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Abstract. Using a new factor chain argument, we show that 5 does not divide an odd perfect number

indivisible by a sixth power. Applying sieve techniques, we also find an upper bound on the smallest

prime divisor. Putting this together we prove that an odd perfect number must be divisible by the
sixth power of a prime or its smallest prime factor lies in the range 108 < p < 101000. These results

are generalized to much broader situations.

1. Introduction

A positive integer of the form 2n−1 is called a Mersenne number. These numbers can only be prime
when n is prime. As it currently stands, there are forty-seven known Mersenne primes. The largest is
243112609 − 1, which is also currently the largest explicitly known prime, and the first such found with
more than ten-million digits. As observed by Euclid, a number of the form N = 2p−1(2p − 1), where
2p − 1 is a Mersenne prime, possesses the property that σ(N) = 2N , and Euler proved the converse in
the case when N is even. A positive integer N satisfying σ(N) = 2N is called a perfect number. There
are two questions, open since antiquity, concerning perfect numbers.

Question 1. Are there infinitely many even perfect numbers?

Equivalently, one can ask if there are infinitely many Mersenne primes. Due to heuristic arguments,
and the fact that prime-hunters keep finding more of them at about the right times, the widely held belief
is that the answer to this question is yes. However, little concrete progress has been made in formally
answering the question. A positive answer would give an answer to other difficult open questions,
such as whether or not the quadratic polynomial 2x2 − 1 is prime infinitely often. Those wishing to
look for Mersenne primes can participate in GIMPS (the Great Internet Mersenne Prime Search) by
downloading a free program that runs on spare computer cycles from http://www.mersenne.org.

Question 2. Are there any odd perfect numbers?

The popular opinion is that the answer is no. Further, there are a number of known limiting

conditions. We give an updated version of the list provided in [24]. Write N =
∏k
i=1 p

ai
i where each pi

is prime, p1 < p2 < . . . < pk, and k = ω(N) is the number of distinct prime factors. Then:

• Eulerian Form: We have N = παm2 for some integers π, α,m ∈ Z>0, π - m, with π ≡ α ≡ 1
(mod 4) and π prime. The prime π is called the special prime of N .

• Lower Bound: Brent, Cohen, and te Riele [2] using a computer search found that N > 10300.
As of this writing, the third named author has completed the calculations which improve this
bound to N > 101500, and further progress is likely. William Lipp is helping coordinate this
effort via his website http://www.oddperfect.org.

• Upper Bound: Dickson [6] proved that there are finitely many odd perfect numbers with a fixed
number of distinct prime factors. Pomerance [26] gave an effective bound in terms of k. This
was improved in succession by Heath-Brown [13], Cook [5], and finally by the second author to
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N < 24
k

. Recently Pollack [25] used these bounds to give an effective bound on the number of
odd perfect numbers in terms of k.

• Large Factors: Goto and Ohno [9] proved that pk > 108, and Iannucci [14, 15] proved pk−1 > 104

and pk−2 > 102.
• Small Factors: The smallest prime factor satisfies p1 <

2
3k + 2 as proved by Grün [11]. For

2 6 i 6 6, Kishore [20] showed that pi < 22
i−1

(k − i + 1), and this has been slightly improved
by Cohen and Sorli [3].

• Number of Total Prime Factors: Hare [12] proved that the total number of (not necessarily
distinct) prime factors of N must be at least 75. The third author is performing computations
which increase this bound to 101.

• Number of Distinct Prime Factors: The second author [24] demonstrated that ω(N) > 9 and
if 3 - N then ω(N) > 12. In a work in progress these bounds are increased further.

• The Exponents: Set d = gcdi(ai + 1), where the ai run over the exponents on the non-special
primes. McDaniel [23] proved that d 6≡ 0 (mod 3). If the exponents of the non-special primes are
all equal (to d− 1), Yamada [30] proved that there is an effective upper bound on N depending
only on d. In this case, a number of authors have demonstrated that certain values of d are
unacceptable.

The focus of this paper will be on the exponents of a purported odd perfect number, the last of
the bulleted points above. As above, let d = gcdi(ai + 1), where the ai run over the exponents on the
non-special primes. With modern computing power it is a simple matter to show that d 6≡ 0 (mod 3);
taking fewer than 30 cases to check. We even provide such a proof later in the paper. If we replace
3 by a larger prime, like 5, already the computation becomes much more difficult, and previously had
never been accomplished. Nonetheless, there is still a straightforward algorithm to deal with this case;
assuming you have a large amount of computational power at hand. However, that leaves open what
happens in the case d = gcdi(ai + 1) = 1. For example, it is known that the non-special primes cannot
all have an exponent of 2, nor can they all have exponent 4, but it is unknown what happens in the
mixed case when we allow both 2 and 4 to occur.

A new idea was developed by Yamada [29] in a preprint available at the mathematics preprint server
http://arxiv.org since 2005. Using sieve methods, he proved the following:

Yamada’s Theorem. Let n, d, b1, b2, . . . , bt be positive integers, where the bj belong to a finite set P.

If N = pa11 · · · pass q
b1
1 · · · q

bt
t is the prime factorization of N and σ(N)/N = n/d, then N has a prime

factor smaller than a constant C, effectively computable in terms of n, s, and P.

Yamada explicitly computed the constant C in the case that N is an odd perfect number (i.e. n = 2
and d = 1) where the exponents of the non-special prime factors are either 2 or 4 (so s ≤ 1 and
P = {2, 4}). The constant he obtained was exp(4.97401 · 1010) > 1020,000,000,000.

In this paper we strengthen Yamada’s theorem by weakening the condition “the bj belong to a finite
set” to “there is a finite set of primes so that bj + 1 is divisible by one of them.” Furthermore, we
simplify the proof a great deal, and the computable constant obtained is much smaller.

Applying our theorem, we arrive at the following:

Main Theorem. Let N be an odd perfect number such that if pa||N and p is not the special prime
then either 3|(a+1) or 5|(a+1). The smallest prime factor of N belongs to the range 108 < p < 101000.

In Sections 2-4 we develop the machinery necessary to establish an improved version of Yamada’s
theorem. Emphasis is given to simplifying the computations, rather than optimizing constants. Sec-
tion 5-6 describe how the lower bound of the main theorem is pushed to 108. The most difficult problem,
and the real heart of the paper, is dealing with the case when p = 5. In Sections 7-10 we finish the proof
of the upper bound in the main theorem. The last few sections focus on open questions and possible
future improvements.
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2. Break-down of the main ideas

We begin with some standard notation. We define the function σ−1(a) = σ(a)
a =

∑
d|a d

−1 for

positive integers a, and note that this function is multiplicative. Clearly, an integer N is perfect if

and only if σ−1(N) = 2. Given a prime p we have σ−1(pa) = pa+1−1
pa(p−1) which is increasing in a and

lima→∞ σ−1(pa) = p
p−1 .

An integer N > 1 is said to be n/d-perfect if σ−1(N) = n/d. Reducing if necessary, we will always
assume n and d are relatively prime positive integers. In the case n = 2 and d = 1, we let π denote the
special prime factor of N . We also let Φm(x) denote the mth cyclotomic polynomial.

