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Abstract
We prove that the limit of the ratio the minimal number of squares occur-
rences in a binary word over its size is % = (0.5508021.... The same proof

technique is applied to compute lower bounds on the function p(x) correspond-
ing to the minimal letter frequency in an infinite x-free word. This leads to
some exact values of p(z) for z < 5+2—‘/5 Finally, we give a conjecture for the

5+v/5
value of p(z) for x > 252

1 Introduction

A square is a factor of the form uu where u is a non-empty word. Thue’s famous
result show that squares can be avoided in an infinite ternary word |7, 8]. We are
interested in the minimum number of square occurrences in a binary word.

Let 3y = {0,1}. For w € X3, let s(w) be the number of (possibly overlapping)

square occurrences in w. Forn € N, let m(n) = minyexy s(w). Let a = lim,,

We have shown [5] that % <a< %. We prove here that:

Theorem 1. The ezact value of o is % (= 0.5508021390...).

Let x € R. A word w is an x-power if there exists a k£ such that ‘ﬂk' = x and
wli — k] = wli] for alli € {k+1,...,|w|}. A square is a 2-power. A word is z-free
(resp. (x1)-free) if it does not contain as factor any x-power such that y > x (resp
Yy > ).

Let p(x) (resp. p(z™)) be the minimal density of a letter in an infinite binary
word with no repetition of exponent > x (resp. > z). The function p has been
defined in [4] and also studied in [6]. This function is defined starting from 2% since
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Figure 1: De Bruijn graph of words of size 1 (\*(G) = 0).

square are unavoidable in an infinite binary word, and there exists an infinite (27)-
free binary word [8]. Moreover, p is decreasing and is equal to 1/2 on the interval
[2%,7/3] [4].

The same proof technique can be applied to compute lower bounds on the func-
tion p(z) corresponding to the minimal letter frequency in an infinite z-free word.
This leads to new exact values of p(z) for z < % We also propose a conjecture
for the value of p(z) for z > #

2 Suffix graphs

Let v € Y3 \ e. Let v¥ be the last letter of v, and let v® be the prefix of v of size
|v| — 1. Note that v = v*v*.

Definition 2. A good suffix cover is a set of words V' such that
(a) 0CV C 33\ (o).
(b) For every u,v € V with u # v, u is not a suffix of v.
(c) For every left-infinite word w, there is a v € V such that v is a suffix of w.
(d) For every u € V, there is a v € V such that u*® is a suffix of v.

Definition 3. A suffiz graph G = (V, A,w) is a directed graph (V, A) with weight
function w : A — N such that:

e I/ is a good suffix cover.
e There is an arc (u,v) if v* is a suffix of w.

e The weight of an arc (u,v) is s(uv?) — s(u), (i.e. the number of squares
involving the last letter in uv?).

For example, De Bruijn graphs with the appropriate weight function are suffix
graphs. Note that a suffix graph is uniquely determined by the good suffix cover.

Lemma 4. If G = (V, A,w) is a suffix graph, then we have:

1. For every w € X%, there exists v € V such that v is a suffiz of w or w is a

suffiz of v.
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Figure 2: A suffix graph with A\*(G) = 1/3.

2. BEvery verter has out-degree two.

3. Fvery vertex has in-degree at least one.

Proof. (1) Let w € 3% and let w’ be a left-infinite word with suffix w. By (c), there
exists v € V which is a suffix of w’. Then either w is a suffix of v, or v is a suffix of
w.

(2) Let v € V and x € ¥5. Let u, € V be such that either u, is a suffix of vz or
vr is a suffix of u,. If u, is a suffix of vz then (v,u,) € A by definition. Otherwise,
by (d), u? is a suffix of some w € V. Then v is a suffix of w, and thus v = w by (b).

Thus v € V has exactly two distinct out-neighbors since ug # u.

