 = ε, then S2 = ε, so the words simplify to:

|3|B|P2S3|C|3|, |P2S3|C|3|B|P2S3|C|, and |B|P2S3|C|B|P2.

If B = ε, the second word contains a block of the form X3X, which

contradicts Lemma 2.5.8. If B 6= ε, we have abca.cabc.bcb dividing

gm−1(0) via ϕ′(a) = g−1(3), ϕ′(b) = g−1(B), and ϕ′(c) = g−1(P2S3C).

(b) If P3 6= ε, we have a contradiction to Lemma 2.5.5: S3|C|P3 is followed

by 3S2 in the second word, but is followed by just S2 in the third.

3. ϕ(a) 6= 3 and ϕ(b) = 3. Write ϕ(a) = S1|A|P1 and ϕ(c) = S3|C|P3.

Substituting and using Lemma 2.5.5, we get:

|P3S1|A|P13S3|C|P3S1|A|P1,

S3|C|P3S1|A|P13S3|C|P3S1|,

and 3S3|C|P33.

We consider four subcases:

(a) S3 = P3 = ε. This implies that P1 = S1 = ε, so we have |A|3|C|A|,

|C|3|A|3|C|, and |3|C|3|. Thus, abca.cabc.bcb divides gm−1(0), contra-

dicting the minimality of m.

(b) S3 = ε and P3 6= ε. This implies P1 = ε. We have:

|P3S1|A|3|C|P3S1|A|, |C|P3S1|A|3|C|P3S1|, and |3|C|P33.

The first two words pull back to zA3CzA and CzA3Cz, with z =

g−1(P3S1). This is impossible by Lemma 2.5.11.

(c) S3 6= ε and P3 = ε. This case also leads to a contradiction of Lemma

2.5.11.
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(d) S3 6= ε and P3 6= ε. Applying Lemma 2.5.5, we get:

|P3S1|A|P13S3|C|P3S1|A|P13S1|,

P13S3|C|P3S1|A|P13S3|C|P3S1|,

and P13S3|C|P33.

The first two words are divisible by aba.bab via ϕ′(a) = |P3S1|A| and

ϕ′(b) = |P13S3|C|. This contradicts Lemma 2.5.7.

This concludes Case 3, and so proves the result when |ϕ(c)| ≥ 3.

If |ϕ(c)| < 3, then ϕ(c) must be one of the following: 0, 1, 2, 3, 01, 03, 10, 12,

13, 20, 23, 30, 31, or 32.

Suppose that ϕ(c) = |C|. Letting A = ϕ(a) and B = ϕ(b), we have AB|C|A,

|C|AB|C|, and B|C|B for the subwords. By Lemma 2.5.9, B|C|B = |B|C|B|,

and so the words must be |A|B|C|A|, |C|A|B|C|, and |B|C|B|. This means that

abca.cabc.bcb divides gm−1(0), which contradicts the choice for m. Hence, we can

assume that ϕ(c) is not 2, 01, 23, or 32.

Using the fact that ϕ(b)ϕ(c)ϕ(b) is a subword of gm(0), the remaining cases

lean heavily on Lemma 2.5.12. We see immediately that 3, 03, 10, and 13 are

impossible choices for ϕ(c). Let A = ϕ(a).

1. ϕ(c) = 0 and ϕ(b) = 1. We get:

A1|0A, |0A1|0, and 101.

By Lemma 2.5.10, A = 3 or |A| > 2. If A = 3, A1|0A implies a violation of

Lemma 2.5.6. If |A| > 2, then Lemma 2.5.5 implies A1|0A is preceded by

0 and followed by 1, which again produces a square.
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2. ϕ(c) = 0 and ϕ(b) = 3. We get:

A|3|0A|, |0A|3|0, and |3|03.

By Lemma 2.5.10, A = 1. However, 0130 is not a subword of G.

3. ϕ(c) = 0 and ϕ(b) = 13. We get:

A1|3|0A, |0A1|3|0, and 1|3|01|3|.

The word A is either 3 or has length greater than 2. In either case, the first

word extends to |0A1|3|0A1|, which violates Lemma 2.5.10.

4. ϕ(c) = 1 and ϕ(b) = 3. We get:

|A31|A, 1|A31|, and 31|3.

The first word implies A is either 0 or 30. Both choices are illegal in 1|A31|.

5. ϕ(c) = 1 and ϕ(b) = 20. We get:

|A|2|01|A|, 1|A|2|01|, and |2|01|2|0.

Pulling back |A|2|01|A| gives a word of the form X10X, which is impossible

by Lemma 2.5.12.

6. ϕ(c) = 1 and ϕ(b) = 230. We get:

|A|2|3|01|A|, 1|A|2|3|01|, and |2|3|01|2|3|0.

Pulling back the first word gives a word of the form X130X, which is

impossible by Lemma 2.5.12.

7. ϕ(c) = 12 and ϕ(b) = 0. We get:

|A|01|2|A|, 1|2|A|01|2|, and |01|2|0.
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Pulling back |A|01|2|A| twice gives a word of the form X0X. Using Lemma

2.5.12, we see that A must be 031, 3, or 0313. The choice A = 3 is impossible

in 1|2|A|01|2|. Hence, the length of A is at least 3. By Lemma 2.5.5,

1|2|A|01|2| must be preceded by 0. This implies aba.bab divides G.

8. ϕ(c) = 12 and ϕ(b) = 0310. We have |A|031|01|2|A| for the first word.

Pulling back twice yields a word of the form X10X, which is impossible.

9. ϕ(c) = 12 and ϕ(b) = 30. We have:

|A|3|01|2|A|, 1|2|A|3|01|2|, and |3|01|2|3|0.

Pulling back |A|3|01|2|A| twice, we get a word of the form X30X. Using

Lemma 2.5.12, we see that A = 031. By Lemma 2.5.5, the second word is

preceded by 0. This implies abca.cabc.bcb divides gm−1(0).

10. ϕ(c) = 12 and ϕ(b) = 03130. We have |A|031|3|01|2|A| for the first word.

Pulling back twice yields a word of the form X130X, which violates Lemma

2.5.12.

11. ϕ(c) = 20 and ϕ(b) = 3101. We have:

A31|01|2|0A, |2|0A31|01|2|0, and 31|01|2|031|01|.

Lemma 2.5.10 implies that A has length at least two. Hence, we can infer

that A31|01|2|0A is preceded by 0 and followed by 31, which means gm−1(0)

contains abca.cabc.bcb.

12. ϕ(c) = 20 and ϕ(b) = 31301. Here, we get:

A31|3|01|2|0A, |2|0A31|3|01|2|0, and 31|3|01|2|031|3|01|.

By Lemma 2.5.10, |A| ≥ 2. After applying Lemma 2.5.5, we again pullback

to an encounter of abca.cabc.bcb.
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13. ϕ(c) = 30 and ϕ(b) = 1. We get A1|3|0A for the first word, which violates

Lemma 2.5.12.

14. ϕ(c) = 31 and ϕ(b) = 0. We get |A|031|A| and 31|A|031| for the first two

words, the second of which must be preceded by 0. This implies aba.bab

divides G.

15. ϕ(c) = 31 and ϕ(b) = 30. Here, we have:

|A|3|031|A|, 31|A|3|031|, and |3|031|3|0.

The second word must be preceded by 0, so abca.cabc.bcb divides gm−1(0).

This completes the proof.
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CHAPTER 3

Minimally Locked Formulas

3.1 Introduction

An unsettled question in the study of avoidable patterns is whether there exist

patterns of arbitrarily high index. Heretofore, the highest known index of any

avoidable pattern was 4, an example of which was given in a paper by Baker,

McNulty, and Taylor [1]. At one point, it had been conjectured that avoidable

patterns having index 5 or higher do not exist. (We show that this conjecture is

false in Chapter 4.)

The pattern that Baker et al. used was abwbcxcaybazac. Baker was one of

the first to notice the relationship between patterns and formulas described by

Theorem 1.4.4, which states that the index of a pattern P is the same as the

index of the formula f obtained by replacing all isolated variables in P by the

symbol “.”, discarding any empty fragments. Hence, ind(abwbcxcaybazac) =

ind(ab.bc.ca.ba.ac). Below, we will write ab.bc.ca.ba.ac as ab.ba.ac.ca.bc.