Hereafter, we fix an integer s ≥ 0 and a finite set of primes P. We will think of the set P as limiting
the exponents of all but s of the prime factors of N , but to make this more formal we need further
notations. We set P =

∏
p∈P p and let Pmax denote the largest prime in P. We let N be an n/d-perfect

number with a prime factorization

N =
s∏
i=1

raii

t∏
j=1

q
bj
j

where for each 1 ≤ j ≤ t there is a prime pj ∈ P with pj |(bj + 1). In particular we have Φpj (qj)|σ(q
bj
j ),

for any such prime pj ∈ P. For each p ∈ P we let Qp = {q : qb||N and p|(b+ 1)}. Notice that prime
factors of N may occur in more than one of the sets Qp, but (by design) there are at most s prime factors
of N which belong to none of them. Without loss of generality we also assume r1 < r2 < . . . < rs. We
speak of the primes qj as the constrained primes, as their exponents are constrained to specific residue
classes. The primes ri are unconstrained, but limited in number.

We will construct a constant, which we call C, that is an upper bound on the smallest prime factor of
N . The definition of C is done in three stages; we will assume that C is the smallest constant satisfying
the conditions given in each stage. For the first stage we simply assume C ≥ max{Pmax, n}+ 1. This
takes care of the case that one of n, d, or P shares a prime factor in common with N . Hereafter, we
will assume that N does not share such a factor. Noting that σ(N) is an integer, we derive from the
equation σ(N) = Nn/d that d|N , and hence we may now assume d = 1.

The second stage is also straightforward, and yields a large improvement over [29]. From the equation
σ−1(N) = n we have

n =

s∏
i=1

σ−1(raii )
∏
j

σ−1(q
bj
j ) ≤

s∏
i=1

r1 + i− 1

r1 + i− 2

∏
p∈P

∏
q∈Qp

q

q − 1
=
r1 + s− 1

r1 − 1

∏
p∈P

∏
q∈Qp

q

q − 1
.

We wish to turn this inequality into a non-trivial lower-bound on the quantity
∏
p∈P

∏
q∈Qp

q
q−1 . This

occurs only when n > r1+s−1
r1−1 . Equivalently we need r1 >

s+n−1
n−1 . For ease later, we define the following

constants: C0 = s+n−1
n−1 and

C ′0 =
n(r1 − 1)

s+ r1 − 1
≤
∏
p∈P

∏
q∈Qp

q

q − 1
.

Our second assumption is C ≥ C0 + 1. The observant reader will note that the constant C ′0 depends on
more than just n, s, and P; namely the prime r1. However, note that with the assumption C ≥ C0 + 1
in place we lose no generality by assuming r1 > C0. Thus, we also have the inequality C ′0 > 1, and C ′0
is bounded away from 1 by a positive quantity only depending on n, s, and P.

The third stage, which is explained fully in the next two sections, relies on the following idea: We wish
to count the number of primes factors of N which are congruent to 1 (mod P ). To this end, fix one of the
constrained primes q ∈ Qp. If q ≡ 1 (mod P ) then p|Φp(q)|σ(qb)|σ(N) = Nn. From our first assumption
on C, we know p - N , hence p|n. Thus there are at most vp(n) primes q ∈ Qp with q ≡ 1 (mod P ),
where vp denotes the p-adic valuation. In particular, there are at most C1 = s +

∑
p∈P vp(n) distinct
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prime factors of N which are ≡ 1 (mod P ). We will use the large sieve to show that this constraint
implies that

∏
p∈P

∏
q∈Qp

q/(q − 1) converges quickly. If this double product involves only sufficiently

large primes then we can guarantee it is smaller than C ′0, which yields a contradiction.

3. The Large Sieve

In this section we fix a prime p0 ∈ P and we let p represent an arbitrary prime. To use the large
sieve we first need to construct appropriate sieving sets. For p ≡ 1 (mod P ) we set

Ωp = {0 (mod p)} ∪ {a (mod p) : a 6≡ 1 (mod p), ap0 ≡ 1 (mod p)},
and for all other primes we set Ωp = {0 (mod p)}. We wish to estimate the size of the set S = {n ≤
x : n /∈ Ωp for all p < u}, where x, u ∈ R>0.

To see why we want to bound the size of S consider the following argument. Assume q ∈ Qp0 ,
q 6≡ 1 (mod p), and qp0 ≡ 1 (mod p). From the definition of Qp0 , this implies that p|N . If we further
assume that C1 = 0 then there are no primes p|N with p ≡ 1 (mod P ). Thus, under the assumptions
above, q /∈ Ωp unless q = p. In particular we have the upper-bound |{q ∈ Qp0 : q < x}| ≤ |S| + u.
Since C1 is not necessarily 0 a small corrective factor needs to be introduced, which we do at the end
of this section.

If p ≡ 1 (mod P ) we set κ(p) = p0. Otherwise we set κ(p) = 1. We extend κ multiplicatively, and
define it to be zero on non-square-free arguments. Note that κ(p) = |Ωp|. We now describe how to give
an effective bound on |S|.

Proposition 1 (The Large Sieve [16, Theorem 7.14]). We have

|S| ≤ x+ u2

G(u)

where G(u) =
∑
n≤u µ

2(n)
∏
p|n

(
κ(p)
p−κ(p)

)
.

Note that we are in the situation where “small sieves” would apply, and this is the avenue Yamada
explored. However, to avoid complications with error-term estimates we prefer the large sieve. In
the sieve we take u =

√
x, and thus we need to find a lower-bound for G(

√
x). Set V (P (w)) =∏

p<w

(
1− κ(p)

p

)
. One can approximateG(u) from above and below by suitable multiples of V (P (w))−1,

choosing w appropriately in either case. We are concerned with the lower bound, and thus appeal to
the following proposition, which follows from a trick of Rankin.

Proposition 2 ([10, Theorem 1, p. 52]). Suppose there is a constant B > 1 so that

1

log(z)

∑
p<z

κ(p) log(p)

p
< B

for some z ≥ 2. Writing z = x1/s, if s > 2B we have

G(
√
x) ≥ 1− e−C2(s)

V (P (x1/s))

where C2(s) = s
2 log(s/2B)− s

2 +B.

So we first find an upper-bound of the form

1

log(z)

∑
p<z

κ(p) log(p)

p
< B.

An effective but simplistic upper-bound is easy to achieve. It is well known (e.g., see [28, Equation

3.24]) that 1
log(z)

∑
p<z

log(p)
p < 1. Since κ(p) ≤ p0 ≤ P we can take B = P , and then take s = 2P + 1.



SIEVE METHODS FOR ODD PERFECT NUMBERS 5

Next, we need to find an upper bound for V (P (w)), where w = x1/s. We begin by noting

V (P (w)) ≤
∏
p<w

(
1− 1

p

)κ(p)
=

∏
p<w

(
1− 1

p

) ∏
p<w, p≡1 (mod P )

(
1− 1

p

)p0−1

=
∏
p<w

(
1− 1

p

)p0 ∏
p<w, p6≡1 (mod P )

(
1− 1

p

)−p0+1

.