(3) Let v € V. By (d), there exists u € V such that v* is a suffix of u. Thus
(u,v) € A. O

Let G = (V, A,w) be a suffix graph. A walk is a sequence P = (vy,...,v;) of
vertices in V' such that for all ¢ € {1,...,k — 1}, (v;,vi41) € A. A circuit is a cir-
cular sequence C' = (vy,...,v;) of vertices in V such that for all i € {1,... k},
(vi,v;41) € A (indices are taken modulo k). The size [(C) of a circuit (resp.

.....

""" o . . . . C . .
The minimum mean circuit of G is N*(G) = ming cireuit of G % A circuit C

. w(C)
with 10

Lemma 5. Let G be a suffiz graph. Then \*(G) < a.

= M(@G) can be found in polynomial time with a dynamic approach [3].

Proof. Similar to the proof of Lemma 9 in [5]. O
We show in [5] that a < }g“; We explain how to construct a suffix graph with

A*(G) > 12 in the next section. This proves that o = 122

3 Construction of a suffix graph with \* = }g?

Proposition 6. Let (u,v) € A such that |u| < |v|. Then |u| = |v| — 1, and u is the
only in-neighbor of v.



Proof. By definition, |u| = |v|—1 and there exists x € 35 such that ux = v. Suppose
that v has an other in-neighbor w. Then there exists 2’ € 35 such that v is a suffix
of wz’. Thus x = 2’ and w is a suffix of w. Contradiction. O

We say that a vertex v € V is critical if there exists u € V such that u is the
suffix of v of size |v| — 1. The critical vertices of the graph in Figure 2 are 001 and
110.

Lemma 7. Let G = (V, A,w) be a suffix graph, and let v € V' be a non-critical
vertez. Then there ezists a unique suffiz graph G xv with vertez set V' = (V\{v})U
{0v, 1v}.

Proof. We only need to show that V’ is a good prefix cover. Clearly, V' respects
(a), (b) and (c¢). Suppose that (d) is not fulfilled and let u € V' such that u® is not
a suffix of any word in V’. Then u € {Ov, 1v}. W.Lo.g. u = 0v. Let w € V' be such
that either w is a suffix of 0v® or 0v® is a suffix of w. We have w # v, otherwise
0v*® will be a suffix of 0w € V'. Thus w € V'. If w is a suffix of 0v°®, then w’ = 0v*®
otherwise w’ would be a suffix of v* and thus v would be critical. In all cases, Ov® is
suffix of w € V’. Contradiction. O

We describe now the algorithm used to obtain the graph. We start with G = DB,
(Figure 1). While A*(G) < 132, we take a circuit C' of ratio % = \(G), we take
a vertex v in C' of minimum length, and we replace G by G *v. Note that a vertex
of minimum length on the cycle cannot be critical.

This algorithm stops with a graph G of size 62739. For this graph, \*(G) > 12

187
thus by Lemma 5, a > %. With the result of |5], this proves Theorem 1.

4 Minimal letter frequency in infinite repetition-

free words

A similar technique can be applied to obtain a lower bounds on the minimal letter
frequency in an infinite z-free binary word.

Using the technique described in previous sections, and techniques described
in [6], we get:

Theorem 8.

p(2+) = p(7/3) = 1/2 = 0.5
p(7/3+) = p(407/172) = 327/703 = 0.4651493598...
p(407/172+) = p(833/344) =  347/746 = 0.4651474530...
p(833/344+) < 6012/12925 = 0.4651450676. ..
p(17/7) > 754/1621 = 0.4651449722. ..
p(17/7+) < 2129/4600 = 0.4628260869. ..
p(298/121) > 3318/7169 = 0.4628260566. ..



p(298/121+)
p(5/2)
p(5/2+)
p(131/52)
p(131/52+) = p(43/17)
p(43/17+)
p(23/9)
p(23/9+)
p(41/16)
p(41/16+) = p(18/7)
p(18/7+)
p(631/245)
p(631/245+)
p(2900/1107)
p(2900/1107+)
p(2917/1107)
p(2917/1107+)
p(8/3)
p(8/3+)
p(886/315)
p(886/315+)
p(197/69)
p(197/69+)
p(901/315)
p(901/315+)
p(26/9)
p(26/9+) = p(79/27)
p(79/27+) = p(202/69)
p(202/69+)
p(44/15)
p(44/15+)
p(3)
p(3+)
p(31/10)
p(31/10+)
p(1554/499)
p(1554/499+)
p(22/7)
p(22/7+) = p(67/21)
p(67/21+)
p(11501/3581)
p(11501/3581+)
p(68/21)
p(68/21+)
p(13/4)