The formula ab.ba.ac.ca.bc is locked. It was shown in the paper by Baker

et al. [1] that every locked pattern is avoided by Ω. (See Proposition 1.7.1.)

Cassaigne [8] commented that a pattern is locked if and only if its associated

formula is locked. Combining these two results, we have ind(f) ≤ 4 for every

locked formula f .
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Moreover, it was shown that ab.ba.ac.ca.bc was 3-unavoidable, and hence, it

has index equal to 4. It is natural to ask whether one can find more examples

of index 4 formulas among the set of locked formulas. Every locked formula

is e-divisible by some minimal and locked formula. To see this, let f be any

locked formula, and let f ′ be the formula having as fragments the transitions of

f . If f ′ is minimal, we are done. Otherwise, f ′ is e-divisible by some minimal

formula, which clearly must be locked. A formula is a minimally locked formula

(MLF) if it is minimal and locked. If a locked formula has index 4, then any

minimally locked formula dividing it must also have index 4. We conjecture that

all minimally locked formulas, except aa, have index 4.

Every minimally locked formula has only fragments of length 2 and must

not be divisible by any other locked formula. Hence, ab.ba.ac.ca.bc is mini-

mally locked, but not ab.ba.ac.ca.bc.ad.db (it is divisible by the locked formula

ab.ba.ac.ca.bc) and not aba.ac.ca.bc (it contains a length 3 fragment). As a con-

sequence of the fragment sizes, every minimally locked formula f must be 3-

avoidable since f | aa.

3.2 Indices of MLF’s on Small Alphabets

In this section, we show that ab.ba.ac.ca.bc has index 4. We then show that every

MLF on four letters is also index 4. Since every MLF is 4-avoidable, it is sufficient

to demonstrate 3-unavoidability. For the simplest cases, a hand proof of this fact

is available.

There is only one minimally locked formula (up to e-equivalence) on three

letters, namely ab.ba.ac.ca.bc. Its 3-unavoidability is a direct consequence of the

following lemma.
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Lemma 3.2.1. Every squarefree infinite word on three letters contains all six

transitions.

Proof. Let the alphabet be { a, b, c }, and suppose that the transition ab is missing

from the squarefree infinite word W. Some suffix of W must begin with a;

otherwise, W contains only b and c, and hence, could not be squarefree. So

without loss of generality, we can assume that W begins with ac. If W begins

with aca, then adding a or c produces a square, while adding b yields ab. Thus,

we can assume that aca does not appear as a subword of W and that W begins

with acb. There are two possibilities: W begins with acba or with acbc. If

W begins with acba, then W must begin with acbac. At this point, we cannot

continue. Adding a violates the aca exclusion, while adding b or c yields a square.

Thus, we may also assume that acba does not appear as a subword of W. The

second possibility, acbc, can only be extended to acbcacb, but this word allows

no extension: adding a gives acba as a subword, whereas adding b or c yields a

square.

To see that ab.ba.ac.ca.bc is 3-unavoidable, we note that any infinite word

W on three letters that avoids it must be squarefree, and so must have all six

transitions. Using the notation of Lemma 3.2.1, this means ab.ba.ac.ca.bc i-

divides W, which is impossible. As a remark, something stronger, in fact, is

true: the nonminimally locked formula ab.ba.ac.ca.bc.cb is index 4 as well.

Now we consider minimally locked formulas on four letters. They are (up

to e-equivalence): ab.cb.ca.da.dc.bc.bd, ab.cb.cd.bd.ba.da.dc, ab.cb.cd.ca.da.dc.bc,

ab.cb.cd.ca.ba.da.dc, and ab.cb.ca.da.cd.bd.bc; and their reversals.

Lemma 3.2.2. Let W be an infinite squarefree word over { a, b, c }. For some

permutation x, y, z of the letters a, b, c, there exists:
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1. A word U such that xU , yU , and Uz are all subwords of W.

2. A word V such that xV , yV , and V x are all subwords of W.

Proof. The proof is by construction. Let W be an infinite squarefree word over

{ a, b, c }. There are thirty squarefree words of length 5 over { a, b, c }. One of

these words must occur twice in W, say with starting indices of m and n, such

that m, n > 30 and n−m ≤ 30. Set L = 5.

If the letters in positions m− 1 and n− 1 are the same, reset m to be m− 1,

n to be n− 1, L to be L + 1, and repeat this step. This process must stop before

m + L = n; otherwise, W contains a square.

Hence, there is a word, call it W ′, of length L which occurs twice, beginning

at positions m and n, with each occurrence preceded by different letters. We

set x and y to be those two letters, and we set z to be the third letter of the

alphabet. Since every squarefree word over three letters of length greater than

3 must contain x, y, and z, we can write W ′ = XzY , where Y is a word not

containing z. We set U = X. Similarly, we can write W ′ = X ′xY ′, where Y ′

is a word not containing x. We set V = X ′. The words U and V satisfy the

lemma.

Lemma 3.2.3. Let W be an infinite squarefree word over { a, b, c }. For some

permutation x, y, z of the letters a, b, c, there exists:

1. A word U such that Ux, Uy, and zU are all subwords of W.

2. A word V such that V x, V y, and xV are all subwords of W.

Proof. The proof is similar to that of the previous lemma.

Theorem 3.2.4. Every minimally locked formula on four letters has index 4.
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Proof. We need to show every MLF on four letters is 3-unavoidable.

We begin with ab.cb.ca.da.dc.bc.bd. Suppose it is 3-avoidable, and let W be an

infinite word on { a, b, c } avoiding it. This infinite word W must be squarefree.

By Lemma 3.2.2, there exists a word U such that xU , yU , and Uz are all subwords

of W, where x, y, and z are the letters a, b, and c in some order. We define ϕ by

ϕ(a) = U , ϕ(b) = z, ϕ(c) = x, and ϕ(d) = y. One can check that ϕ(ab), ϕ(ca),

and ϕ(da) are all subwords. Since W contains all six transitions, it contains

ϕ(cb), ϕ(dc), ϕ(bc), and ϕ(bd), too.

To prove the result for the remaining MLF’s, it is sufficient to find a letter e

in each formula such that eL has one neighbor and eR has two neighbors or such

that eL has two neighbors and eR has one neighbor. In the former case, we apply

Lemma 3.2.2; in the latter case, we apply 3.2.3. We then proceed as in the above

paragraph.

For ab.cb.cd.bd.ba.da.dc, ab.cb.cd.ca.da.dc.bc, and ab.cb.ca.da.cd.bd.bc, a has

this property. For ab.cb.cd.ca.ba.da.dc, b does.

3.3 Growth Rates

In the previous section, we showed that every minimally locked formula on four

letters has index 4. In this section, we measure to what extent they are 4-

avoidable.

Let f be a formula, and let Tn(f, m) be the number of words having length

n over an alphabet of size m avoiding f . If f and m are understood, we simply

write Tn. If m < ind(f), then Tn = 0 for sufficiently large n. For many avoidable

formulas, if m ≥ ind(f), Tn grows exponentially, meaning that for all n we

have Cαn < Tn for some C > 0 and α > 1. In this case, we think of f as
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easily m-avoidable. On the other hand, again assuming m ≥ ind(f), if Tn grows

polynomially, meaning for all Tn < Cnα for some C > 0 and α > 0, we think of

f as barely m-avoidable. In the 1989 paper by Baker, McNulty, and Taylor [1], it

was shown that ab.ba.ac.ca.bc is barely 4-avoidable. (Actually, it was shown that

abwbcxcaybazac is barely 4-avoidable, but this result implies that ab.ba.ac.ca.bc

is barely 4-avoidable.) We prove this result, and then show that some of the

MLF’s on four letters are barely 4-avoidable. We conjecture that every MLF on

four letters is barely 4-avoidable

Proposition 3.3.1. ab.ba.ac.ca.bc is barely 4-avoidable.

The proof of the proposition relies on several simple ideas and lemmas. Let

W be an infinite word on { a, b, c, d }. Say that W is “red” if it contains the

transitions ab, ba, cd, and dc. Say that W is “yellow” if it contains the transitions

ac, ca, bd, and db. Finally, say that W is “blue” if it contains the transitions ad,

da, bc, and cb.