Thus, it suffices to find an effective upper-bound for the Mertens’ product over the arithmetic progression
1 (mod P ); or lower-bounds for the products over the other arithmetic progressions modulo P . The
bounds given in [1] suffice. (To apply the results of that paper we may need to increase P so we have
P ≥ 37, which can be done by adding primes to P if necessary.) We arrive at an effective inequality of
the form

V (P (w)) <
C3

log(w)1+
p0−1

ϕ(P )

where C3 > 0 depends only on P , and ϕ is the totient function.
At this point we still need to deal with the possibility that there might be prime factors of N which

are 1 (mod P ). Let T denote the set of all such prime factors, if any. We redefine Ωp and κ, so that
Ωp = {0 (mod P )} and κ(p) = 1 whenever p ∈ T . Notice that we now truly do have the bound

|{q ∈ Qp0 : q < x}| ≤ |S|+ u.

One of the effects of this change in the definition of Ωp and κ is that the needed constant B is no larger,
so we use the same constant B = P as in our previous computation. The upper-bound on V (P (w)) is
changed by a constant which depends only on the set T . Further, the worst case is when T consists of
the first C1 primes which are 1 (mod P ). Letting T ′ consist of the first C1 primes which are 1 (mod P ),
we have

V (P (w)) <
C ′3

log(w)1+
p0

ϕ(P )

where

C ′3 = C3

∏
p∈T ′

1− 1
p

1− p0
p

> 0

is still effectively computable. Note that at the cost of weaker bounds, we then have

|{q ∈ Qp0 : q < x}| < C4x/ log(x)1+1/ϕ(P )

where C4 > 0 depends on P, but is independent of p0.

4. Partial summation bound

We are now ready to estimate
∏
q∈Qp0

q
q−1 . Suppose that all the prime factors of N are greater than

some integer y > 1. By partial summation we have

log

 ∏
q∈Qp0

q

q − 1

 = −
∑
q∈Qp0

log(1− 1/q) =
∑
q∈Qp0

(
1

q
+

1

2q2
+

1

3q3
+ · · ·

)

<

∫ ∞
y

C4

x log(x)1+1/ϕ(P )
dx+

∑
q>y

1

q(q − 1)
<

ϕ(P )C4

log(y)1/ϕ(P )
+
∑
n>y

1

n(n− 1)
=

ϕ(P )C4

log(y)1/ϕ(P )
+

1

y
.
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We can incorporate 1/y into the main term (as the main term dominates), by changing C4 to a new
constant C5 > 0. Thus

0 < log(C ′0) ≤ log

 ∏
p0∈P

∏
q∈Qp0

q

q − 1

 <
|P|ϕ(P )C5

log(y)1/ϕ(P )
.

Solving for y we have

y < exp

((
|P|ϕ(P )C5

log(C ′0)

)ϕ(P )
)

and our third assumption on C is that it is larger than the quantity on the right.
We have thus proven:

Theorem 3. Let N > 1 be an odd integer with σ−1(N) = n/d. Let s ≥ 1 be a fixed integer, and let P be

a finite set of primes. Suppose the prime factorization of N has the form N =
∏s
i=1 r

ai
i

∏t
j=1 q

bj
j , where

for each j there is a prime pj ∈ P with pj |(bj + 1). There exists a computable constant C, depending
only on P, n, and s, which gives an upper bound on the smallest prime factor of N .

5. Our special case, dealing with small primes p 6= 5

In the remainder of the paper we specialize to the case when σ−1(N) = 2, P = {3, 5}, and s = 1.
We further assume that the one prime factor of N not necessarily limited by P is the special prime, π.
Note that while the exponent of π is not limited by P we do know that the exponent is ≡ 1 (mod 4).
In particular, Φ2(π) = π + 1 divides 2N . To abbreviate these assumptions, we refer to an integer N
satisfying the above conditions by the acronym R-OPN (a restricted odd perfect number).

Let N be an R-OPN. Suppose for a moment that Q5 is empty, and so all of the exponents of the
non-special primes are ≡ 2 (mod 3). This implies that Φ3(q)|N for all q|N , q 6= π. We wish to show
that 3 - N when N is an R-OPN, working by contradiction. The next paragraph demonstrates how this
is accomplished in one special case.

If 3|N then since π 6= 3 we have 13 = Φ3(3)|N . In other words, starting with the prime 3 we
are forced to have 13 as another prime divisor of N . We say that 3 contributes the prime factor 13.
Since 13 ≡ 1 (mod 4) it might be the special prime, and so we will first consider that case. With
π = 13 we have 2 · 7 = π + 1 = Φ2(π)|2N . This implies that 7 ∈ Q3 (since 13 is already the special
prime, and we are assuming Q5 = ∅) and so 7 contributes the factors 3 · 19 = Φ3(7) to N . Repeating
this argument we have that 19 contributes 3 · 127 = Φ3(19), which in turn contributes the factors
3 · 5419 = Φ3(127)|N , and finally we have 3 · 31 · 313 · 1009 = Φ3(5419). We could continue this process
of obtaining more and more factors of N , but pausing for a moment to collect our data we currently
have M = 34 · 72 · 131 · 192 · 312 · 1272 · 3132 · 10092 · 54192|N . On the other hand σ−1(M) > 2. Adding
more prime factors to M , or increasing the exponents on the factors we already have, only increases
the size of σ−1(M), which contradicts σ−1(N) = 2.

One calls an integer M > 1 for which σ−1(M) > 2 an abundant number. If M |N and M is abundant,
then N is abundant. Using this fact we were able to show that the situation in the previous paragraph
led to a contradiction. However, there are more cases to consider; such as when 13 is not the special
prime. The print-out below covers all cases. Some explanation of the notation in the print-out may be
necessary. Every line is of the form “pa ⇒ Φa+1(p)”, where Φa+1(p) is completely factored to tell us
which new primes are contributed. The exponent a is determined by the case under consideration (we
have a = 1 if p is the special prime, and a = 2 otherwise). Also note that the letter A tells us that the
case under consideration gives us an abundant number, which allows us to back-track to the next case.
The indentation tells us how far into a chain of factors we are, and also aids us in finding the next case
to consider.
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3^2 => 13^1

13^1 => 2^1 7^1

7^2 => 3^1 19^1

19^2 => 3^1 127^1

127^2 => 3^1 5419^1

5419^2 => 3^1 31^1 313^1 1009^1 A

13^2 => 3^1 61^1

61^1 => 2^1 31^1

31^2 => 3^1 331^1

331^2 => 3^1 7^1 5233^1

7^2 => 3^1 19^1 A

61^2 => 3^1 13^1 97^1

97^1 => 3^1 7^2

7^2 => 3^1 19^1 A

97^2 => 3^1 3169^1

3169^1 => 2^1 5^1 317^1 A

3169^2 => 3^1 3348577^1

3348577^1 => 2^1 1674289^1

1674289^2 => 3^1 934415109937^1

934415109937^2 => 3^1 61^1 79^1 127^1 226903^1 2095837299571^1

79^2 => 3^1 7^2 43^1 A

3348577^2 => 3^1 3737657091169^1

3737657091169^1 => 2^1 5^1 443^1 843714919^1 A

3737657091169^2 => 3^1 181^1 26042690887^1 987900542491^1

181^1 => 2^1 7^1 13^1

7^2 => 3^1 19^1 A

181^2 => 3^1 79^1 139^1

79^2 => 3^1 7^2 43^1 A

Note that the line 331^2 => 3^1 7^1 5233^1 contributes the two primes 7 and 5233, either of which
we could use to start the next line. We chose 7 simply because it was the smallest prime we hadn’t
used, and we make similar choices throughout the chain. This algorithm above is often referred to as
“creating a factor chain.” Each possible chain of factors leads to a contradiction, i.e. the number must
always become abundant. We thus can conclude 3 - N .

