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Abstract

We show that, up to renaming of the letters, the only infinite
ternary words avoiding the formula ABCAB.ABCBA.ACB.BAC (resp.
ABCA.BCAB.BCB.CBA) have the same set of recurrent factors as
the fixed point of 0 7→ 012, 1 7→ 02, 2 7→ 1.

Also, we show that the formula ABAC.BACA.ABCA is 2-avoidable.
Finally, we show that the pattern ABACADABCA is unavoidable for
the class of C4-minor-free graphs with maximum degree 3. This dis-
proves a conjecture of Grytczuk.

Acknoledgements: This work was partially supported by the ANR
project CoCoGro (ANR-16-CE40-0005).

1 Introduction

A pattern p is a non-empty finite word over an alphabet ∆ = {A,B,C, . . .} of
capital letters called variables. An occurrence of p in a word w is a non-erasing
morphism h : ∆∗ → Σ∗ such that h(p) is a factor of w. The avoidability index
λ(p) of a pattern p is the size of the smallest alphabet Σ such that there exists
an infinite word over Σ containing no occurrence of p.

A variable that appears only once in a pattern is said to be isolated.
Following Cassaigne [1], we associate a pattern p with the formula f obtained
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by replacing every isolated variable in p by a dot. The factors between the
dots are called fragments.

An occurrence of a formula f in a word w is a non-erasing morphism
h : ∆∗ → Σ∗ such that the h-image of every fragment of f is a factor of w.
As for patterns, the avoidability index λ(f) of a formula f is the size of the
smallest alphabet allowing the existence of an infinite word containing no
occurrence of f . Clearly, if a formula f is associated with a pattern p, every
word avoiding f also avoids p, so λ(p) 6 λ(f). Recall that an infinite word is
recurrent if every finite factor appears infinitely many times. If there exists
an infinite word over Σ avoiding p, then there exists an infinite recurrent word
over Σ avoiding p. This recurrent word also avoids f , so that λ(p) = λ(f).
Without loss of generality, a formula is such that no variable is isolated and
no fragment is a factor of another fragment. We say that a formula f is
divisible by a formula f ′ if f does not avoid f ′, that is, there is a non-erasing
morphism h such that the image of any fragment of f ′ by h is a factor of a
fragment of f . If f is divisible by f ′, then every word avoiding f ′ also avoids
f . Let Σk = {0, 1, . . . , k − 1} denote the k-letter alphabet. We denote by Σn

k

the kn words of length n over Σk.
We say that two infinite words are equivalent if they have the same set

of factors. Let b3 be the fixed point of 0 7→ 012, 1 7→ 02, 2 7→ 1. A famous
result of Thue [2, 5, 6] can be stated as follows:

Theorem 1. [2, 5, 6] Every bi-infinite ternary word avoiding AA, 010, and
212 is equivalent to b3.

In Section 2, we obtain a similar result for b3 by forbidding one ternary
formula but without forbidding explicit factors in Σ∗3.

In the remainder of the paper, we discuss a counterexample to a conjecture
of Grytczuk stating that every avoidable pattern can be avoided on graphs
with an alphabet of size that depends only on the maximum degree of the
graph.

2 Formulas closely related to b3

For every letter c ∈ Σ3, σc : Σ∗3 7→ Σ∗3 is the morphism such that σc(a) = b,
σc(b) = a, and σc(c) = c with {a, b, c} = Σ3. So σc is the morphism that fixes
c and exchanges the two other letters.

We consider the following formulas.
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• fb = ABCAB.ABCBA.ACB.BAC

• f1 = ABCA.BCAB.BCB.CBA

• f2 = ABCAB.BCB.AC

• f3 = ABCA.BCAB.ACB.BCB

• f4 = ABCA.BCAB.BCB.AC.BA

Theorem 2. Let f ∈ {fb, f1, f2, f3, f4}. Every ternary recurrent word avoid-
ing f is equivalent to b3, σ0(b3), or σ2(b3).

By considering divisibility, we can deduce that Theorem 2 holds for 72
ternary formulas. Since b3, σ0(b3), and σ2(b3) are equivalent to their reverse,
Theorem 2 also holds for the 72 reverse ternary formulas.