Lemma 3.3.2. An infinite word on { a, b, c, d } avoiding f = ab.ba.ac.ca.bc must

be exactly two of the three colors.

Proof. If an infinite word has all three colors, then it does not avoid f . Indeed,

ab, ba, ac, ca, and bc are all subwords of it. Hence, it is sufficient to show

that the word must contain two colors. This fact is easily verified by computer

analysis.

Lemma 3.3.3. An infinite word W on { a, b, c, d } avoiding f = ab.ba.ac.ca.bc

must have only the transitions of the two colors.

Proof. If W contains an extra transition other than those of the two colors, it is

easy to find an encounter of f . For example, suppose W is red and blue and also

contains ac. One can see that f |W via ϕ(a) = b, ϕ(b) = a, and ϕ(c) = c.
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Lemma 3.3.4. Let W be an infinite word over { a, b, c, d } having only transitions

from two of the three colors. Then W = h(W0) for some infinite word W0 over

{ a, b, c, d } and some endomorphism h from the following six:

1. ac/ad/bc/bd

2. ca/cb/da/db

3. ab/ad/cb/cd

4. ba/bc/da/dc

5. ab/ac/db/dc

6. ba/bd/ca/cd

Proof. Suppose W is red and yellow. The transitions of W are ab, ba, cd, dc, ac,

ca, bd, and db. If the first letter of W is a or d, then W is an infinite product

of the words ab, ac, db, and dc. This means that W = h(W0) for some W0,

where h is the fifth endomorphism on the list. If the first letter of W is b or c,

then W is an infinite product of the words ba, bd, ca, and cd, which means that

W = h(W0) for some W0, where this time h is the sixth endomorphism on the

list. The cases where W is red and blue or blue and yellow are similar.

We now prove Proposition 3.3.1.

Proof. By the Lemma 3.3.3, there exists a k such that every word over { a, b, c, d }

with length k avoiding ab.ba.ac.ca.bc has only the transitions of exactly two colors.

Let M = max{T1, T2, . . . , Tk }. By induction on n, we show that if 2n−1k + 1 ≤

j ≤ 2nk, then Tj ≤ 12nM .
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First, suppose that k + 1 ≤ j ≤ 2k, and let W be a word of length j. By

Lemma 3.3.4, W can be written as h(W ′)Y , where h is one the six endomor-

phisms, W ′ is some word on { a, b, c, d } having at most length k avoiding f , and

|Y | ≤ 1. There are at most M possible words W ′, at most six choices for h, and

at most two choices for Y , yielding at most 12M possibilities for W .

Assume that if 2n−1k +1 ≤ j ≤ 2nk, then Tj ≤ 12nM , and suppose 2nk +1 ≤

j ≤ 2n+1k. If W is a word of length j, we can write W = h(W ′)Y , with W ′ and

Y as in the previous paragraph. Counting, we have that there are at most 12nM

choices for W ′, at most six choices for h, and at most two choices for Y , implying

at most 12n+1M choices for W . The induction step is proven.

We conclude the proof. Suppose j satisfies 2n−1k + 1 ≤ j ≤ 2nk. Then,

Tj ≤ 12nM ≤ 24nM < (
16M

k4
)j4.

Thus, Tj has a quartic bound.

If f is barely m-avoidable, g | f , and g is m-avoidable, then g is barely m-

avoidable since Tn(g,m) ≤ Tn(f, m). If f is barely m-avoidable and f̃ is the

reversal of f , then f̃ is barely m-avoidable, since Tn(f̃ , m) = Tn(f, m).

Corollary 3.3.5. The minimally locked formulas

ab.cb.cd.bd.ba.da.dc, ab.cb.cd.ca.da.dc.bc, and ab.cb.cd.ca.ba.da.dc,

and their reversals, are barely 4-avoidable.

Proof. Each of the above formulas divides ab.ba.ac.ca.bc:

1. ab.cb.cd.bd.ba.da.dc | ab.ba.ac.ca.bc via ϕ(a) = a, ϕ(b) = b, ϕ(c) = a, and

ϕ(d) = c.
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2. ab.cb.cd.ca.da.dc.bc | ab.ba.ac.ca.bc via ϕ(a) = c, ϕ(b) = a, ϕ(c) = b, and

ϕ(d) = a.

3. ab.cb.cd.ca.ba.da.dc | ab.ba.ac.ca.bc via ϕ(a) = c, ϕ(b) = a, ϕ(c) = b, and

ϕ(d) = a.

It seems likely that the other minimally locked formulas on four letters—

ab.cb.ca.da.dc.bc.bd and ab.cb.ca.da.cd.bd.bc and their reversals—are also barely

4-avoidable, but this conjecture has yet to be proven.

52



CHAPTER 4

Index 5 Formulas

4.1 Introduction

An open problem of avoidance theory has been the existence of avoidable patterns

of index 5 or higher. We show that the formula ρ = ab.ba.ac.bc.cda.dcd (and

hence the pattern abebafacgbchcdaidcd) has index 5. Afterward, we give other

examples of index 5 formulas and offer a conjecture on a class of formulas we

believe are index 5.

In discovering an index 5 formula, we made several assumptions. First, we

assumed that it would divide some fairly small prefix of W, the fixed point of

Ω = 01/21/03/23. (Any index 5 formula must divide W; otherwise it would be

4-avoidable.) As it turns out, ρ divides the prefix of W of length 25. The second

assumption that we made was that an index 5 formula would contain only small

fragments, since a formula with large fragments typically has low index. As it

can be seen, the largest fragment of ρ has length 3. The third assumption that

we made was that a homomorphism showing the division of an index 5 formula

into W would be simple—i.e., if ϕ shows this division, then |ϕ(x)| would be small

for all variables x in the formula. For ρ, one division of it into W has |ϕ(x)| ≤ 3

for all x ∈ { a, b, c, d }. Finally, we assumed that an index 5 formula would have

only four letters. It is fairly simple to construct an avoidable formula satisfying

these assumptions. Choose a prefix P of W, a maximum fragment size m, and
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a maximum image length n for ϕ. Choose the number of letters for the formula

and let ∆ be an alphabet of that size. Let ϕ be a nonerasing homomorphism

from ∆∗ to { 0, 1, 2, 3 }∗ such that |ϕ(x)| ≤ n for all x ∈ ∆. Let f be the formula

{U ∈ ∆+ | |U | ≤ m and ϕ(U) ≤ P }, which clearly satisfies the assumptions. If

f is unavoidable, choose a different P , m, n, or ϕ. If f is avoidable, then it is

likely not minimal. However, we can generate the minimal formulas dividing f

by taking repeated simplifications. In this fashion, ρ was discovered.

4.2 The Formula ρ Is 4-Unavoidable

The question of the 4-unavoidability of ρ is settled by backtracking. We note one

improvement that can be made.

We observe that ρ divides both xyxy (via ϕ(a) = ϕ(b) = xy, ϕ(c) = x, and

ϕ(d) = y) and xxyxx (via ϕ(a) = ϕ(b) = ϕ(d) = x and ϕ(c) = y). If W is an

infinite word over four letters, say { a, b, c, d }, which avoids ρ, then W must also

avoid xyxy and xxyxx. Avoiding xyxy means that W cannot have any squares

other aa, bb, cc, or dd. Avoiding xxyxx means that W can have at most one

occurrence of any square. Hence, some suffix of W must not have any squares

at all. Therefore, if ρ is 4-avoidable, then there exists an infinite squarefree word

avoiding it. This observation greatly reduces the number of cases backtracking

must go through to prove 4-unavoidability.

4.3 5-Special Formulas

In this section, we look for other 4-unavoidable formulas by mimicking the pattern

of ρ. Specifically, there are three observations that can be made about it. First,

ρ is not divisible by any locked formula; otherwise, it would be 4-avoidable.
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Second, in ρ, if c precedes anything, it precedes d, and if d follows anything, it

follows c. Hence, the edge { cL, dR } is one component of the adjacency graph. In

fact, further inspection of AG(ρ) shows that { c } and { d } are the only free sets.