At this point we might ask what happens if we disregard our assumption that Q5 is empty. This
allows one more branch for each prime factor since we do not know whether we have Φ3(q)|N or Φ5(q)|N .
For example, instead of just dealing with 13 and 132, we also have chains involving 134. Surprisingly,
the algorithm still successfully finishes in just under 1000 steps. In particular if N is an R-OPN then
3 - N .

We can try to repeat this process for the prime 5, but the number of factors needed to achieve
abundance increases dramatically. Even if we assume Q3 is empty the number of cases to check is large;
the chain must go to depths of about 80, 000 prime factors which is entirely unfeasible. We describe
how to overcome these difficulties in the next section. On the other hand, for any prime larger than 5
we quickly get a smaller prime (at least in practice) and thus reduce to a previous case. For example,
the following print-out shows that if 7|N then a smaller odd prime must divide N . When a smaller odd
prime appears, we write S:
7^2 => 3^1 19^1 S

7^4 => 2801^1
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2801^1 => 2^1 3^1 467^1 S

2801^2 => 37^1 43^1 4933^1

37^1 => 2^1 19^1

19^2 => 3^1 127^1 S

19^4 => 151^1 911^1

151^2 => 3^1 7^1 1093^1 S

151^4 => 5^1 104670301^1 S

37^2 => 3^1 7^1 67^1 S

37^4 => 11^1 41^1 4271^1

11^2 => 7^1 19^1

19^2 => 3^1 127^1 S

19^4 => 151^1 911^1

151^2 => 3^1 7^1 1093^1 S

151^4 => 5^1 104670301^1 S

11^4 => 5^1 3221^1 S

2801^4 => 5^1 1956611^1 6294091^1 S

Notice that we do not even need to involve abundance computations. Continuing in this manner,
one can prove that if 7 ≤ q < 108 is prime and q|N then a smaller odd prime divides N . Full print-outs
(of these results, and the results of the next section) are available on the second author’s website. With
more effort, the upper bound on q can be improved slightly; but a large improvement is not possible
without improved factorization techniques (which is, of course, a very difficult problem!). Eventually
the numbers we consider are too large to factor in a reasonable amount of time. It is interesting to note
that Φ3(Φ5(x)) = (x2 − x + 1)(x6 + 3x5 + 5x4 + 6x3 + 7x2 + 6x + 3), which helps factor some of the
larger integers.

Computations suggest that any factor chain as above starting with a large prime quickly yields a
smaller prime. It is an open question whether one can create a chain (using odd primes) which eventually
yields no new prime factors.

6. Dealing with the prime 5

We still need to deal with the case q = 5, and then we can conclude that an R-OPN N has no prime
factors < 108. It should be noted that even if we assume that N is not divisible by a sixth power the
computation is difficult because chains do not necessarily repeat prime factors. So we will continue to
work with the assumption that N is an R-OPN, even though our main interest lies in that special case.
Keep in mind that we do know that 3 - N from our work in the previous section.

The main difficulty in producing factor chains starting with the prime 5 is that abundance is more
difficult to achieve. When we started with the prime 3 it fortunately contributed more to the abundance
computations which helped in ending the chains quickly. To reach abundance when starting with 5 some
cases will require hundreds of thousands of different primes. It should also be mentioned that moving
from the case P = {3} to the case P = {3, 5} increases the number of chains exponentially.

The key insight is to notice that certain primes occur quickly on any chain one considers. For exam-
ple, we can always eventually get the prime 11 because of the following factor chain:
5^1 => 3 S

5^2 => 31

31^2 => 3 S

31^4 => 11 X

5^4 => 11 X
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Note: To save room we do not print the full factorization of Φa(p) to the right of the arrow, which in
some cases is difficult (or even impossible) to provide since full factorization is time intensive. Instead,
we merely print the single prime factor we will use to continue the factor chain. So, for example, the
last line tells us that 11|Φ5(5) and that is all we need to know. Since we know 3 cannot divide N ,
hereafter we will drop all lines involving a 3.

Now that we know that the prime 11 must occur on any chain we can use it to get other primes. A
factor chain starting with the prime 11 which is seventy-two lines long tells us that 31 must occur in
any chain. The prime 31 quickly gives us the prime 17351, and in turn we get 41 using the chain:
17351^2 => 21787

21787^4 => 41 X

17351^4 => 1648012040336791

1648012040336791^4 => 42751

42751^4 => 2223796173481

2223796173481^1 => 95239

95239^4 => 41 X

2223796173481^4 => 8431

8431^4 => 631

631^4 => 41 X

Note that we do not use the contradiction S when we have a prime smaller than 17351 (except on
the dropped lines involving 3) since this chain is really a subchain of a factor chain starting with 5.

In general, the only primes that we can capture in this way are all ≡ 1 (mod 5). This has to do
with the fact that if q|Φ5(p) then q = 5 or q ≡ 1 (mod 5). This makes abundance computations more
difficult (since we don’t always have small primes like 7 and 13). However, it is possible to build a large
list of primes that must occur in all chains. The ultimate goal is to collect enough primes, that each
must occur in the chain, so that we reach abundance

Since we can ignore lines giving us 3, and since 3|Φ3(q) whenever q ≡ 1 (mod 3), one strategy that
is highly effective is to branch along primes which are 1 (mod 3) as much as possible. This allows us to
avoid having to start lines with q2. For example, once we have the prime 104670301 we get the prime
191 using the following factor chain:
104670301^1 => 109

109^4 => 191 X

104670301^4 => 17440542156505477796383741

17440542156505477796383741^1 => 9446713932985381771

9446713932985381771^4 => 1439771840164173734781595130764732621

1439771840164173734781595130764732621^4 => 2179291

2179291^4 => 43411

43411^4 => 6571

6571^4 => 152211901

152211901^4 => 4025521

4025521^4 => 2341

2341^4 => 191 X

17440542156505477796383741^4 => 28225...251 (big prime)

