Oriented coloring is NP-complete on a small class of graphs

Guillaume Guégana Pascal Ochemb

aLIRMM - Univ. Montpellier 2
161 rue Ada, 34392 Montpellier Cedex 5, France
bLIRMM - CNRS
161 rue Ada, 34392 Montpellier Cedex 5, France

Abstract

A series of recent papers shows that it is NP-complete to decide whether an oriented graph admits a homomorphism to the tournament T_4 on 4 vertices containing a 4-circuit, each time on a smaller graph class. We improve these results by showing that homomorphism to T_4 is NP-complete for bipartite planar subcubic graphs of arbitrarily large fixed girth. We also show that push homomorphism is NP-complete for planar graphs with girth 9 and for bipartite planar graphs with girth 8.

1 Introduction

A series of recent papers \cite{6,1,3,2} considers the complexity of deciding homomorphism of an oriented graph to the tournament T_4 depicted in Figure 1. Homomorphism is decidable in polynomial time for every tournament with at most 4 vertices other than T_4. Each new paper shows that the problem is NP-complete on a smaller graph class. Theorem 1 improves again these results. Let \mathcal{P}_g denote the class of planar graphs with girth least g. Therefore, \mathcal{P}_{g+1} is proper subclass of \mathcal{P}_g.

Theorem 1 For any fixed $g \geq 3$, deciding whether an oriented graph G admits a homomorphism to T_4 is NP-complete, even if G is restricted to be in \mathcal{P}_g, bipartite, subcubic, with DAG-depth 3, with maximum outdegree 2 and maximum indegree 2, and such that every 3-vertex is adjacent at most one 3-vertex.

Email addresses: guegan@lirmm.fr (Guillaume Guégan), ochem@lirmm.fr (Pascal Ochem).

Klostermeyer and MacGillivray [6] consider a variation of oriented homomorphism. Given an oriented graph G and a subset X of vertices of G, the graph obtained from G by reversing the direction of the arcs in the cut $(X, G \setminus X)$ is said to be push equivalent to G. The graph G admits a push homomorphism to an oriented graph T if there exists a graph G' such that G' is push equivalent to G and G' admits a homomorphism to T. The pushable chromatic number of G is then defined as the minimum number of vertices of a graph T such that G has a push homomorphism to T.

Let T_6 be the oriented graph depicted in Figure 2 with vertex set $\{0, 1, \cdots, 5\}$ such that ij is an arc if and only if $j = i + 1 \pmod 5$ or $j = i + 2 \pmod 5$. Guégan has shown [5] that an oriented graph has pushable chromatic number at most 3 if and only if it admits a homomorphism to T_6, and that every oriented graph in P_{17} maps to T_6. In Section 3, we obtain complementary results and exhibit an oriented graph in P_9 and a bipartite oriented graph in P_8 that do not map to T_6.

Then we consider the complexity of deciding homomorphism to T_6, or equivalently, deciding whether the pushable chromatic number is at most 3. Notice that an oriented graph has pushable chromatic number at most 2 if and only if it admits a homomorphism to the 4-circuit, which is decidable in linear time. We prove the following result in Section 4.

Theorem 2 Let g be a fixed integer. Either every oriented graph in P_g maps to T_6 or it is NP-complete to determine whether a graph in P_g maps to T_6. Either every bipartite oriented graph in P_g maps to T_6 or it is NP-complete to determine whether a bipartite graph in P_g maps to T_6.

Finally, we obtain the following corollary of Theorem 2 using the graphs described in Section 3.
Corollary 3 Determining whether an oriented planar graph G maps to T_6 is NP-complete, even if G has girth 9, or if G is bipartite with girth 8.

2 Proof of Theorem 1

Kratochvíl proved that PLANAR $(3, \leq 4)$-SAT is NP-complete [7]. In this restricted version of SAT, the graph of incidences variable-clause of the input formula is planar, every clause is a disjunction of exactly three literals, and every variable occurs in at most four clauses. We reduce PLANAR $(3, \leq 4)$-SAT to the problem of determining whether an oriented graph has a homomorphism to the tournament T_4.

Given an instance I of PLANAR $(3, \leq 4)$-SAT, we construct a corresponding oriented graph G. We take one copy of the graph depicted in Figure 3 per variable of I and one copy of the graph depicted on the left of Figure 4 per clause of I. Whenever a variable v appears in a clause c of I, we identify one vertex labelled b or \overline{b} (according to the literal of v in c) of the vertex gadget of v to a vertex l_i of the clause gadget of c.