Proof. For 1 6 i 6 4, fb contains an occurrence of fi. Thus, every word
avoiding fi also avoids fb. Using Cassaigne’s algorithm, we have checked
that b3 avoids fi. By symmetry, σ0(b3) and σ2(b3) also avoid fi.

Let w be a ternary recurrent word w avoiding fb. Suppose for contra-
diction that w contains a square uu. Then there exists a non-empty word v
such that uuvuu is a factor of w. Thus, w contains an occurrence of fb given
by the morphism A 7→ u,B 7→ u,C 7→ v. This contradiction shows that w is
square-free.

An occurrence h of a ternary formula over Σ3 is said to be basic if
{h(A), h(B), h(C)} = Σ3. As it is well-known, no infinite ternary word
avoids squares and 012. So, every infinite ternary square-free word contains
the 6 factors obtained by letter permutation of 012. Thus, an infinite ternary
square-free word contains a basic occurrence of fb if and only if it contains
the same basic occurrence of ABCAB.ABCBA. Therefore, w contains no
basic occurrence of ABCAB.ABCBA.

A computer check shows that the longest ternary words avoiding fb,
squares, 021020120, 102101201, and 210212012 have length 159. So we
assume without loss of generality that w contains 021020120.

Suppose for contradiction that w contains 010. Since w is square-free, w
contains 20102. Moreover, w contains the factor of 20120 of 021020120. So
w contains the basic occurrence A 7→ 2, B 7→ 0, C 7→ 1 of ABCAB.ABCBA.
This contradiction shows that w avoids 010.
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Suppose for contradiction that w contains 212. Since w is square-free, w
contains 02120. Moreover, w contains the factor of 021020 of 021020120. So
w contains the basic occurrence A 7→ 0, B 7→ 2, C 7→ 1 of ABCAB.ABCBA.
This contradiction shows that w avoids 212.

Since w avoids squares, 010, and 212, Theorem 1 implies that w is equiv-
alent to b3. By symmetry, every ternary recurrent word avoiding fb is equiv-
alent to b3, σ0(b3), or σ2(b3).

3 Avoidability of ABACA.ABCA and ABAC.BACA.ABCA

We consider the morphisms ma : 0 7→ 001, 1 7→ 101 and mb : 0 7→ 010,
1 7→ 110. That is, ma(x) = x01 and mb(x) = x10 for every x ∈ Σ2.

We construct the set S of binary words as follows:

• 0 ∈ S.

• If v ∈ S, then ma(v) ∈ S and mb(v) ∈ S.

• If v ∈ S and v′ is a factor of v, then v′ ∈ S.

Let c(n) = |S ∪ Σn
2 | denote the factor complexity of S. By construction of S,

• c(3n) = 6c(n) for n > 3,

• c(3n+ 1) = 4c(n) + 2c(n+ 1) for n > 3,

• c(3n+ 2) = 2c(n) + 4c(n+ 1) for n > 2.

Thus c(n) = Θ
(
nln 6/ ln 3

)
= Θ

(
n1+ln 2/ ln 3

)
.

Theorem 3. Let f ∈ {ABACA.ABCA,ABAC.BACA.ABCA}. The set of
words u such that u is recurrent in an infinite binary word avoiding f is S.

Proof. LetR be the set of words u such that u is recurrent in an infinite binary
word avoiding ABACA.ABCA. Let R′ be the set of words u such that u is
recurrent in an infinite binary word avoiding ABAC.BACA.ABCA. An oc-
currence of ABACA.ABCA is also an occurrence of ABAC.BACA.ABCA,
so that R′ ⊆ R.

Let us show that R ⊆ S. We study the small factors of a recurrent binary
word w avoiding ABACA.ABCA. Notice that w avoid the pattern ABAAA
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since it contains the occurrence A 7→ A, B 7→ B, C 7→ A of ABACA.ABCA.
Since w contains recurrent factors only, w also avoids AAA.

A computer check shows that the longest binary words avoidingABACA.ABCA,
AAA, 1001101001, and 0110010110 have length 53. So we assume without
loss of generality that w contains 1001101001.