28225...251^4 => 191 X

This strategy is extremely useful in the “endgame” when there are a lot of primes with which we
can start chains.
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The possibility that a prime can be the special prime has a quadratic effect on the number of lines
in a given factor chain. But the special prime is special precisely because there is only one prime factor
of N with its properties. We can exploit this fact by creating two separate factor chains which involve
distinct sets of possible special primes. If the special prime occurs in the first chain then it cannot
appear in the second chain and vice versa. Thus, we can write both chains without any contributions
from a special prime, and at least one of them gives us the prime we need (since the special prime occurs
in at most one of the two chains). To give an explicit example, suppose we want to get the prime 1051
and we already have the primes 241 and 104670301. Consider the two chains:
241^4 => 11106421

11106421^4 => 3263466811411

3263466811411^4 => 8821

8821^4 => 1051 X

and

104670301^4 => 17440542156505477796383741

17440542156505477796383741^4 => 1274458273681

1274458273681^4 => 111805142252581

111805142252581^4 => 49080432523124928361

49080432523124928361^4 => 662698623515864248531

662698623515864248531^4 => 43801

43801^4 => 1051 X

The only possible special primes which can appear in the first chain are 241, 8821 or 11106421, since
they are the only primes p ≡ 1 (mod 4) . Thus, if the special prime is not one of these three primes
then the first chain shows us that we obtain 1051. On the other hand, if one of those three primes is the
special prime, then the first chain is insufficient but the second chain suffices since it does not contain
any of those possible special primes. This process reduces the quadratic effect of the special prime to a
doubling effect.

There is one final simplifying technique that we put into use. Although it takes many primes to
reach abundance, if a chain does ever involve the prime 7 (or other combinations of small primes) it is
much easier to reach abundance. Thus, once we know that all chains eventually contain each of the first
hundred primes congruent to 1 (mod 5), we also know that if 7 occurs in a chain we have abundance.
Hence, after that point we may ignore any line containing 7. Similarly, with enough primes we can
start ignoring lines with 13, 17, and so forth. Even before we know we can ignore 7, we know that we
can ignore chains which give us both 7 and 13, or both 7 and 19. We put this into use when trying to
obtain the prime 2531. We found two chains (without duplicated possible special primes) that either
give us 2531 or 7. We then found two new chains (again without duplicated possible special primes)
that either give us 2531, 13, or 19. Since 7 and 13 cannot happen together, and neither can 7 and 19,
we see that we must get 2531.

After six months of running programs we wrote for Mathematica, we gathered enough chains and
primes to achieve abundance. This proves that R-OPNs are not divisible by 5.

7. Minimizing the upper bound

Let N be an R-OPN, and let C be the upper bound we constructed for the smallest prime factor
of N . Recall that our first assumption on C was made to prevent N from having prime factors in
common with n, d, or P. Due to the calculations above, we lose nothing in assuming C > 108, and
we achieve the same goal. It turns out this simple fact will greatly reduce a number of constants
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we deal with. For example, in the case we are considering we have C0 = 2. Merely assuming that
C ≥ max{Pmax, n, C0}+ 1 = 6 we have p1 ≥ 6 and so C ′0 ≥ 5/3. But as we have proven that C ≥ 108

we also have C ′0 ≥ 99999999/50000000 = 1.99999998 which is a much better (indeed, nearly optimal)
constant.

In all computations hereafter we will implicitly use the fact that N has no prime factors less than
108, and we will take C ′0 = 2(1− 10−8).

8. Working with Q3

8.1. Defining Ωp and κ. Our next job is to estimate
∏
q∈Q3

q
q−1 . As before, we will use the large

sieve. However, it turns out that we are able to improve our sieving sets Ωp if we take into account the
computations of the previous section. Notice that with n = 2 we have v3(n) = v5(n) = 0, and hence
C1 = 1. Thus, the only possible prime factor of N congruent to 1 (mod 15) is π, and we know π > 108.

Let’s recall some standard notation. For a prime p, and an integer a ∈ Z with p - a, we let
op(a) denote the order of a modulo p. In other words, this is the smallest positive integer for which

aop(a) ≡ 1 (mod p). If r is a prime number and r|(p− 1) then there are exactly r− 1 congruence classes
mod p which have order r.

The abundance computations from the previous section were only useful for small primes. The
reasons are two-fold. Primarily, when working with large primes we can end a chain much sooner by
finding a smaller prime (which we will call the smaller prime contradiction). Secondarily, since we are
assuming the prime factors of N are larger than 108 we would need an enormous number of primes to
reach abundance. Because of these two reasons we wish to encode into the definition of the sets Ωp as
much information as we can glean from the smaller prime contradiction, and we can ignore abundance
computations.

Fix q ∈ Q3. We then know Φ3(q)|N . The simplest possible chain would occur if Φ3(q) is divisible by
a prime p < 108. Such a prime is necessarily congruent to 1 (mod 3), or equal to 3, due to congruence
restrictions on the possible prime factors of Φ3(x); see [24, Lemma 1]. Thus, for all primes p < 108

with p ≡ 1 (mod 3), we can sieve the two classes a (mod p) with op(a) = 3; and we can also sieve by
the class 1 (mod 3). This is a finite number of congruence classes, and we will see that it only changes
the bound given in the large sieve by a constant factor.

The next simplest chain occurs as follows: Suppose we have a prime p|Φ3(q). We may as well assume
q ≡ 2 (mod 3) and so p ≡ 1 (mod 3). We then have 3|Φ3(p), and hence p /∈ Q3. Therefore, either
p ∈ Q5 or p = π, and we can deal with the latter contingency as we did in previous sections. In the
case p ∈ Q5 the chain stops as long as Φ5(p) is divisible by a prime r < 108. By congruence conditions,
we either have r = 5 or r ≡ 1 (mod 5). In that case either p ≡ 1 (mod 15), or or(p) = 5 and p belongs
to one of the four congruence classes modulo r of order 5. Unlike the previous case, this gives us an
infinite set of congruence classes to to sieve away. If one has good estimates for Mertens’ products over
arithmetic progressions, it would be valuable to not only sieve by primes in the class 1 (mod 15) but
in classes such as 1 (mod 3) ∩ a (mod 11) where a = 3, 4, 5, 9. The best explicit bounds we are aware
of, that work for moduli that get increasingly large, are found in [1]. Unfortunately, even in the case of
reasonable sized moduli, such as k = 165, the bounds are too large to be of value in the computations
we will perform.

We could continue this process, defining Ωp to deal with chains of deeper depths. Complications
arise in this situation. For example, we still have to deal with the possibility that one of the factors in
the chain is the special prime. In practice we will restrict ourselves to chains of depth one, or of depth
two if they yield 3 or 5. Further note that since the the upper bound we reach for the smallest prime
is 101000 we may as well replace all instances of 108 by the upper bound we wish to obtain. Due to
technical conditions, we will work up to 10100.
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We are now ready to define Ωp. Let U be the set of primes p ≡ 1 (mod 3) which are either < 10100

or ≡ 1 (mod 15). As just mentioned, depending on what tools are available, another choice of U may
be appropriate. For an arbitrary prime p, set

Ωp = {0 (mod p)} ∪


{1 (mod 3)} if p = 3,

{a (mod p) : op(a) = 3} if p ∈ U ,
∅ otherwise.