Finally, the fragments cda and dcd stand out, not only by their length, but also

by the role they play in the avoidability of ρ: dcd ensures that deletion of c yields

a square, whereas the deletion of d from cda yields ca, which, when combined

with the other fragments, produces the locked formula ab.ba.ac.bc.ca. We codify

these observations in the following definition.

Definition 4.3.1. Let f be a formula, and let x, y, and z be distinct letters of

alph(f). We say that f is 5-special if it satisfies the following conditions:

1. No locked formula divides f .

2. The formula yxy.xyz i-divides f .

3. The adjacency graph of f has exactly two components, the first of which con-

sists of only the edge {xL, yR } and the second of which is not disconnected

by the removal of yL.

Examples of 5-special formulas include eaeb.bcb.da.bdca (with x = a, y = e,

and z = b), yxy.wvxyzx.vwx.vz (with x = x, y = y, and z = z), and ρ =

ab.ba.ac.bc.cda.dcd (with x = c, y = d, and z = a).

A 5-special formula is minimally 5-special if no simplification of it is also 5-

special. Amongst all 5-special formulas, these will have the highest indices. Like

ρ, any minimally 5-special formula has only two fragments of length 3, yxy and

xyz; every other fragment has length 2.

Conjecture 4.3.2. Every minimally 5-special formula has index 5.
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ab.ba.ac.bc.cda.dcd

cb.ca.da.dc.bc.bd.aeb.eae

cb.cd.bd.ba.da.dc.aeb.eae

cb.cd.ca.da.dc.bc.aeb.eae

ab.cb.cd.ca.da.dc.bec.ebe

cb.cd.ca.ba.da.dc.aeb.eae

ab.cb.cd.ca.da.dc.bea.ebe

cb.ca.cd.bd.da.dc.aeb.eae

ab.cb.ca.cd.da.dc.bed.ebe

cb.ca.ba.bd.ed.ec.dc.de.afb.faf

cb.ca.da.dc.ec.ed.bd.be.afb.faf

Table 4.1: Known Index 5 Formulas

In the next section, we will show that any 5-special formula is 5-avoidable.

Assuming this result for now, the conjecture follows if we could prove that every

minimally 5-special formula is 4-unavoidable. Like ρ, any minimally 5-special

formula divides both xyxy and xxyxx. Hence, to show the 4-unavoidability, we

can insist that any infinite word over four letters avoiding it be squarefree.

Table 4.1 lists confirmed index 5 formulas.

4.4 5-Special Formulas Are 5-Avoidable

In this section, we show that every 5-special formula is avoided by the D0L-system

Ψ = 01/02/3204/31/3234, and hence every 5-special formula is 5-avoidable. In

what follows, we will mention some common characteristics that Ψ has with the

D0L-system Ω = 01/21/03/23 discussed in Chapter 1.
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Let R = Ψω(0) = 01020132040102 . . . .

Theorem 4.4.1. R avoids every 5-special formula.

Corollary 4.4.2. The formula ρ is 5-avoidable.

The proof of Theorem 4.4.1 relies on several lemmas.

Lemma 4.4.3. 0’s and 3’s occupy the odd index positions and 1’s, 2’s, and 4’s

occupy the even index positions of R.

This is the first similarity between Ψ and Ω. In Ωω(0), 0’s and 2’s are in the

odd index positions and 1’s and 3’s are in the even positions. In Ψω(0), there

is a similar partitioning of the letters. Because of this partitioning, it will be

convenient to define C1 = { 0, 3 } and C2 = { 1, 2, 4 }.

Lemma 4.4.4. Suppose W1W2, W3W2, W3W4, . . . , W2n−1W2n are all subwords

of R. Then, for some permutation π of { 1, 2 }, Wk ends with an element of Cπ(1)

for all odd k and Wk begins with an element of Cπ(2) for all even k. In particular,

if W2n = W1, then |W1| is even.

Proof. This follows from Lemma 4.4.3. One should compare this result to Corol-

lary 1.7.4.

Definition 4.4.5. Let W be a subword of R. Suppose W 6= 0, 3.

1. The left signature (resp. right signature) of W , written as LSig(W ) (resp.

RSig(W )), is the furthest left (resp. right) letter of W which is an element

of C2.

2. The signature of W , denoted by Sig(W ), is the pair (LSig(W ), RSig(W )).

If W is 0 or 3, the signature of W is not defined.
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For example, LSig(0132) = 1, RSig(0132) = 2, and Sig(0132) = (1, 2). We

have Sig(4) = (4, 4), but Sig(3) is not defined.

The following lemma is the analog of the alternation of 0’s and 2’s in the odd

index positions of Ωω(0).

Lemma 4.4.6. Let XY Z be a subword of R, and suppose that both Sig(X) and

Sig(Z) are defined and that Y is one of ε, 0, or 3.

1. If RSig(X) = 1, then LSig(Z) = 2.

2. If RSig(X) = 4, then LSig(Z) = 1.

3. If RSig(X) = 2, then LSig(Z) is either 1 or 4. Specifically, if X ends

02, 020, or 023, then LSig(Z) = 1, and if X ends 32, 320, or 323, then

LSig(Z) = 4. If X is 2, 20, or 23, then LSig(Z) could be either 1 or 4.

In other words, in the even index positions, 1’s are followed by 2’s, 2’s are followed

by either 1’s or 4’s, depending on what element of C1 immediately precedes the

2, and 4’s are followed by 1’s.

Proof. We can write R = W1W2 . . . , where each Wi ∈ { 01, 02, 04, 31, 32, 34 }. It

is sufficient to show that 01 and 31 can only be followed by 02 or 32; that 02 can

only be followed by 01 or 31; that 32 can only be followed by 04 or 34; and that

04 or 34 can only be followed by 01 or 31.

01 (resp. 31) pulls back to 0 (resp. 3), which can only be followed by 1, 2, or

4. But Ψ(1) = 02, Ψ(2) = 3204, and Ψ(4) = 3234, so 01 (resp. 31) can only be

followed by 02 or 32.

02 pulls back to 1, which can only be followed by 0 or 3. Since Ψ(0) = 01 and

Ψ(3) = 31, 02 is only followed by 01 or 31.
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Clearly, 32 must be followed by 04 or 34.

Finally, consider 04 (resp. 34). It must be preceded by 32. Pulling back, we

get 2 (resp. 4). This letter must be followed by 0 or 3, and so 04 (resp. 34) must

be followed by 01 or 31.

Reversing the previous lemma yields this corollary.

Corollary 4.4.7. Suppose XY Z is a subword of R, that Sig(X) and Sig(Z) are

both defined, and that Y is ε, 0, or 3.

1. If LSig(Z) = 2, then RSig(X) = 1.

2. If LSig(Z) = 4, then RSig(X) = 2.

3. If LSig(Z) = 1, then RSig(X) is either 2 or 4.

Lemma 4.4.8. Suppose W1X1W2, W3X2W2, W3X3W4, . . . , W2n−1X2n−2W2n−2,

W2n−1X2n−1W1 are all subwords of R; that each Xi is ε, 0, or 3; and that Sig(Wj)

is defined for all j.

1. Sig(W1) must be one of the following: (1, 2), (1, 4), (2, 1), (4, 2), or (4, 4).

2. If, in addition to the above, no Wi is 2, 20, or 23 for i odd, then Sig(W1)

cannot be (4, 4).

Proof. Set W2n = W1. We use Lemma 4.4.6 and Corollary 4.4.7.

(1) Suppose RSig(W1) = 1. Then LSig(W2) = 2, which implies RSig(W3) = 1.

Continuing in this way, we have LSig(Wk) = 2 for k even and RSig(Wk) = 1 for

k odd. In particular, LSig(W2n) = 2. Hence, Sig(W1) = (2, 1).

If RSig(W1) = 2, then LSig(W2) is either 1 or 4. This implies that RSig(W3)

is either 2 or 4, which implies LSig(W4) is either 1 or 4. Continuing, we can

59



eventually conclude that LSig(W2n) is either 1 or 4. Hence, Sig(W1) is either

(1, 2) or (4, 2).