Suppose for contradiction that w contains 1100. Since w avoids AAA, w
contains 011001. Then w contains the occurrence A 7→ 01, B 7→ 1, C 7→ 0 of
ABACA.ABCA. This contradiction shows that w avoids 1100.

Since w contains 0110, the occurrenceA 7→ 0, B 7→ 1, C 7→ 1 ofABACA.ABCA
shows that w avoids 01010. Similarly, w contains 1001 and avoids 10101.

Suppose for contradiction that w contains 0101. Since w avoids 01010

and 10101, w contains 001011. Moreover, w avoids AAA, so w contains
10010110. Then w contains the occurrence A 7→ 10, B 7→ 0, C 7→ 1 of
ABACA.ABCA. This contradiction shows that w avoids 0101.

A binary word is a factor of the ma-image of some binary word if and
only if it avoids {000, 111, 0101, 1100}. Indeed, both kinds of binary words
are characterized by the same Rauzy graph with vertex set Σ3

2 \ {000, 111}.
So w is the ma-image of some binary word.

Obviously, the image by a non-erasing morphism of a word containing
a formula also contains the formula. Thus, the pre-image of w by ma also
avoids ABACA.ABCA. This shows that R ⊆ S.

Let us show that S ⊆ R′, that is, every word in S avoidsABAC.BACA.ABCA.
We suppose for contradiction that a finite word w ∈ S avoidsABAC.BACA.ABCA
and that ma(w) contains an occurrence h of ABAC.BACA.ABCA.

The word ma(w) is of the form �01�01�01�01 . . .. Thus, in ma(w):

• Every factor 00 is in position 0 (mod 3).

• Every factor 01 is in position 1 (mod 3).

• Every factor 11 is in position 2 (mod 3).

• Every factor 10 is in position 0 or 2 (mod 3), depending on whether a
factor 1�0 is 100 or 110.

We say that a factor s is gentle if either |s| > 3 or s ∈ {00, 01, 11}. By
previous remarks, all the occurrences of the same gentle factor have the
same position modulo 3.

First, we consider the case such that h(A) is gentle. This implies that the
distance between two occurrences of h(A) is 0 (mod 3). Since the repetitions
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h(ABA), h(ACA), and h(ABCA) are contained in the formula, we deduce
that

• |h(AB)| = |h(A)|+ |h(B)| ≡ 0 (mod 3).

• |h(AC)| = |h(A)|+ |h(C)| ≡ 0 (mod 3).

• |h(ABC)| = |h(A)|+ |h(B) + |h(C)| ≡ 0 (mod 3).

This gives |h(A)| ≡ |h(B)| ≡ |h(C)| ≡ 0 (mod 3). Clearly, such an occur-
rence of the formula in ma(w) implies an occurrence of the formula in w,
which is a contradiction.

Now we consider the case such that h(B) is gentle. If h(CA) is also gentle,
then the factors h(BACA) and h(BCA) imply that |h(A)| ≡ 0 (mod 3).
Thus, h(A) is gentle and the first case applies. If h(CA) is not gentle, then
h(CA) = 10, that is, h(C) = 1 and h(A) = 0. Thus, ma(w) contains both
h(BAC) = h(B)01 and h(BCA) = h(B)10. Since h(B) is gentle, this implies
that 01 and 10 have the same position modulo 3, which is impossible.

The case such that h(C) is gentle is symmetrical. If h(AB) is gentle,
then h(ABAC) and h(ABC) imply that |h(A)| ≡ 0 (mod 3). If h(AB)
is not gentle, then h(A) = 1 and h(B) = 0. Thus, ma(w) contains both
h(ABC) = 01h(C) and h(BAC) = 10h(C). Since h(C) is gentle, this implies
that 01 and 01 have the same position modulo 3, which is impossible.

Finally, if h(A), h(B), and h(C) are not gentle, then the length of the
three fragments of the formula is 2|h(A)|+|h(B)|+|h(C)| 6 8. So it suffices to
consider the factors of length at most 8 in S to check that no such occurrence
exists.