Define

κ(p) =


2 if p = 3,

3 if p ∈ U ,
1 otherwise.

We have κ(p) = |Ωp| just as before.

8.2. Finding bounds on |θ(x; 15, 1)−x/8|. In the following we let θ(t; k, `) =
∑
p≤t, p≡` (mod k) log(p).

We first need to find explicit bounds on the error term for θ(x; 15, 1)−x/8. We begin with the following
result found in [27], for values of x that are small:

Lemma 4. For 1 ≤ x ≤ 1010 we have |θ(x; 15, 1)− x/8| ≤ 1.097307
√
x.

For slight larger x we follow [27, Section 4]. In the notation of that paper, taking R = 6.41 and
C1(χ) = 1 due to work in [17] (which is also found in [19], and slightly improved in the preprint [18]),
we get bounds of the form

|θ(x; 15, 1)− x/8| < εx for all x > x0,

where ε depends on x0. We note that, without verifying the Riemann Hypothesis to greater heights for
Dirichlet L-function modulo 15, these bounds are only valid when x0 ≤ 10470. Here is a table of some
of these values:

x0 ε
1010 0.00903538
1011 0.00811594
1012 0.00780339
1020 0.00741842
1050 0.00646773
10100 0.00496541
10200 0.00241077
10400 0.00030846

For large values of x, we turn to the methods employed in [8]. In the notation of that paper, we take
R = 9.645908801, H = 2500, and C1(χ) = 9.14. In [8, Theorem 5], we have X4 = 10 and so the bounds

we obtain are accurate only when
√

log(x)/R ≥ X4, or in other words x ≥ 8.251 · 10418. Putting it all
together, we have

|θ(x; 15, 1)− x/8| < 0.77101532
x log(x)1/4

e0.321979
√

log(x)

when x > 10420.

8.3. Bounding a Mertens type product. We seek an effective bound on
∑
p≤x, p≡1 (mod 15)

1
p . By

methods employed in [28], specifically in the derivation of equation (4.15) using partial summation (see
also [4, Lemma 1.3.1]), we have∑

p≤x
p≡1 (mod 15)

1

p
=

1

8
log(log(x)) +M(15, 1) +

θ(x; 15, 1)− x/8
x log(x)

−
∫ ∞
x

(θ(t; 15, 1)− t/8)
1 + log(t)

t2 log(t)2
dt
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where M(15, 1) = −0.1506 . . . is an explicit constant (see [21]). The work in the previous section yields
|θ(x; 15, 1)− x/8| < 1.32812x/ log(x) for all x ≥ 2. Plugging this into the formula above, we then have∣∣∣∣∣∣∣∣

∑
p≤x

p≡1 (mod 15)

1

p
− 1

8
log(log(x))−M(15, 1)

∣∣∣∣∣∣∣∣ <
2

log(x)2
+

1.32812

log(x)
.

As it will become useful shortly, we develop a series of inequalities. We have

2

log(x)2
+

1.32812

log(x)
<

1.48

log(x)
when x ≥ 106.

We also have

exp(−1.48/ log(x)) > 1− 1.48

log(x)

for x ≥ 2, by a simple application of Taylor series remainders. Similarly,

exp(1.48/ log(x)) < 1 +
1.65

log(x)

for x ≥ 106. Next, we compute that∑
p>x, n≥2

p≡1 (mod 15)

1

npn
<

1

2

∑
p>x, n≥2

p≡1 (mod 15)

1

pn
=

1

2

∑
p>x

p≡1 (mod 15)

1

p(p− 1)
<

1

2

∑
n>x

1

n(n− 1)
<

1

2(x− 1)

and so

exp

 ∑
p>x, n≥2

p≡1 (mod 15)

1

npn

 < exp(1/2(x− 1)) < 1 +
1.1

x
= α(x)

for x ≥ 106. Finally,

α(x)

(
1 +

1.65

log(x)

)
< 1 +

1.66

log(x)

when x ≥ 106.
Taking the logarithm of a product, expanding the Taylor series, and taking exponentials we obtain

∏
p≤x

p≡1 (mod 15)

(
1− 1

p

)
= exp

− ∑
p≤x

p≡1 (mod 15)

1

p
−

∑
n≥2

p≡1 (mod 15)

1

npn
+

∑
p>x, n≥2

p≡1 (mod 15)

1

npn

 .
Using the bounds given above, we then have, for x ≥ 106,

C(15, 1)

log(x)1/8

(
1− 1.48

log(x)

)
<

∏
p≤x

p≡1 (mod 15)

(
1− 1

p

)
<

C(15, 1)

log(x)1/8

(
1 +

1.66

log(x)

)

where C(15, 1) = 1.1617 . . . according to [22].
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8.4. Bounding another Mertens type product. Again, using the methods employed in [28], we
have ∑

p≤x
p≡1 (mod 3)

1

p
=

1

2
log(log(x)) +M(3, 1) +

θ(x; 3, 1)− x/2
x log(x)

−
∫ ∞
x

(θ(t; 3, 1)− t/2)
1 + log(t)

t2 log(t)2
dt

where M(3, 1) = −0.35689 . . . is an explicit constant (again see [21]). By [8], we have the bound
|θ(t; 3, 1)− t/2| < 0.262 t

log(t) for t ≥ 1531. Repeat the process in the last subsection to obtain∣∣∣∣∣∣∣∣
∑
p≤x

p≡1 (mod 3)

1

p
− 1

2
log(log(x))−M(3, 1)

∣∣∣∣∣∣∣∣ <
0.393

log(x)2
+

0.262

log(x)
.

For x ≥ 106 we have
0.393

log(x)2
+

0.262

log(x)
<

0.3

log(x)
.

Taylor series remainders prove that

exp(−0.3/ log(x)) > 1− 0.3

log(x)

and we also have

α(x) exp(0.3/ log(x)) < 1 +
0.31

log(x)

Thus, for x ≥ 106 we have

C(3, 1)

log(x)1/2

(
1− 0.3

log(x)

)
<

∏
p≤x

p≡1 (mod 3)

(
1− 1

p

)
<

C(3, 1)

log(x)1/2

(
1 +

0.31

log(x)

)

where C(3, 1) = 1.403477 . . . according to [22].

8.5. Estimating B. Now, consider the quantity

1

log(z)

∑
p<z

κ(p) log(p)

p
≤ 1

log(z)

∑
p<z

log(p)

p
+

log(3)

3
+

∑
p<z

p≡1 (mod 3)

2 log(p)

p

 .

A simple computation shows that the quantity on the right is smaller than 2 for z ≤ 106. In the
calculations below, we implicitly assume z > 106 unless otherwise stated.