![Figure 3. Variable gadget.](image)

![Figure 4. Clause gadget.](image)

Every T_4-coloring of the vertex gadget is such that exactly one of following holds:

(1) Every vertex named a is colored 1 and every vertex named \overline{a} is colored 2 or 3.
(2) Every vertex named \overline{a} is colored 1 and every vertex named a is colored 2 or 3.
Moreover, if a vertex \(a \) or \(\bar{a} \) is colored 1, then the corresponding vertex \(b \) or \(\bar{b} \) is colored 1. If a vertex \(a \) or \(\bar{a} \) is colored 2 or 3, then the corresponding vertex \(b \) or \(\bar{b} \) is colored 2, 3, or 4.

The set of colors \(\{2, 3, 4\} \) is associated to the boolean value true and the set of colors \(\{1\} \) is associated to the boolean value false. Now let us assume that the vertices \(x \), \(y \), and \(z \) of the clause gadget are precolored according to their corresponding literal. On the right of Figure 4, we give the possible color extensions of the three paths of the clause gadget, both in the case of a true literal (above the path) and in the case of a false literal (below the path).

If a clause is satisfied, then at least one of its literal is true and the precoloring can be extended to a \(T_4 \)-coloring of the vertex gadget. Indeed, if the literal corresponding to \(x \) (resp. \(y \), \(z \)) is true, then the precoloring can be extended such that \(c(t) = 3 \) (resp. \(c(t) = 4 \), \(c(t) = 1 \)).

If a clause is not satisfied, then the precoloring cannot be extended to a \(T_4 \)-coloring of the vertex gadget. Indeed, we have \(c(x) = c(y) = c(z) = 1 \), thus \(c(t) \notin \{2, 3\} \) because \(c(x) = 1 \), \(c(t) \neq 4 \) because \(c(y) = 1 \), and \(c(t) \notin \{1, 2\} \) because \(c(z) = 1 \), so \(c(t) \notin \{1, 2, 3, 4\} \) and the clause gadget is not \(T_4 \)-colorable.

Now, we have to show that \(G \) satisfies the conditions of Theorem 1. It is easy to check that \(G \) is planar, bipartite, subcubic, with maximum outdegree 2 and maximum indegree 2, and that every 3-vertex is adjacent at most one 3-vertex. We can also assume that the girth is large, since we can increase both the length of the cycles in the gadgets forbidding color 4 and the distance between vertices corresponding to literals of a same variable (see the dotted arcs in Figure 3). We refer to [3] for the definition of DAG-depth. The vertex gadget contains the unique maximal reachable fragment of \(G \). It consists in a directed path \(p_1, \ldots, p_7 \) with an additional out-going arc at \(p_2 \) and \(p_4 \). This reachable fragment, and thus \(G \), has DAG-depth 3. Notice that the girth of \(G \) is large, whereas the length of directed paths is bounded since \(G \) has bounded DAG-depth. This implies that \(G \) has K-width 1, i.e., there exists at most one directed path between two vertices, and that \(G \) is acyclic, i.e., \(G \) has no circuit.

3 Planar graphs that do not map to \(T_6 \)

Figure 5 shows an oriented graph \(G_9 \) in \(P_9 \) that does not map to \(T_6 \) and Figure 6 shows a bipartite oriented graph \(G_8 \) in \(P_8 \) that does not map to \(T_6 \).

To see that \(G_9 \) does not map to \(T_6 \), consider first the subgraph depicted on the left of Figure 5. Suppose that this subgraph has a \(T_6 \)-coloring to such that \(t \) is colored 0. Since \(t \) and \(d \) have a common out-neighbor, \(d \) must be colored 5, 0, or 1. Suppose that \(d \) is colored 1. Then the directed paths starting from \(t \) (resp. \(v \)) forbid forbid that
Figure 5. The graph G_9 in P_9 that does not map to T_6.

A vertex in the horizontal directed path is colored 3 (resp. 4). This is a contradiction since the directed path on 5 vertices does not map to $T_6 \setminus \{3, 4\}$. Hence, v cannot be colored 1 and, by symmetry, v cannot be colored 5. This implies that t and d get the same color in any T_6-coloring. Consider now the whole graph G_9 depicted on the left of Figure 5. It has no T_6-coloring since the represented arc would force its extremities to get distinct colors, whereas the four copies of the mentioned subgraph would force these extremities to get the same color.

Figure 6. The bipartite graph G_8 in P_8 that does not map to T_6.

To see that G_8 does not map to T_6, consider first the subgraph depicted on the left of Figure 6. If this subgraph has a T_6-coloring such that t is colored 0, then d is not colored 3 (resp. 0) because of the path on the left (resp. on the right). We associate to each vertex i of T_6 its anti-twin $i + 3 \pmod{6}$. Consider now a T_6-coloring of the whole graph G_8 depicted on the left of Figure 5. For each represented vertex v, neither the color $c(v)$ of v nor the anti-twin color $c(v) + 3 \pmod{6}$ can appear on another represented vertex. This is a contradiction since there are 4 represented vertices but only 3 pairs of anti-twins.