IV AIAIVIANIVIANIVIAIVIAIVIAIVIAIVIA L IVIAIVIA L IVIAIVIA

VA IV AN IV IA LIV AN IV IA IV IA IV IA IV A

6841/14781
54286,/117293
2767/6258
3818/8635
191/432
4309/9753
6678/15115
8437/19101
197/446
79/179
3983/9035
1740/3947
2306,/5231
5480,/12431
1926,/4369
4720/10707
5696,/12921
10144,/23011
241/593
12152/29901
6520/16043
5430,/13361
1459/3590
7473/18388
38131,/93825
1561/3841
89/219
662,/1629
853,/2099
675,/1661
447/1100
5570/13707
332/1149
1981 /6856
4442/15393
6389,/22140
2149 /7447
2899,/10046
126/437
1781 /6180
4594/15941
7407 /25702
2813,/9761
2777/9643
4828/16765

0.4628238955 . . .
0.4628238684 . . .
0.4421540428 . ..
0.4421540243 . ..
0.4421296296 . . .
0.4418127755 . ..
0.4418127687 . ..
0.4417046227 . ..
0.4417040358.. ..
0.4413407821 . ..
0.4408411732. ..
0.4408411451 . ..
0.4408334926 . ..
0.4408334003 . ..
0.4408331425 . ..
0.4408330998.. ..
0.4408327528 . ..
0.4408326452 . ..
0.4064080944 . . .
0.4064078124 . ..
0.4064077790. ..
0.4064067060. . .
0.4064066852 . . .
0.4064063519. ..
0.4064055422 . ..
0.4064045821 . ..
0.4063926940. . .
0.4063842848 . ..
0.4063839923 . ..
0.4063816977 . ..
0.4063636363 . . .
0.4063617129. ..
0.2889469103 . ..
0.2889439906 . . .
0.2885727278 ...
0.2885727190. ..
0.2885725795. ..
0.2885725661 . ..
0.2883295194 . ..
0.2881877022. ..
0.2881876921 . ..
0.2881876896 . . .
0.2881876856 . . .
0.2879809188. ..
0.2879809126. ..



p(13/4+) < 10289/36400 = 0.2826648351...
p(36/11) > 1642/5809 = 0.2826648304...
p(36/114) = p(23/7) = 13/46 = 0.2826086956 .. .
p(23/7+) = p(83/25) = 37/132 = 0.2803030303 ...
p(83/25+) = p(37/11) = 442/1577 = 0.2802790107...
p(37/114) = p(38/11) = 44/157 = 0.2802547770...
p(38/114) = p(7/2) = 27/97 = 0.2783505154.. .
p(7/2+) = p(103/29) = 5/18 = 0.27777TTTT7...
p(103/29+) = p(168/47) = 23/83 = 0.2771084337...
p(168/47+) = p(273/76) = 129/466 = 0.2768240343...
p(273/76+) = p(443/123) = 109/394 = 0.2766497461 ...
p(443/123+) = p(718/199) =  112/405 = 0.2765432098...
p(718/199+) = p(1163/322) =  569/2058 = 0.2764820213...
p(1163/322+) = p(1883/521) =  473/1711 = 0.2764465225. ..
p(1883/521+) = p(1016/281) =  1556/5629 = 0.2764256528. ..
p(1016/281+) = p(4933/1364) =  225/814 = 0.2764127764. ..
p(4933/1364+) = p(7983/2207) =  1018/3683 = 0.2764051045. ..
p(7983,/2207+) < 6656/24081 = 0.2764004817...

p(4) > 2584/9349 = 0.2763931971...

