A family of formulas with reversal of arbitrarily high avoidability index

Pascal Ochem*
LIRMM, CNRS, Université de Montpellier
France
ochem@lirmm.fr

March 15, 2021

Abstract

We present a family of avoidable formulas with reversal whose avoidability index is unbounded. We also complete the determination of the avoidability index of the formulas with reversal in the 3 -avoidance basis.

1 Introduction

The notion of formula with reversal [2, 3] is an extension of the notion of classical formula such that a variable x can appear both as x and x^{R} with the convention that in an occurrence h of the formula, $h\left(x^{R}\right)$ is the reverse (i.e., mirror image) of $h(x)$. The avoidability index $\lambda(F)$ of a formula with reversal F is the minimum number of letters contained in an infinite word avoiding F.

Currie, Mol, and Rampersad [2] have asked if there exist formulas with reversal with arbitrarily large avoidability index. They considered the formula $\psi_{k}=x y_{1} y_{2} \cdots y_{k} x \cdot y_{1}^{R} \cdot y_{2}^{R} \cdots y_{k}^{R}$ and obtained that $\lambda\left(\psi_{1}\right)=4, \lambda\left(\psi_{2}\right)=$ $\lambda\left(\psi_{3}\right)=\lambda\left(\psi_{6}\right)=5,5 \leq \lambda\left(\psi_{4}\right) \leq 6,5 \leq \lambda\left(\psi_{5}\right) \leq 7,4 \leq \lambda\left(\psi_{k}\right) \leq 6$ if $k \geq 7$

[^0]and $k \not \equiv 0(\bmod 3)$, and $4 \leq \lambda\left(\psi_{k}\right) \leq 5$ if $k \geq 9$ and $k \equiv 0(\bmod 3)$. They conjecture that $\lambda\left(\psi_{k}\right)=5$ for all $k \geq 2$. Computational experiments suggest that the upper bound $\lambda\left(\psi_{k}\right) \leq 5$ for $k \geq 3$ is witnessed by the image of every $\left(\frac{7}{4}^{+}\right)$-free ternary word by the following $(k+3)$-uniform morphism where $k=3 t+i, t \geq 1$, and $0 \leq i \leq 2$.
\[

$$
\begin{aligned}
& 0 \rightarrow(012)^{t+1-i}(0123)^{i} \\
& 1 \rightarrow(013)^{t+1-i}(0134)^{i} \\
& 2 \rightarrow(014)^{t+1-i}(0142)^{i}
\end{aligned}
$$
\]

We give a positive answer to their original question with Theorem 1 below.
We define the formula $\phi_{k}=x_{0} x_{1} \cdot x_{1} x_{2} \cdots x_{k-1} x_{0} \cdot x_{0}^{R} \cdot x_{1}^{R} \cdots x_{k-1}^{R}$.
Theorem 1. For every fixed b, there exists k such that $b<\lambda\left(\phi_{k}\right) \leq k+1$.
Currie, Mol, and Rampersad [3] have also determined the 3-avoidance basis for formulas with reversal, which contains the minimally avoidable formulas with reversal on 3 variables. They obtained several bounds on the avoidability index of the formulas with reversal in the 3 -avoidance basis. The next two results finish the determination of the avoidability index of these formulas.

Theorem 2. The formulas $x y z y x \cdot z y x y^{R} z, x y z y x \cdot z y^{R} x y z, x y z y x \cdot z y^{R} x y^{R} z$, $x y z y^{R} x \cdot z y x y^{R} z$, and $x y z y^{R} x \cdot z y^{R} x y z$ are simultaneously 2-avoidable.

Theorem 3. The formulas $x y z x \cdot y z x y \cdot z^{R}$ and $x y z x \cdot y z^{R} x y$ are simultaneously 3-avoidable.

Theorems 1 to 3 are proved in Sections 2 to 4 .
A word w is d-directed if for every factor f of w of length d, the word f^{R} is not a factor of w.

Remark 4. If a d-directed word contains an occurrence h of $x \cdot x^{R}$, then $|h(x)| \leq d-1$.