We first estimate the piece involving the arithmetic progression. Recall that by [8], we have the
bound |θ(t; 3, 1)− t/2| < 0.262 t

log(t) for t ≥ 1531. By partial summation, we compute for integer values

of z that ∑
p≤z, p≡1 (mod 3)

log(p)

p
= θ(z; 3, 1)

1

z
+

∫ z

t=7

θ(t; 3, 1)
1

t2
dt

<
1

2
+ 0.262

1

log(z)
+

1

2
log(z) + 0.262 log(log(z))− 1.14

which is increasing in z. In particular,

1

log(z)

∑
p≤z, p≡1 (mod 3)

2 log(p)

p
≤ 1 + 0.524

log(log(z))

log(z)
− 1.2

log(z)
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for all real z > 106. The function 0.524 log(log(z))
log(z) − 1.2

log(z) is bounded above by 0.02.

By Equation (3.22) in [28], we have∑
p≤z

log(p)

p
< log(z) + E +

1

2 log(z)

for z ≥ 319, where E = −1.33258 . . . is a constant. Putting all of this together, we have

1

log(z)

∑
p<z

κ(p) log(p)

p
< 2.02

for all z ≥ 2. Hence, we take B = 2.02. Notice that this choice of B continues to work with any of
the other choices for U discussed above. Asymptotically, B = 2 would be the optimal constant when U
consists of all primes p ≡ 1 (mod 3).

8.6. Estimating V (P (w)). Another result of Dusart [7] tells us

e−γ

log(w)

(
1− 0.2

log(w)2

)
<
∏
p<w

(
1− 1

p

)
<

e−γ

log(w)

(
1 +

0.2

log(w)2

)
, for w > 2973.

Rewriting V (P (w)), for w ≥ 10100 we have

V (P (w)) =
1

2

∏
p≤w

(
1− 1

p

) ∏
p≤10100

p≡1 (mod 3)

(
1− 1

p

)2 ∏
p≤w

p≡1 (mod 15)

(
1− 1

p

)2 ∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)−2

∗
∏

p≤10100
p≡1 (mod 3)

(
1− 3

p

)
(

1− 1
p

)3 ∏
p≤w

p≡1 (mod 15)

(
1− 3

p

)
(

1− 1
p

)3 ∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)3
(

1− 3
p

) .
The first two products in the second line are both bounded above by 1. The third product on the second
line can be bounded by

∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)3
(

1− 3
p

) =
∏
p≤106

p≡1 (mod 15)

(
1− 1

p

)3
(

1− 3
p

) ∏
106<p≤10100
p≡1 (mod 15)

(
1− 1

p

)3
(

1− 3
p

)

<
∏
p≤106

p≡1 (mod 15)

(
1− 1

p

)3
(

1− 3
p

) ∏
106<n≤10100

(
1− 1

n

)3(
1− 3

n

) < 1.00482.

The other products were bounded previously, so we have for w ≥ 10100 that

V (P (w)) <
1

2
(1.00482)

e−γ

log(w)

(
1 +

0.2

log(10100)2

)
C(3, 1)2

log(10100)

(
1 +

0.31

log(10100)

)2

∗C(15, 1)2

log(w)1/4

(
1 +

1.66

log(10100)

)2
log(10100)1/4

C(15, 1)2

(
1− 1.48

log(10100)

)−2
<

0.00969

log(w)5/4
.

Recall that we must deal with the possibility of a single element π ∈ T ; which is accomplished by
multiplying our answer above by

(
1− 1

108

)
/
(
1− 3

108

)
, as π > 108. This quantity changes our constants

so little that with some forethought it can be accounted for in previous computations.
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8.7. Picking a value for s > 2B. We set w = x1/s, and assume w > 10100. By Proposition 2, and
the work in the previous section, we have

1

G(
√
x)
≤
((

1− e−C2(s)
)−1

V (P (x1/s))

)
< 0.00969

(
1− e−C2(s)

)−1
log(x)−5/4s5/4

with C2(s) = s
2 log(s/2B)− s

2 +B and B = 2.02. This quantity is minimized when s is a little smaller
than 10. We take s = 10 and obtain

1

G(
√
x)
≤ 0.219

log(x)5/4
.

Notice that since w > 10100 we are also assuming x > 101000.

8.8. Measuring the size of Q3. In the large sieve, taking u =
√
x where x > 101000, we have

|{q ∈ Q3 : q < x}| ≤ 2x

G(
√
x)

+
√
x <

0.438x

log(x)5/4
.

Repeating the computation done in Section 4, for y ≥ 101000,

log

 ∏
q∈Q3

q

q − 1

 = −
∑
q∈Q3

log(1− 1/q) =
∑
q∈Q3

(
1

q
+

1

2q2
+

1

3q3
+ · · ·

)

<

∫ ∞
y

0.438

x log(x)5/4
dx+

∑
q>y

1

q(q − 1)
<

1.752

log(y)1/4
+
∑
n>y

1

n(n− 1)
<

1.76

log(y)1/4
.

9. Working with Q5

We now turn our attention to the set Q5. As many of the same computations and remarks that were
made with regards to Q3 hold for the new set, we will simply work quickly through the appropriate
bounds. We will often continue our assumption that w > 10100 (unless otherwise posited).

9.1. Defining Ωp and κ. We take U to be the set of primes q ≡ 1 (mod 5) which also either satisfy
q < 10100 or q ≡ 1 (mod 15). Set

Ωp = {0 (mod p)} ∪


{1 (mod 5)} if p = 5,

{a (mod p) : op(a) = 5} if p ∈ U ,
∅ otherwise

and define

κ(p) =


2 if p = 5,

5 if p ∈ U ,
1 otherwise.

9.2. Estimating B. Computations suggest (just as before) that B = 2 is the optimal value, asymp-
totically. We will get close to this value. We begin with the following bounds found in [27].

Proposition 5. For t > 1010, ∣∣∣∣θ(t; 5, 1)− t

4

∣∣∣∣ < 0.002785
t

4
.

For all 0 < t ≤ 1010, ∣∣∣∣θ(t; 5, 1)− t

4

∣∣∣∣ < 1.412480
√
t.
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For integer values of z > 1010, we then have∑
p≤z, p≡1 (mod 5)

log(p)

p
= θ(z; 5, 1)

1

z
+

∫ z

t=11

θ(t; 5, 1)
1

t2
dt

< 0.2507 log(z) + 0.5

Combining this with work done in previous sections, we have

1

log(z)

∑
p<z

κ(p) log(p)

p
≤ 1

log(z)

∑
p<z

log(p)

p
+

log(5)

5
+

∑
p<z

p≡1 (mod 5)

4 log(p)

p

 < 2.05

for all real z > 1010.
For integer values in the range 105 < z < 1010, we have∑

p≤z, p≡1 (mod 5)

log(p)

p
= θ(z; 5, 1)

1

z
+

∫ z

t=11

θ(t; 5, 1)
1

t2
dt

< 0.25 log(z) + 0.503− 1.41/
√
z.

In particular, 1
log(z)

∑
p<z

κ(p) log(p)
p ≤ 2.09 for all real z > 105. Finally, for z < 105 one checks directly

that 2 works as an upper bound. We may then take B = 2.09.