Finally, suppose RSig(W1) = 4. Then, LSig(W2) = 1, and so RSig(W3) is

either 2 or 4, which implies LSig(W4) is either 1 or 4. Continuing, we have that

LSig(W2n) is either 1 or 4. Hence, Sig(W1) is either (1, 4) or (4, 4).

These three cases prove (1).

(2) Suppose RSig(W1) = 4, and so LSig(W2) = 1. Consider W3. By Lemma

4.4.6, W3 determines the left signature of any word that follows it, if that word

has a signature at all. Since LSig(W2) = 1, it must be that LSig(W4) = 1 as

well. By induction, we can show LSig(Wk) = 1 for all even k. In particular,

LSig(W2n) = 1.

Corollary 4.4.9. Suppose that W3X2W2, W3X3W4, . . . , W2n−1X2n−2W2n−2,

W2n−1X2n−1W2n are all subwords of R, that each Xi is ε, 0, or 3, and that

Sig(Wj) is defined for all j. Moreover, suppose no Wi is 2, 20, or 32 for i odd.

Then the left signatures of Wi, i even, are all the same.

Proof. This follows from the proof of Lemma 4.4.8 (2). Note that word W1X1W2

is omitted from the sequence of words since its presence is not need to prove the

result.

Proposition 4.4.10. R avoids every locked formula.

Proof. It is sufficient to prove that R avoids every minimally locked formula f .

Suppose f |Ψm(0), with m minimal, and let ϕ show the divisibility. By Lemma

4.4.4, there are two possibilities: either ϕ(a) begins with an element of C1 and

ends with an element of C2 for every a ∈ alph(f), or vice versa. In either case,

|ϕ(a)| ≥ 2 for all a ∈ alph(f); thus, the signature of ϕ(a) is defined for all
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a ∈ alph(f). Since f is locked, the hypotheses of Lemma 4.4.8 are satisfied, so

ϕ(a) cannot be 32, 20, nor 23 for any a ∈ alph(f). (Otherwise, ϕ(a) would have

(2, 2) as a signature.)

First, consider the case where ϕ(a) begins with an element of C1 and ends

with and element of C2 for all a ∈ alph(f). Let L = { 01, 02, 3204, 31, 3234 }, and

consider the prefix slide setup (L, Ψm(0), f, ϕ). If ϕ(a) begins with 04 or 34, set

P ′
a = 32; otherwise, set P ′

a = ε. It is clear that prefix slide condition holds. By

Proposition 1.6.3, we have a homomorphism ϕ′ such that ϕ′(Q) is a subword of

Ψω(0) for all Q ∈ f and ϕ′(a) ∈ L∗ for all a ∈ alph(f). Since ϕ(a) 6= 32, one can

check that ϕ′(a) 6= ε for any a ∈ alph(f). This implies that f |Ψm−1(0).

Now suppose ϕ(a) begins with an element of C2 and ends with an element of C1

for all a ∈ alph(f). Let L′ = { 01, 02, 04, 31, 32, 34 }. This time, we use the suffix

version of Proposition 1.6.3. Since ϕ(a) cannot be 20 or 23, by Lemma 4.4.6 there

exists a unique element of C2, say S ′a, such that ϕ(a)S ′a is a subword of Ψm(0).

The suffix slide condition holds for the suffix slide setup (L′, Ψm(0), f, ϕ). In this

case, ϕ′(a) is the word ϕ(a)S ′a minus its initial letter. Since |ϕ′(a)| = |ϕ(a)| 6= ε,

ϕ′ shows f |Ψm(0). We can now apply the first case.

Lemma 4.4.11. If UV U is a subword of R, where U, V ∈ { 0, 1, 2, 3, 4 }+ and

|V | = 1, then V is one of 1, 2, or 4 and U is either 0 or 3.

Proof. Suppose that UV U ≤ R with |V | = 1. We observe that |UV | is even by

Lemma 4.4.3. Hence, |U | is odd.

Suppose that V is 1, 2, or 4 and that |U | ≥ 3. By Lemma 4.4.6, U determines

the left signature of what follows it, which is V . This means that UV U is followed

by V . However, R is squarefree by Proposition 4.4.10. This is a contradiction.

Suppose V = 0 and that UV U is subword of Ψm(0), with m minimal. By
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Lemma 4.4.8, the signature of U must be (1, 2), (1, 4), (2, 1), (4, 2), or (4, 4). How-

ever, (4, 4) is impossible by Lemma 4.4.6. Hence, |U | ≥ 3. There are three cases.

First, suppose LSig(U) = 1. We can write U = 1U ′ for some word U ′. We have

UV U = 1|U ′01|U ′ = 1|U ′|01|U ′|. Pulling back, we get Ψ−1(U ′)0Ψ−1(U ′), which

contradicts the choice for m. Second, suppose Sig(U) = (2, 1). We can write

U = 2U ′1 for some word U ′. Here, we have UV U = 2U ′102U ′1 = 2|U ′1|02|U ′1|.

We see that UV U must be preceded by 0. However, this contradicts Proposition

4.4.10. Finally, suppose Sig(U) = (4, 2). We can write U = 4U ′2 for some word

U ′. Substituting, we get UV U = 4U ′204U ′2 = 4|U ′204|U ′2. We see that U ′ can

be write U ′ = U ′′3, yielding 4|U ′′|3204|U ′′|32. Ignoring the ending 32, we see that

this pulls back to either 2Ψ−1(U ′′)2Ψ−1(U ′′) or 4Ψ−1(U ′′)2Ψ−1(U ′′). The former

is impossible by Proposition 4.4.10. The latter can only happen if |Ψ−1(U ′′)| = 1.

This contradicts Lemma 4.4.6: 4 is followed by 2.

The case of V = 3 is similar to that of V = 0.

We now prove Theorem 4.4.1.

Proof. Suppose the 5-special formula f divides Ψm(0), with m minimal. Let ϕ

show the divisibility. We begin with some general observations.

If u 6= x, y, then uL and uR are connected in AG(f). By Lemma 4.4.4, |ϕ(u)|

is even. If u = x, then ϕ(u) cannot be 0 or 3. Otherwise, ϕ(yxy) would be

a subword of R, which violates Lemma 4.4.11. Therefore, Sig(ϕ(u)) must be

defined for all u 6= y. The signature of ϕ(y) may or may not be defined.

Let u 6= x, y. In AG(f), uL and uR are connected by a path which does not

pass though yL. By Lemma 4.4.8, we can conclude that Sig(ϕ(u)) 6= (2, 2). In

particular, ϕ(u) cannot be 2, 20, 23, or 32.

A 5-special formula has only two free sets, {x } and { y }. Deleting {x } yields
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a square, while deleting { y } yields a locked formula. To prove this last part, let

u 6= y. If u 6= x, there is a path from uL to uR in AG(f) which avoids yL. Since

the same path exists in AG(σy(f)), u is not free in σy(f). If u = x, then xL is

connected to zR in σy(f) since xyz |i f . Since zR is connected to xR by a path

which avoids yL in AG(f), zR is connected to xR in AG(σy(f)). By joining these

two paths, we have that x is not free in σy(f).

We now are ready to proceed. There are two cases.

Case 1: Suppose ϕ(y) has a defined signature.

We show that ϕ(x) cannot be 2, 20, 23, or 32. If ϕ(x) = 2, then ϕ(yxy) =

ϕ(y)2ϕ(y). By Lemma 4.4.11, this implies that ϕ(y) is 0 or 3, which contradicts

it having a defined signature. If ϕ(x) = 20, then ϕ(yxy) = ϕ(y)20ϕ(y). This

means RSig(ϕ(y)) = 1, and so ϕ(y)20ϕ(y) must be followed by 2. This violates

Lemma 4.4.11. The case with ϕ(x) = 23 is similar. Finally, if ϕ(x) = 32, then

LSig(ϕ(y)) = 4. This means that ϕ(yxy) is preceded by 32, which produces a

square. This violates Proposition 4.4.10.

Let L be the suffix code { 01, 02, 04, 31, 32, 34 }, and consider the suffix slide

setup (L, Ψm(0), f, ϕ). For a ∈ alph(f), if ϕ(a) ends with an element of C2, set

S ′a = ε. If ϕ(a) ends with an element of C1 and a 6= y, set S ′a to be the unique

element of C2 such that ϕ(a)S ′a is a subword of Ψm(0) as determined by Lemma

4.4.6. Finally, if ϕ(y) ends with an element of C1, set S ′y to be the unique element

of C2 such that ϕ(x)ϕ(y)S ′y is a subword of Ψm(0) as determined by Lemma 4.4.6.