4 Proof of Theorem 2

We suppose that there exists a graph $H \in P_g$ that does not map to T_6 and is minimal for subgraph order. Notice that T_6 is circular, so H must be 2-connected since otherwise we can obtain a T_6-coloring of H from the T_6-colorings of the 2-connected components of H. Thanks to the graphs in Section 3 and the fact that graphs in P_{17} map to T_6 [5], we can assume that $8 \leq g \leq 16$. It is well-known that graphs in P_6,
and therefore H, are 2-degenerate. So we have $\delta(H) = 2$. Let v be a 2-vertex of H and let u_1 and u_2 be the neighbors of v. A graph that is push equivalent to H has a T_6-coloring if and only if H has a T_6-coloring. So, by possibly replacing H by a graph that is push equivalent to H, we can assume that H contains the arcs u_1v and u_2v.

The graph $H' = H \setminus v$ is a subgraph of H and thus admits at least one T_6-coloring. Let M be the set of T_6-colorings m of H' such that $m(v_1) = 0$. Let S be the set $\{m(v_2) \mid m \in M\}$. Notice that we cannot have $m(v_1) = 0$ and $m(v_2) \in \{0, 1, 5\}$, since otherwise it would be possible to extend m to H. So S is non-empty subset of $\{2, 3, 4\}$.

Now we use H' to construct a duplicator gadget D with two specified vertices z and z' on its outerface such that D maps to T_6 and every T_6-coloring of D is such that z and z' have the same color. We consider two cases depending on S:

- If $S = \{3\}$, then the construction of D is described in Figure 7, middle. If z is colored 0, then m is colored 3 and z' is colored 0, so z and z' must have the same color.
- If $S \cap \{2, 4\} \neq \emptyset$, then the construction of D is described in Figure 7, right. Suppose that z is colored 0. Because of the copy of H' between z and t, t cannot be colored 0, 1, or 5. Because of the directed 4-path between t and z, t cannot be colored 3. If t is colored 2 then S contains 2 and d must be colored 4. The copy of H' between d and z' forbids that z' is colored 3, 4, or 5. The directed 2-path between z' and t forbids that z' is colored 1, 2, or 3. The only remaining possibility is that z' is colored 0, which is possible since d is colored 4 and S contains 2. A similar argument shows that if t is colored 4, then we also obtain that z and z' must have the same color.

![Figure 7. Construction of D.](image)

The reduction is from PLANAR 3-COLORABILITY, which is known to be NP-complete [4] for planar graphs with maximum degree 4. Let I be an instance of PLANAR 3-COLORABILITY. We construct an oriented graph G based on I as follows. The vertex gadget consists in a chain of 7 copies of D. It thus contains 8 particular vertices, namely the specified vertices of the copies of D, that must get the same color in any homomorphism to T_6. This common color is said to be the color of the vertex gadget. We replace every vertex of I by a vertex gadget. For every edge ab of I, we link a particular vertex of the gadget of a to a particular vertex of the gadget of b with a directed path of 2 arcs and we link another particular vertex of the gadget of a to another particular vertex of the gadget of b with a directed path of 4 arcs, as shown in Figure 8.
Suppose that ab is an edge of I and consider a T_6-coloring of the graph induced by the gadgets of a and b and the two paths between them. If the color of the gadget of a is 0, then the color of the gadget of b is then in $\{2, 4\}$, because the path with 2 arcs forces it to be in $\{2, 3, 4\}$ and the path with 4 arcs forces it to be distinct from 3. This shows that I admits a 3-coloring using the colors $\{0, 1\}$ if and only if G admits a T_6-coloring such that the gadget of a vertex colored i is colored $2i$.

Now, we have to show that G satisfies the conditions of Theorem 2. As already mentioned, the girth of H satisfies $8 \leq g \leq 16$. The distance between u_1 and u_2 in H' is at least $g - 2$. The distance between z and z' is $2(g - 2)$ in the case $S = \{3\}$ and is $\min (6, g)$ in the case $S \cap \{2, 4\} \neq \emptyset$, so this distance is at least 6. The shortest cycles of G that are not contained in a copy of D appear in Figure 8 and their length is at least $2 \times 6 + 2 + 4 = 18$. So G contains no cycle of length strictly smaller than g. Moreover, if H is bipartite, then H' is bipartite and the distance between u_1 and u_2 in H' is even. The paths joining particular vertices in distinct vertex gadgets also have even length, so that G bipartite.

References