In order to express the simultaneous avoidance of similar formulas, as in Theorems 2 and 3 , we introduce the notation x^{U} to represent equality up to mirror image. That is, if $h(x)=w$, then $h\left(x^{R}\right)=w^{R}$ and $h\left(x^{U}\right) \in\left\{w, w^{R}\right\}$. For example, avoiding $x y x y$ and $x y x^{R} y$ simultaneously is equivalent to avoid $x y x^{U} y$. Notice that the notion of undirected avoidability recently considered
by Currie and Mol [1] corresponds to the case where every occurrence of every variable of the pattern/formula is equipped with $-{ }^{U}$.

Recall that a word is $\left(\beta^{+}, n\right)$-free if it contains no repetition with exponent strictly greater than β and period at least n. Also, a word is $\left(\beta^{+}\right)$-free if it is $\left(\beta^{+}, 1\right)$-free.

2 Formulas with unbounded avoidability index

Let us first show that for every $k \geq 2, \phi_{k}$ is avoided by the periodic word $\left(\ell_{0} \ell_{1} \cdots \ell_{k}\right)^{\omega}$ over $(k+1)$ letters. This word is 2-directed, so every occurrence h of ϕ_{k} is such that $\left|h\left(x_{i}\right)\right|=1$ for every $0 \leq i<k$ by Remark 4. Without loss of generality, $h\left(x_{0}\right)=\ell_{0}$. This forces $h\left(x_{1}\right)=\ell_{1}, h\left(x_{2}\right)=\ell_{2}$, and so on until $h\left(x_{k-1}\right)=\ell_{k-1}$ and $h\left(x_{0}\right)=\ell_{k}$, which contradicts $h\left(x_{0}\right)=\ell_{0}$. Thus $\lambda\left(\phi_{k}\right) \leq k+1$.

Let b be an integer and let w be an infinite word on at most b letters. Consider the Rauzy graph R of w such that the vertices of R are the letters of w and for every factor $u v$ of length two in w, we put the $\operatorname{arc} \overrightarrow{u v}$ in R. So R is a directed graph, possibly with loops (circuits of length 1) and digons (circuits of length 2). Since w is infinite, every vertex of R has out-degree at least 1. So R contains a circuit C_{i} of length i with $1 \leq i \leq b$. Let $c_{0}, c_{1}, \ldots, c_{i-1}$ be the vertices of C_{i} in cyclic order. Let k be the least common multiple of $1,2, \ldots, b$. Since i divides k, w contains the occurrence h of ϕ_{k} such that $h\left(x_{j}\right)=c_{j \bmod i}$ for every $0 \leq j<k$. Thus $\lambda\left(\phi_{k}\right)>b$.

3 Formulas that flatten to $x y z y x \cdot z y x y z$

Notice that avoiding simultaneously the formulas in Theorem 2 is equivalent to avoiding $F=x y z y^{U} x \cdot z y^{U} x y^{U} z \cdot y^{R}$. The fragment y^{R} is here to exclude the classical formula $x y z y x \cdot z y x y z$. Indeed, even though Gamard et al. [4] obtained that $\lambda(x y z y x \cdot z y x y z)=2$, a computer check shows that $x y z y x$. zyxyz and F cannot be avoided simultaneously over two letters, that is, $x y z y^{U} x \cdot z y^{U} x y^{U} z$ is not 2-avoidable.

We use the method in [5] to show that the image of every $\left(\frac{7}{5}^{+}\right)$-free word over Σ_{4} by the following 21-uniform morphism is $\left(\frac{22+}{15}, 85\right)$-free. We also
check that such a binary word is 11-directed.

$$
\begin{aligned}
& 0 \rightarrow 000010111000111100111 \\
& 1 \rightarrow 000010110011011110011 \\
& 2 \rightarrow 000010110001111010011 \\
& 3 \rightarrow 000010110001001101111
\end{aligned}
$$