We need to verify the suffix slide condition. It can only fail for y and only if

y is the first letter of some fragment. Suppose ϕ(y) ends with an element of C1.

Since ϕ(xyz) is a subword, we have S ′y is the first letter of ϕ(z). We show that

if yu is a transition of f , for some u ∈ alph(f), then ϕ(u) also begins with S ′y.

The vertices zR and uR lie in the same component in the adjacency graph of f .
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Moreover, there exists a path between zR and uR which avoids yL. By Corollary

4.4.9, ϕ(zR) and ϕ(uR) begin with the same letter. The suffix slide condition is

verified.

By Proposition 1.6.3, we have ϕ′(Q) is a subword of Ψm(0) for all Q ∈ f . If

ϕ′(u) = ε, then ϕ(u) must have been 1, 2, or 4. This could have only occurred if

u = y. However, ϕ′(y) = ε means σy(f) |Ψm(0). This violates Proposition 4.4.10.

Therefore, ϕ′ shows f |Ψm(0). Moreover, ϕ′(a) begins with an element of C1 and

ends with an element of C2.

Now, we take L′ = { 01, 02, 3204, 31, 3234 }, and consider the prefix slide setup

(L′, Ψm(0), f, ϕ′). If ϕ′(a) begins with 04 or 34, set P ′
a = 32. Otherwise, set

P ′
a = ε. One checks that the prefix slide condition holds. Hence, by Proposition

1.6.3 we have ϕ′′ such that ϕ′′(Q) is a subword of Ψm(0) for all Q ∈ f . If

ϕ′′(u) = ε, then ϕ′(u) = 32, which can only happen if u = y. If this is the case,

σy(f) |Ψm(0), a violation of Proposition 4.4.10. Therefore, f |Ψm−1(0). This

contradicts the minimality of m.

Case 2: ϕ(y) is 0 or 3.

Subcase 1: |ϕ(x)| = 1. Since σy(f) is locked, there is a path which connects

xL to xR in AG(σy(f)). This corresponds to a sequence xu1, u2u1, u2u3, . . . , u2nx

of transitions of σy(f), with each ui 6= x. This means xV1u1, u2V2u1, u2V3u3, . . . ,

u2nV2n+1x is a sequence of subwords of fragments of f , where each Vi is either ε

or y. If we apply ϕ to each subword, we have a sequence of subwords of Ψm(0).

By Lemma 4.4.8, we see that the signature of x can only be (1, 2), (1, 4), (2, 1),

or (4, 2). This contradicts the assumption that ϕ(x) has length 1.

Subcase 2: |ϕ(x)| > 1. In fact, since ϕ(yxy) is a subword of R, Lemma 4.4.3

implies that |ϕ(yx)| is even. Therefore |ϕ(x)| ≥ 3. In particular, ϕ(x) cannot be

2, 20, 23, or 32. Now proceed as in Case 1, skipping the first paragraph.
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4.5 Index 6?

Having found an index 5 formula, we are tempted to conjecture that formulas for

all indices exist. However, despite our best efforts, we have yet to find a formula

having an index higher than 5.

It seems there are two courses one can follow to find an index 6 formula. One

plan, if you are optimistic, is to assume that such a formula can be found over five

letters. If this is the case, one can construct a 5-avoidance basis. After removing

the formulas that are locked or 5-special, one should get a reasonably sized list

(less than a million?). Since it seems likely that an index 6 formula has fragments

of small lengths and that its adjacency graph has few components (but at least

two), one can pare this list of candidates down further.

Another plan would be to mimic the discovery process of ρ. If a formula is

index 6, it must divide R. For small values of m, n and k, one could easily

generate words W over n letters having length at most m which divide R, or at

least some fixed prefix of it, via ϕ, with |ϕ(x)| ≤ k for all letters x. Construct

the set S of all such ordered pairs (W, ϕ). Then, for every possible ϕ, form

the formula {W | (W, ϕ) ∈ S }. This formula is probably not minimal, but by

considering simplifications, one can eventually generate a list of candidates.

The best option, of course, would be a combination of both these two plans.

However, lurking in the background is the combinatorial explosion encountered in

verifying a formula over five letters is 5-unavoidable. In the absence of hand proofs

of unavoidability, the discovery of index 6, if it exists, may be computationally

out of reach.
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APPENDIX A

Cubefree Words on Two Letters

A.1 Introduction

One of the oldest known results in the study of combinatorics on words is the

avoidability of aaa over two letters. Thue [14] showed, for example, that aaa

was avoided by µ = 01/10, the endomorphism which generates the Thue-Morse

sequence. In this chapter, we study two areas. First, what can be said about the

density of the letters in any cubefree infinite word? The Thue-Morse sequence

is an example of a word having half 0’s and half 1’s. Second, what can be said

about the growth rate of cubefree words? Using the vocabulary of Chapter 3, is

aaa easily or barely 2-avoidable?

For any word U over alphabet Σ, let the count of letter i in U , denoted

cti(U), be the number of i’s in U . For example, if U = 0100110, ct0(U) = 4 and

ct1(U) = 3. Clearly, |U | = Σi∈Σ cti(U).

Let CF be the set of all infinite cubefree words over { 0, 1 }. For W ∈ CF ,

let W[n] be the prefix of W of length n.

Definition A.1.1. Let W ∈ CF .

1. Let i ∈ { 0, 1 }. The i-density of W, denoted by deni(W), is

deni(W) = lim inf
n→∞

cti(W[n])

n
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2. The full density of W, denoted fullden(W), is the ordered pair

fullden(W) = (den0(W), den1(W)).

Clearly, for any W ∈ CF , we have den0(W) + den1(W) ≤ 1. Let CF∆ be

the set of W ∈ CF for which equality holds.

Proposition A.1.2. Let W ∈ CF . The following are equivalent:

(1) W ∈ CF∆.

(2) lim ct0(W[n])
n

exists

(3) lim ct1(W[n])
n

exists

For example, let W = µω(0) = 01101001 . . . . For all n, ct0(W[n]) = bn
2
c+mn,

where mn is either 0 or 1. Hence, den0(W) = 1
2
. Similarly, den1(W) = 1

2
. Thus,

W ∈ CF∆.

A.2 Fixed Points of Endomorphisms

A homomorphism is said to be cubefree if the image of any cubefree word is itself

cubefree. In this section, we consider those W ∈ CF that arise as fixed points of

some nonerasing cubefree endomorphism. We show that any such W lie in CF∆.

The following theorem, due to Bean, Ehrenfeucht, and McNulty [2], gives a

sufficient condition for a nonerasing homomorphism to be cubefree.

Theorem A.2.1. Let Σ be an alphabet. If h is a nonerasing homomorphism

from Σ∗ to { 0, 1 }∗ such that:

1. h(U) is cubefree whenever U is a cubefree word of length at most 4.
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2. If a, b ∈ Σ and h(a) ≤ h(b), then a = b.

3. If a, b, c ∈ Σ and Xh(a)Y = h(b)h(c), where X, Y ∈ { 0, 1 }∗, then either

X = ε and a = b or Y = ε and a = c.

Then, h is cubefree.

The two permutations of the alphabet { 0, 1 } yield trivial cubefree endomor-

phisms. One can verify that 001/011 yields a homomorphism that satisfies the

hypotheses of Theorem A.2.1. We note that 01/10, the Thue-Morse endomor-

phism, does not, although it is cubefree.

Let h be any endomophism on { 0, 1 }∗. The content matrix of h, denoted Ch,

is the matrix

Ch =

ct0(h(0)) ct0(h(1))

ct1(h(0)) ct1(h(1))


For any word U , cti(h(U)) = cti(h(0))ct0(U)+ cti(h(1))ct1(U). It is easily shown

by induction that Ck
h

(
ct0(U)
ct1(U)

)
=

(
ct0(hk(U))

ct1(hk(U))

)
.