9.3. Finding bounds on |θ(x; 5, 1) − x/4|. We bound |θ(x; 5, 1) − x/4| using the techniques of Sec-
tion 8.2. By Proposition 5, for 1 ≤ x ≤ 1010 we have |θ(x; 15, 1)− x/8| ≤ 1.097307

√
x. For slight larger

x we again follow [27, Section 4]. For very large x we use [8]. Putting these computations together we
have the bound

|θ(x; 15, 1)− x/8| < 0.6
x

log(x)

for all x ≥ 10.

9.4. Bounding a third Mertens type product. We have the equality∑
p≤x

p≡1 (mod 5)

1

p
=

1

4
log(log(x)) +M(5, 1) +

θ(x; 5, 1)− x/4
x log(x)

−
∫ ∞
x

(θ(t; 5, 1)− t/4)
1 + log(t)

t2 log(t)2
dt

where M(5, 1) = −0.2088344 . . . is a constant. Using the bound given in the last subsection, we have
for x ≥ 1010 that ∣∣∣∣∣∣∣∣

∑
p≤x

p≡1 (mod 5)

1

p
− 1

4
log(log(x))−M(5, 1)

∣∣∣∣∣∣∣∣ <
0.9

log(x)2
+

0.6

log(x)
.

For x ≥ 106 we have
0.9

log(x)2
+

0.6

log(x)
<

0.67

log(x)
.

Letting x ≥ 106, Taylor remainders yield

exp(0.67/ log(x)) < 1 +
0.71

log(x)
,
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and since by previous computation we have

exp

 ∑
p>x, n≥2
p≡1 (mod 5)

1

npn

 < exp(1/2(x− 1)) < 1 +
1.1

x
= α(x)

we also have

α(x)

(
1 +

0.71

log(x)

)
< 1 +

0.72

log(x)
.

As

∏
p≤x

p≡1 (mod 5)

(
1− 1

p

)
= exp

− ∑
p≤x

p≡1 (mod 5)

1

p
−

∑
n≥2

p≡1 (mod 5)

1

npn
+

∑
p>x, n≥2
p≡1 (mod 5)

1

npn

 .
we obtain ∏

p≤x
p≡1 (mod 5)

(
1− 1

p

)
<

C(5, 1)

log(x)1/4

(
1 +

0.72

log(x)

)

where C(5, 1) = 1.2252 . . . according to [22].

9.5. Estimating V (P (w)). We have for w > 10100,

V (P (w)) <
3

4
(1.00482)

∏
p≤w

(
1− 1

p

) ∏
p≤10100

p≡1 (mod 5)

(
1− 1

p

)4

∗
∏
p≤w

p≡1 (mod 15)

(
1− 1

p

)4 ∏
p≤10100

p≡1 (mod 15)

(
1− 1

p

)−4

<
0.0673

log(w)3/2
.

9.6. Picking a value for s > 2B. We take s = 10 > 2B, and so x > 101000 as before. We obtain

1

G(
√
x)
≤ 2.78

log(x)3/2
.

9.7. Measuring the size of Q5. In the large sieve, taking u =
√
x where x > 101000, we have

|{q ∈ Q5 : q < x}| ≤ 2x

G(
√
x)

+
√
x <

5.56x

log(x)3/2
.

Repeating the computation done in Section 4, for y ≥ 101000,

log

 ∏
q∈Q5

q

q − 1

 = −
∑
q∈Q5

log(1− 1/q) =
∑
q∈Q5

(
1

q
+

1

2q2
+

1

3q3
+ · · ·

)

<

∫ ∞
y

5.56

x log(x)3/2
dx+

∑
q>y

1

q(q − 1)
<

11.12

log(y)1/2
+
∑
n>y

1

n(n− 1)
<

11.2

log(y)1/2
.
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10. Putting it all together

Recall that C ′0 = 2(1− 10−8). Our computations tell us that

log(C ′0) >
1.76

log(y)1/4
+

11.2

log(y)1/2
.

for y ≥ 101000. Thus y is larger than the smallest prime divisor of our purported number, and this
finishes the proof of the Main Theorem. This improves Yamada’s result by seven orders of magnitude.

11. Idealization

One might wonder what bounds are possible if we idealize the situation slightly. First, we may as
well assume C0 = 2. Second, we will suppose that π has no further effect on the computations. Third,
let’s take U to be the set of all primes p ≡ 1 (mod 3) when working with Q3, and take U to be the set
of all primes p ≡ 1 (mod 5) when working with Q5. While Rankin’s trick gives us effective bounds, it
is not tight. By methods in [16, Chapter 1] and [10, Theorem 2.2.2], one can find an asymptotic and
effective bound on G(w). In fact, for Q3 we have G(w) ∼ c3,g log(w)2 where

c3,g =
e−2γ

Γ(1 + 2)
lim
w→∞

1

log(w)2V (P (w))
= 0.164 . . . .

Similarly, for Q5 we have G(w) ∼ c5,g log(w)2 where

c5,g =
e−2γ

Γ(1 + 2)
lim
w→∞

1

log(w)2V (P (w))
= 0.145 . . . .

Fourth, let’s suppose we are in a sieving situation where |S| ≤ x/G(
√
x). Ignoring error terms we have

log

 ∏
q∈Q3

q

q − 1

 ≈ ∑
q∈Q3

1

q
≈
∫ ∞
y

6.1

x log(x)2
dx ≈ 6.1

log(y)

and similarly

log

 ∏
q∈Q5

q

q − 1

 ≈ 6.9

log(y)

Solving the inequality

log(2) ≤ 13

log(y)

yields y / 1.4 · 108.
With a significant amount of work we could improve the lower bound in the Main Theorem to 1010,

or possibly to 1012 if the computation was distributed. This would easily surpass the idealized bound
we obtained above. However, that bound is still not obtainable for two reasons. First, the choices for
the sets U are not realistic. Second, and more importantly, obtaining effective asymptotic bounds for
G(w) with current techniques seems to require w � 1010, and hence we are led to something close to
x� 1020, which is just too large.

12. Open questions and future directions

Let p be a prime and let q|Φ3(p) be a prime divisor. Either q = 3 or Φ3(q) is divisible by 3. Similarly,
if q|Φ5(p) is prime then either q = 5 or Φ5(q) is divisible by 5. Thus, if we consider factor chains where
new primes arise only from either factoring Φ3(p) or Φ5(p), and we can stop whenever 3 or 5 occurs,
then the factor chain simply bounces back and forth between applying Φ3 and Φ5. Eventually we expect
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one of the prime factors to be q ≡ 1 (mod 15), and then both Φ3(q) and Φ5(q) terminate our factor
chain.

In practice, such chains reach primes q ≡ 1 (mod 15) very quickly. It would be interesting to prove
that for all sufficiently large primes p, factor chains limited as above always reach 3 or 5. Moreover, it
would be interesting to prove (or disprove) that there is a bound on the depth it takes to reach 3 or 5.

One can also ask: What happens if we expand our set of limited exponents to P = {3, 5, 7}? In this
case, each prime in a factor chain has three possible branches (and possibly a fourth, if it is the special
prime). Our technique for dealing with the prime 5 is inadequate because no specific primes appears
(at least quickly) in every chain, although in principle one should still be able to deal with 3 because
abundance computations are less difficult in that case.
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