Consider an occurrence h of F. Since F contains $y \cdot y^{R}$, then $|h(y)| \leq 10$ by Remark 4. Suppose that $|h(x z)| \geq 83$. Then $h\left(x y z y^{U} x\right)$ is a repetition with period $|h(x y z y)| \geq 85$. This implies $\frac{|h(x y z y x)|}{|h(x y z y)|} \leq \frac{22}{15}$, which gives $|h(x)| \leq$ $\frac{7}{8}|h(y z y)|$. Since $|h(y)| \leq 10$, we deduce $|h(x)| \leq \frac{35}{2}+\frac{7}{8}|h(z)|$. Symmetrically, considering the repetition $h\left(z y^{U} x y^{U} z\right)$ gives $|h(z)| \leq \frac{35}{2}+\frac{7}{8}|h(x)|$. So

$$
|h(x)| \leq \frac{35}{2}+\frac{7}{8}|h(z)| \leq \frac{35}{2}+\frac{7}{8}\left(\frac{35}{2}+\frac{7}{8}|h(x)|\right)=\frac{525}{16}+\frac{49}{64}|h(x)|
$$

and

$$
|h(x)| \leq \frac{\frac{525}{16}}{1-\frac{49}{64}}=140
$$

Symmetrically, $|h(z)| \leq 140$.
In every case, $|h(x)| \leq 140,|h(z)| \leq 140$, and $|h(y)| \leq 10$. Thus we can check exhaustively that h does not exist.

4 The formulas $x y z x \cdot y z x y \cdot z^{R}$ and $x y z x \cdot y z^{R} x y$

Notice that avoiding $x y z x \cdot y z x y \cdot z^{R}$ and $x y z x \cdot y z^{R} x y$ simultaneously is equivalent to avoiding $F=x y z x \cdot y z^{U} x y \cdot z^{R}$. We use the method in [5] to show that the image of every $\left(\frac{7}{5}^{+}\right)$-free word over Σ_{4} by the following 9 -uniform morphism is $\left(\frac{131}{90}^{+}, 28\right)$-free. We also check that such a ternary word is 4-directed.

$$
\begin{aligned}
& 0 \rightarrow 011122202 \\
& 1 \rightarrow 010121202 \\
& 2 \rightarrow 001112122 \\
& 3 \rightarrow 000101120
\end{aligned}
$$

Consider an occurrence h of F. Since F contains $z \cdot z^{R}$, then $|h(z)| \leq 3$ by Remark 4. Suppose that $|h(x y)| \geq 27$. Then $h(x y z x)$ is a repetition with period $|h(x y z)| \geq 28$. This implies $\frac{|h(x y z x)|}{|h(x y z)|} \leq \frac{131}{90}$, which gives $|h(x)| \leq$
$\frac{41}{49}|h(y z)|$. Since $|h(z)| \leq 3$, we deduce $|h(x)| \leq \frac{129}{49}+\frac{41}{49}|h(y)|$. Symmetrically, considering the repetition $h\left(y z^{U} x y z\right)$ gives $|h(y)| \leq \frac{129}{49}+\frac{41}{49}|h(x)|$. So

$$
|h(x)| \leq \frac{129}{49}+\frac{41}{49}|h(y)| \leq \frac{129}{49}+\frac{41}{49}\left(\frac{129}{49}+\frac{41}{49}|h(x)|\right)=\frac{11610}{2401}+\frac{1681}{2401}|h(x)|
$$

and

$$
|h(x)| \leq \frac{\frac{11610}{2401}}{1-\frac{161}{2401}}=\frac{129}{8}
$$

So $|h(x)| \leq 16$ and, symmetrically, $|h(y)| \leq 16$.
In every case, $|h(x y)| \leq 32$ and $|h(z)| \leq 3$. Thus we can check exhaustively that h does not exist.

References

[1] J. Currie and L. Mol. The undirected repetition threshold and undirected pattern avoidance. arXiv:2006.07474
[2] J. Currie, L. Mol, and N. Rampersad. A family of formulas with reversal of high avoidability index. International Journal of Algebra and Computation 27(5) (2017), 477-493.
[3] J. Currie, L. Mol, and N. Rampersad. Avoidance bases for formulas with reversal. Theor. Comput. Sci. 738 (2018), 25-41.
[4] G. Gamard, P. Ochem, G. Richomme, and P. Séébold. Avoidability of circular formulas. Theor. Comput. Sci., 726:1-4, 2018.
[5] P. Ochem. A generator of morphisms for infinite words. RAIRO - Theoret. Informatics Appl., 40:427-441, 2006.

[^0]: *The author was partially supported by the ANR project CoCoGro (ANR-16-CE400005).