Definition A.2.2. An endomorpism h of { 0, 1 }∗ is growing provided:

1. h(0) = 0X, for some nonempty word X.

2. |h(1)| ≥ 1.

If h is growing, then h is prefix-preserving with respect to 0 and |hn(0)| → ∞.

Thus, h generates an infinite word Wh = hω(0). Karhumäki [11] refers to growing

endomorphisms as pp-morphisms.

For the remainder of this section, h will be a growing endomorphism with Ch =

( a b
c d ). The eigenvalues of Ch are λ1 =

a+d+
√

(a−d)2+4bc

2
and λ2 =

a+d−
√

(a−d)2+4bc

2
.

Lemma A.2.3. If Wh is cubefree, then λ1 6= λ2.
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Proof. It is sufficient to show that (a− d)2 + 4bc > 0. If the result fails, we must

have a = d and either b = 0 or c = 0.

If c = 0, then h(0) = 00 . . . 0, which implies h2(0) contains 000, and so Wh is

not cubefree. Thus, h(0) contains a 1.

If b = 0 and d > 1, then h2(0) must contain 11, and so h3(0) must contain

111, which violates cubefreeness.

Therefore, we must have b = 0 and a = d = 1. This means h(0) begins 01,

h2(0) begins 011, and h3(0) begins 0111. Again, this produces a cube.

Lemma A.2.4. If Wh is cubefree, then limk→∞
ct0(hk(0))
|hk(0))| = limk→∞

ct0(hk(1))
|hk(1))| =

c
c−a+λ1

.

Proof. We have |λ2| < λ1 since a + d > 0. For each λi, associate the eigenvector

( c
λi−a ). By Lemma A.2.3, Ch is diagonalizable. Therefore,

Ck
h =

 c c

λ1 − a λ2 − a

 λk
1 0

0 λk
2

  λ2−a
c(λ2−λ1)

−1
λ2−λ1

a−λ1

c(λ2−λ1)
1

λ2−λ1


=

 λk
1(λ2−a)−λk

2(λ1−a)

λ2−λ1

−cλk
1+cλk

2

λ2−λ1

(λ1−a)(λ2−a)(λk
1−λk

2)

λ2−λ1

−(λ1−a)λk
1+(λ2−a)λk

2

λ2−λ1


This matrix equation gives us these explicit formulas:

Ck
h

1

0

 =

ct0(h
k(0))

ct1(h
k(0))

 =

 λk
1(λ2−a)−λk

2(λ1−a)

λ2−λ1

(λ1−a)(λ2−a)(λk
1−λk

2)

λ2−λ1



Ck
h

0

1

 =

ct0(h
k(1))

ct1(h
k(1))

 =

 −cλk
1+cλk

2

λ2−λ1

−(λ1−a)λk
1+(λ2−a)λk

2

λ2−λ1


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We set η = λ2

λ1
and recall that |hk(i)| = ct0(h

k(i))+ ct1(h
k(i)) for i = 0, 1. We

have

ct0(h
k(0))

|hk(0)|
=

c(λ2 − a)− c(λ1 − a)ηk

c(λ2 − a)− c(λ1 − a)ηk + (λ1 − a)(λ2 − a)− (λ2 − a)(λ1 − a)ηk

→ c

c + λ1 − a

and

ct0(h
k(1))

|hk(1)|
=

c2ηk − c2

c2ηk − c2 + c(λ2 − a)ηk − c(λ1 − a)
→ −c2

−c2 − c(λ1 − a)

=
c

c + λ1 − a

Theorem A.2.5. If Wh is cubefree, then lim ct0(Wh[n])
n

= c
c−a+λ1

. Hence, Wh ∈

CF∆.

Proof. Choose ε > 0. By Lemma A.2.4, there exists k such that both∣∣∣∣ct0(h
k(0))

|hk(0)|
− c

c− a + λ1

∣∣∣∣ < ε

and ∣∣∣∣ct0(h
k(1))

|hk(1)|
− c

c− a + λ1

∣∣∣∣ < ε.

For convenience, let g = hk, and set α = max(|g(0)|, |g(1)|).

We note that g(Wh) = Wh. For all n, there exists j such that g(Wh[j]) is a

prefix of Wh[n] and Wh[n] is a prefix of g(Wh[j + 1]). The difference between

the lengths of g(Wh[j + 1]) and g(Wh[j]) is at most α. Therefore, |g(Wh[j])|
n

→ 1

and |g(Wh[j+1])|
n

→ 1 as n→∞.

Let n > 0. We have
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ct0(g(Wh[j]))

n
≤ ct0(Wh[n])

n
≤ ct0(g(Wh[j + 1]))

n
|g(Wh[j])|

n
· ct0(g(Wh[j]))

|g(Wh[j])|
≤ ct0(Wh[n])

n
≤ |g(Wh[j + 1])|

n
· ct0(g(Wh[j + 1]))

|g(Wh[j + 1])|

(A.1)

and so we have

|g(Wh[j])|
n

· ( c

c− a + λ1

− ε) ≤ ct0(Wh[n])

n
≤ |g(Wh[j + 1])|

n
· ( c

c− a + λ1

+ ε)

Taking the lim inf and lim sup yields

c

c− a + λ1

− ε ≤ lim inf
ct0(Wh[n])

n
≤ c

c− a + λ1

+ ε

and
c

c− a + λ1

− ε ≤ lim sup
ct0(Wh[n])

n
≤ c

c− a + λ1

+ ε

Since ε is arbitrary, the result is shown.

A.3 A Bound for the Density Function

Let δ = infW∈CF den0(W) (= infW∈CF den1(W)). By symmetry, we have δ ≤

den0(W) ≤ 1 − δ for all W ∈ CF . Unfortunately, δ is difficult to compute

directly. In this section, we bound δ from above and below, yielding an estimate

δ ≈ 0.406.

Definition A.3.1. Let CFn be the set of cubefree words over { 0, 1 } of length n.

Definition A.3.2. Let S(n) = min{ ct0(U) | U ∈ CFn }. Define λ = supn≥1
S(n)

n
.

Clearly, S(n) + S(m) ≤ S(n + m) for all n.

Lemma A.3.3. S(n)
n
→ λ.

71



Proof. Choose ε > 0. There exists N such that 0 ≤ λ − S(N)
N

< ε. For any n,

write n = Nq + r, where 0 ≤ r < N . We have

q

q + 1

S(N)

N
+

S(r)

n
≤ qS(N) + S(r)

n
≤ S(n)

n
≤ λ.

As n→∞, we have q
q+1
→ 1 and S(r)

n
→ 0. Taking the lim inf, we have

λ− ε <
S(N)

N
< lim inf

S(n)

n
≤ λ.

Since ε was arbitrary, we have lim inf S(n)
n

= λ. This proves the result.

The next result shows that the supremum of S(n)
n

is never attained.

Theorem A.3.4. S(n)
n

< λ for all n.

Proof. Suppose, for some m, λ = S(m)
m

. If k > 0, then S(km) ≥ kS(m). Dividing

by km, we have S(km)
km

≥ S(m)
m

= λ. Since λ ≥ S(km)
km

, we can conclude that

S(km)
km

= S(m)
m

, so S(km) = kS(m).

Let T = {W ∈ CFn | ct0(W ) = S(m) }. Let k > 2|T |, and let U be a cubefree

word over { 0, 1 } of length km having S(km) 0’s. If we write U = U1U2 . . . Uk,

with |Ui| = m for all i ≤ k, we must have ct0(Ui) = S(m). Thus, U is a product

of words from T . We order the elements of T lexicographically based on 0 ≺ 1.

We claim that Ui � Ui+1 for i < k.

Suppose not. Then, for some i, we have Ui ≺ Ui+1. There exist X, Y , and Y ′

such that Ui = X0Y and Ui+1 = X1Y ′. Consider the subword Y X1 of UiUi+1,

which has length m. We have ct0(Y X1) = ct0(X0Y ) − 1 = S(m) − 1. This

contradicts the definition of S(m), and the claim is proven.

Since U is cubefree, it is not the case that Ui = Ui+1 = Ui+2 for any i. In

other words, at most two consecutive Ui are the same. This implies that the set

{Ui | i ≤ k } has at least |T |+ 1 distinct words, which is impossible.
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The next result allows us to bound δ from below.