This shows that S ⊆ R′. Since R′ ⊆ R ⊆ S ⊆ R′, we obtain R′ = R = S,
which proves Theorem 3.

4 A counter-example to a conjecture of Grytczuk

Grytczuk [3] has considered the notion of pattern avoidance on graphs. This
generalizes the definition of nonrepetitive coloring, which corresponds to the
pattern AA. Given a pattern p and a graph G, λ(p,G) is the smallest number
of colors needed to color the vertices of G such that every non-intersecting
path in G induces a word avoiding p.

We think that the natural framework is that of directed graphs, and we
consider only non-intersecting paths that are oriented from a starting vertex
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to an ending vertex. This way, λ(p) = λ
(
p,
−→
P
)

where
−→
P is the infinite

oriented path with vertices vi and arcs −−−→vivi+1, for every i > 0. The directed
graphs that we consider have no loops and no multiple arcs, since they do
not modify the set of non-intersecting oriented paths. However, opposite
arcs (i.e., digons) are allowed. Thus, an undirected graph is viewed as a
symmetric directed graph: for every pair of distinct vertices u and v, either
there exists no arc between u and v, or there exist both the arcs −→uv and
−→vu. Let P denote the infinite undirected path. We are nitpicking about

directed graphs because, even though λ
(
AA,
−→
P
)

= λ(AA,P ) = 3, there

exist patterns such that λ
(
p,
−→
P
)
< λ(p, P ). For example, λ(ABCACB) =

λ
(
ABCACB,

−→
P
)

= 2 and λ(ABCACB,P ) = 3.

We do not attempt the hazardous task of defining a notion of avoidance
for formulas on graphs.

A conjecture of Grytczuk [3] says that for every avoidable pattern p, there
exists a function g such that λ(p,G) 6 g(∆(G)), where G is an undirected
graph and ∆(G) denotes its maximum degree. Grytczuk [3] obtained that
his conjecture holds for doubled patterns.

As a counterexample, we consider the pattern ABACADABCA which is
2-avoidable by the result in the previous section. Of course, ABACADABCA
is not doubled because of the isolated variableD. Let us show thatABACADABCA
is unavoidable on the infinite oriented graph

−→
G with vertices vi and arcs−−−→vivi+1

and −−−−−−−→v100iv100i+2, for every i > 0. Notice that
−→
G is obtained from

−→
P by adding

the arcs −−−−−−−→v100iv100i+2. Suppose that
−→
G is colored with k colors. Consider the

factors in the subgraph
−→
P induced by the paths from v300ik+1 to v300ik+200k+1,

for every i > 0. Since these factors have bounded length, the same factor
appears on two disjoint such paths pl and pr (such that pl is on the left of
pr). Notice that pl contains 2k + 1 vertices with index ≡ 1 (mod 100). By
the pigeon-hole principle, pl contains three such vertices with the same color
a. Thus, pl contains an occurrence of ABACA such that A 7→ a on vertices

with index ≡ 1 (mod 100). The same is true for pr. In
−→
G , the occurrences

of ABACA in pl and pr imply an occurrence of ABACADABCA since we
can skip an occurrence of the variable A in pl thanks to some arc of the form
−−−−−−−→v100jv100j+2.

This shows that ABACADABCA is unavoidable on
−→
G , which has max-

imum degree 3.
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1995.

[3] J. Grytczuk. Pattern avoidance on graphs. Discrete Math. 307(11–12)
(2007), 1341–1346.

[4] G. Richomme and F. Wlazinski. Some results on k-power-free mor-
phisms. Theor. Comput. Sci. 173(1–2) (2002), 119–142.
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[6] A. Thue. Über die gegenseitige Lage gleicher Teile gewisser Zeichenrei-
hen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 1 (1912), 1–67. Reprinted in
Selected Mathematical Papers of Axel Thue, T. Nagell, editor, Univer-
sitetsforlaget, Oslo, (1977), 413–478.

8


	Introduction
	Formulas closely related to b3
	Avoidability of ABACA.ABCA and ABAC.BACA.ABCA
	A counter-example to a conjecture of Grytczuk