Whereas our previous method for lower bounds [6] was not well suited for
x > 3, the new method also handles this case. Theorem 8 gives in particular the
exact value for p on the intervals [27,833/344], [131/52+,43/17], [41/16+,18/7],
[26/9+,202/69], [22/7+,67/21], and [36/11+,1016/281]. Moreover, p is piecewise
constant on these intervals. We calculated that the decreasing between p(27) = 1/2
and p(4) > 2584/9349 is now almost completely due to the jumps except for an
amount smaller than 2 x 107>,

S

5 A conjecture for x > 2%

[\3‘

We propose the following conjecture for z > 5+T\/g Note that the conjectured values
are irrational, thus the techniques presented in [6] and in this article cannot prove
these values.

Conjecture. For every integer n > 4,
L. p([n—1,1,n—3]) =p(n) =[0,n—1,1,n — 3],
2. for k € N,p(Ur,) = p(Upss1) = [0,n(,1,n — 2)* 1, n = 3].

where [a, b, c,...] denotes the continued fraction a +1/(b+1/(c+...)), and

Dn,k71+2
Un,k =n+1-— T Dnp Dn,—l = _1a Dn,O = 1) Dn,k—i—l = nDn,k - Dn,k—l-

The values of p(z) are given by the sturmian word of density (or slope) p(z).



We need a result of Damanik and Lenz 1] in order to prove the upper bounds of
the conjecture. Every irrational o € (0, 1) has a unique continued fraction expansion
a = [0,a1,a9,as,...]. The rational approximants % of o are defined by

po=0, p1=1 pr=api—1+ pi-o2,
G-1=0, 9=1, ¢ =aq-1+ g2

Theorem 9. [1/
The largest exponent of a repetition in the sturmian word of slope a is

1—2
2 + sup {at+1 + %17} )
teN qi

Theorem 10. For every integer n > 4,
1. p([n—1,1,n=3]) <[0,n—1,1,n — 3],
2. for k €N, p(U;[’k) <[0,n(,1,n—2)k 1T,n— 3.

Proof.

[2]. Let n > 4, k € N and let w be the Sturmian word of slope [0,n(,1,n —
2) ,1,n — 3]. We show that the largest exponent of a repetition in w is Uni. Let
Bi =2+ a4 + L= 2 Tt is not hard to see that 0 < £=2=2 < 1 for all 4 > 1. Thus
if ¢ = 0, then the greatest exponent in w is By =n = UnO Otherwise, the greatest
exponent is sup;cgy gy e One can easily show by induction than D; = go; for all
i. Thus for all i € {1,...k}:

¢i-1— 2 4% — G Gi2+2

9 — 2
/Bgi:n+7:n+—2:n+1 = Unk.
qi qi qi

To conclude, we show that {U,, ;}; is increasing (note that D%,i_Dn,i-‘ran,i—l =n+2
for all 7):

1
Unit1 —Upi = m {Dni+1(Dyic1+2) — Dyi(Dyi +2)}
1
- 9D, —2D,, — 2} > 0.
Dn,i-}—an,i { da 7 (n * )}

|1, n > 4]. Let w be the Sturmian word of slope [0,n — 1,1,n — 3]. With the
same arguments, the greatest exponent in w is lim; o Up—1,;.

Dy 15
lmU,—1; = n—lim ———
71— 00 1—00 Dn 1 Z

n—|—1+\/ (n—1)2

n—1+\/n—1

= n-1,T,n—3l.



[1, n = 4]. Let w be the Sturmian word of slope [0,3,1]. For i € N, let

0G; = 3—1—‘”*(1%_2. Note that ¢; = F;11 (the i+1-th Fibonacci number), and lim;_, §; =

2 _ 5+v5 .
3 + m = 5 - Now:
1 2
Biv1— B = {qi = Gi+1Gi-1 +2¢i11 — 2%}
diqi+1
1 .
= {(=1)"*" +2¢;41 — 2¢;} > 0.
4iqi+1
Thus f; is increasing, and the largest exponent in w is % = [3,1]. U
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