Theorem A.3.5. λ ≤ δ.

Proof. Choose ε > 0. There exists a W ∈ CF such that

δ + ε > den0(W).

Since

den0(W) = lim inf
ct0(W[n])

n
≥ lim

S(n)

n
= λ,

the result follows.

With computer analysis, it can be shown that S(2888) = 1173. This gives us

the lower bound of

.4061634 <
1173

2888
≤ λ ≤ δ.

On the other hand, the endomorphism h generated by
0 7→ AAFACAFAC

1 7→ AAFACAAFC

(A.2)

where A = 001101101011011, C = 001101101011, and F = 001101011011 is

cubefree by Theorem A.2.1. By Theorem A.2.5, den0(Wh) = 50
123

< .4065041.

This shows 0.4061634 < δ < 0.4065041.

A.4 Full Density

The full density of W ∈ CF is the ordered pair (den0(W), den1(W)). In this

section, we attempt to describe I = { fullden(W) | W ∈ CF } ⊂ [0, 1]2. The

results of the previous section show that I is a subset of the triangle bounded by

x = δ, y = δ, and y = 1− x.

73



Lemma A.4.1. Let Σ0 and Σ1 be two disjoint alphabets. Let W = a1a2a3 · · · ∈

CF . Suppose W′ = b1b2b3 · · · ∈ (Σ0 ∪ Σ1)
ω, with bi ∈ Σ0 if ai = 0 and bi ∈ Σ1 if

ai = 1. Then, W′ is cubefree.

Proof. If W′ contains a cube, say

bibi+1 . . . bi+n−1 = bi+nbi+n+1 . . . bi+2n−1 = bi+2nbi+2n+1 . . . bi+3n−1,

then W contains the cube

aiai+1 . . . ai+n−1 = ai+nai+n+1 . . . ai+2n−1 = ai+2nai+2n+1 . . . ai+3n−1.

Theorem A.4.2. Let n > 0. Suppose h is a uniform cubefree homomorphism

from { 0, 1, 2 }∗ to { 0, 1 }∗ with |h(x)| = n for all x ∈ { 0, 1, 2 } and

ct0(h(0)) ≤ ct0(h(1)) ≤ ct0(h(2)).

Set L = ct0(h(0))+ct0(h(1)) and H = ct0(h(1))+ct0(h(2)). For all a and b such

that

1. a + b < 1

2. a > L
2n

3. b < H
2n

there exists W ∈ CF such that fullden(W) = (a, 1− b).

Proof. Let a and b satisfy (1), (2), and (3).

Let M = µω(0) = 01101001 . . . be the Thue-Morse sequence. We construct

an infinite word V = a1a2 . . . by the following algorithm.
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1. We set F1 = 0 and k = 1.

2. We define ak as follows:

(a) If the kth letter of M = 0, set ak = 1.

(b) If the kth letter of M = 1 and Fk = 0, set ak = 0.

(c) If the kth letter of M = 1 and Fk = 1, set ak = 2.

3. Let Uk = a1a2 . . . ak. Set

Qk =
ct0(h(0)) · ct0(Uk) + ct0(h(1)) · ct1(Uk) + ct0(h(2)) · ct2(Uk)

nk
.

If Qk ≥ b, set Fk+1 = 0. If Qk ≤ a, set Fk+1 = 1.

4. Increase k by 1. Go to step 2.

By Lemma A.4.1, V is cubefree. Since h is a cubefree map, W = h(V) is

cubefree. We claim fullden(W) = (a, 1− b)

For any U ∈ CF , we have lim inf ct1(U[k])
k

= 1− lim sup ct0(U[k])
k

. Therefore, to

prove the result, it sufficient to show lim inf ct0(W[k])
k

= a and lim sup ct0(W[k])
k

= b.

Since M ∈ { 01, 10 }ω, we have V ∈ { 01, 10, 12, 21 }ω. This means W ∈

{h(01), h(10), h(12), h(21) }ω. We observe that both h(01) and h(10) have L 0’s,

while both h(12) and h(21) have H 0’s. We say that h(01) and h(10) are “low”

words and that h(12) and h(21) are “high” words.

We write W = W1W2W3 . . . , where each Wi is a low or high word. A simple

calculation shows that Q2k = ct0(W1W2...Wk)
2kn

.

The sequence {Fk } does not stabilize. Indeed, if Fk = Fk+1 = Fk+2 · · · = 0,

then Wk, Wk+1, Wk+2, . . . , are all low words, which would imply that Qk → L
2n

.

Hence, for some j > k, we have Qj < a and so Fj+1 = 1. A similar argument

holds for a sequence of 1’s.
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We say that position k is a switching point if Fk = 0 but Fk+1 = 1. Clearly,

if k is a switching point, then Qk−1 > Qk and Qk < Qk−1. We consider the

sequence Qk1 , Qk2 , . . . , where k1 < k2 < · · · are the switching points. Using

simple estimates, we can show Qki
→ a. This implies that lim inf Qk = a, and

hence lim inf ct0(W[k])
k

= a.

A similar argument shows that lim sup ct0(W[k])
k

= b.

There are several uniform cubefree homomorphisms from { 0, 1, 2 }∗ to { 0, 1 }∗

of length 12. One of them,

h(0) = 001101101011, h(1) = 001101011011, and h(2) = 001001010011,

yields L = 10 and H = 12, which shows every (a, b) > ( 5
12

, 1
2
) is the image of

some W ∈ CF . Another,

h(0) = 001101011011, h(1) = 001010010011, and h(2) = 001001010011,

yields L = 12 and H = 14, which shows every (a, b) > (1
2
, 5

12
) is achievable. A

third homomorphism,

h(0) = 001101011011, h(1) = 001001101011, and h(2) = 001001010011,

yields L = 11 and H = 13, which shows every (a, b) > (11
24

, 11
24

) is achievable.

Corollary A.4.3. The cardinality of CF is 2ω. In fact, there are 2ω words in

CF , no two of which have a common suffix.

Proof. The cardinality of fullden(CF ) is 2ω. If two infinite words have a common

suffix, then they have the same image under fullden. This implies the result.
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A.5 Growth Rates

As a digression, we show aaa is easily 2-avoidable. Let Tn = |CFn| be the number

of cubefree words on { 0, 1 } of length n, and let ζ = infn→∞(Tn)
1
n .

Lemma A.5.1. lim(Tn)
1
n = ζ

Proof. The proof is similar to Lemma A.3.3.

Theorem A.5.2. Let Σ = { 1, 2, . . . , 2n }. Suppose there exists a uniform cube-

free homomorphism h from Σ∗ to { 0, 1 }∗ of length k. Then, ζ ≥ n
1

k−1 .

Proof. Let W = a1a2 . . . ar be a cubefree word over { 0, 1 }. Let S be the set

of words U = b1b2 . . . br over { 1, 2, . . . , 2n } with bi ∈ { 1, 2, . . . n } if ai = 0 and

bi ∈ {n + 1, n + 2, . . . , 2n } if ai = 1. Every word in S is cubefree by Lemma

A.4.1. Now, we consider S ′ = {h(U) | U ∈ S }. Every word in S ′ is cubefree and

has length rk. Since |S ′| = |S| = nr, we have Trk ≥ nrTr. Taking r-th roots, we

have

((Trk)
1

rk )k ≥ n(Tr)
1
r

Letting r →∞, we have ζk ≥ nζ. The result follows.

There is a uniform cubefree homomorphism from { 1, 2, 3, 4 }∗ to { 0, 1 }∗ of

length 12, namely

h(0) = 001001101101, h(1) = 001010010011, h(2) = 001010011011,

and h(3) = 001011001101.

This implies ζ ≥ 2
1
11 > 1.06504. With some computer analysis, one can show

T40 = 9992596, and so ζ ≤ 9992596
1
40 . Hence 1.06504 ≤ ζ ≤ 1.49621.
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Université Paris VI, 1994

[9] J. D. Currie, Open problems in pattern avoidance, Amer. Math. Monthly
100 (1993), 790-793

[10] J. D. Currie, On the structure and extendibility of k-power free words, Eur.
J. Comb. 16 (1995), 111-124
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