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Abstract

A homomorphism from an oriented graphG to an oriented graphH is a mappingϕ from the

set of vertices ofG to the set of vertices ofH such that
−−−−−→
ϕ(u)ϕ(v) is an arc inH whenever−→uv is an

arc inG. The oriented chromatic index of an oriented graphG is the minimum number of vertices
in an oriented graphH such that there exists a homomorphism from the line digraphLD(G) of G

to H (the line digraphLD(G) of G is given byV(LD(G)) = A(G) and
−→
ab∈ A(LD(G)) whenever

a =−→uv andb =−→vw).
We give upper bounds for the oriented chromatic index of graphs with bounded acyclic chro-

matic number, of planar graphs and of graphs with bounded degree. We also consider lower and
upper bounds of oriented chromatic number in terms of oriented chromatic index. We finally
prove that the problem of deciding whether an oriented graphhas oriented chromatic index at
mostk is polynomial time solvable ifk≤ 3 and is NP-complete ifk≥ 4.

Keywords: Oriented graph, oriented coloring, arc coloring.
AMS Subject Classification:05C15

1 Introduction

We consider finite simpleoriented graphs, that are digraphs with no opposite arcs. For an oriented
graphG, we denote byV(G) its set of vertices and byA(G) its set of arcs. For two adjacent vertices
u andv, we denote by−→uv the arc fromu to v or simply uv whenever its orientation is not relevant
(therefore,uv=−→uv or uv=−→vu).

The notion of oriented vertex-coloring was introduced by Courcelle [7] as follows: anoriented
k-vertex-coloringof an oriented graphG is a mappingϕ from V(G) to a set ofk colors such that(i)
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ϕ(u) 6= ϕ(v) whenever−→uv∈ A(G) and (ii) ϕ(v) 6= ϕ(x) whenever−→uv,−→xy ∈ A(G) and ϕ(u) = ϕ(y).
The oriented chromatic numberof G, denoted byχo(G), is defined as the smallestk such thatG
admits an orientedk-vertex-coloring. The notion of oriented chromatic numbercan be extended to
graph classes: the oriented chromatic numberχo(F) of a class of oriented graphsF is defined as the
maximum ofχo(G) taken over all graphsG in F. Observe that conditions(i) and(ii) above insure
that two vertices linked by a directed path of length one or two must get distinct colors in any oriented
vertex-coloring.

Let G andH be two oriented graphs. Ahomomorphismfrom G to H is a mappingϕ fromV(G) to

V(H) that preserves the arcs:
−−−−−→
ϕ(u)ϕ(v) ∈ A(H) whenever−→uv∈ A(G). An orientedk-vertex-coloring

of an oriented graphG can be equivalently defined as a homomorphismϕ from G to H, whereH is an
oriented graph of orderk. The existence of such a homomorphism fromG to H is denoted byG→H.
The vertices ofH are calledcolors, and we say thatG is H-colorable. The oriented chromatic number
of G can then be equivalently defined as the smallest order of an oriented graphH such thatG→ H.
Links between colorings and homomorphisms are presented inmore details in the recent monograph
[12] by Hell and Nešetřil.

Oriented vertex-colorings have been studied by several authors in the last decade and the problem
of bounding the oriented chromatic number has been investigated for graphs with bounded acyclic
chromatic number [21], graphs with bounded maximum averagedegree [6], graphs with bounded
degree [15], graphs with bounded treewidth [22, 23] and graph subdivisions [24].

One can defineoriented arc-coloringsof oriented graphs in a natural way by saying that, as in
the undirected case, an oriented arc-coloring of an oriented graphG is an oriented vertex-coloring
of its line digraphLD(G) (recall thatLD(G) is given byV(LD(G)) = A(G) and

−→
ab∈ A(LD(G))

whenevera = −→uv andb = −→vw). We say that an oriented graphG is H-arc-colorableif there exists a
homomorphismϕ from LD(G) to H andϕ is then anH-arc-coloringor simply anarc-coloringof G.
Therefore, an oriented arc-coloringϕ of G must satisfy(i) ϕ(−→uv) 6= ϕ(−→vw) whenever−→uvand−→vware two
consecutive arcs inG, and(ii) ϕ(−→vw) 6= ϕ(−→xy) whenever−→uv,−→vw,−→xy,−→yz∈ A(G) with ϕ(−→uv) = ϕ(−→yz).
Note that these two conditions insure that two arcs belonging to a directed path of length two or three
must get distinct colors in any oriented arc-coloring. Alsonote that two incident but non-consecutive
arcs (i.e. two arcs incoming into a same vertex or two arcs outgoing from a same vertex) can get the
same color since the two corresponding vertices inLD(G) are not adjacent and does not belong to
a directed 2-path. Theoriented chromatic indexof G, denoted byχ′o(G), is defined as the smallest
order of an oriented graphH such thatLD(G)→ H. Therefore,χ′o(G) = χo(LD(G)). The oriented
chromatic indexχ′o(F) of a class of oriented graphsF is defined as the maximum ofχ′o(G) taken over
all graphsG in F.

The first easy result concerning oriented arc-coloring relates the oriented chromatic index to the
oriented chromatic number:

Observation 1 Let G be an oriented graph. Thenχ′o(G)≤ χo(G).

To see that, consider an oriented graphG with χo(G) = k and an orientedk-vertex-coloring f of
G. The mappingg defined byg(−→uv) = f (u) for every arc−→uv∈ A(G) is clearly an oriented arc-coloring
of G.

Therefore, all upper bounds for the oriented chromatic number are also valid for the oriented
chromatic index. In this paper, we provide better upper bounds for the oriented chromatic index of
several classes of graphs and consider the complexity of theoriented arc-coloring problem.
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A weaker version of arc-coloring of oriented graphs where condition (ii) is dropped has been con-
sidered [2, 11]. The corresponding chromatic number is thusχ(LD(G)). Various other types of
arc-colorings were considered in the literature (seee.g.[10, 13]).

This paper is organized as follows. The link between oriented chromatic index and acyclic chro-
matic number is discussed in Section 2. The oriented chromatic index of planar graphs and of graphs
with bounded degree are respectively considered in Sections 3 and 4. In Section 5, we investigate
lower and upper bounds of the oriented chromatic number in terms of the oriented chromatic index.
Finally, the complexity of determining the oriented chromatic index of a graph is studied in Section 6.

In the rest of the paper, we will use the following notions. A vertex of degreek will be called a
k-vertex. If−→uv is an arc,u is apredecessorof v andv is asuccessorof u. A vertex will be called a
sourceif it has no predecessors and asink if it has no successors.

For a graphG and a vertexv of V(G), we denote byG\v the graph obtained fromG by removing
v together with the set of its incident arcs. This notion is extended to sets of vertices in a standard way.

Let G be an oriented graph andf be an oriented arc-coloring ofG. For a given vertexv of G, we
denote byC+

f (v) andC−f (v) theoutgoing color setof v (i.e. the set of colors of the arcs outgoing from
v) and theincoming color setof v (i.e. the set of colors of the arcs incoming tov), respectively.

2 Oriented chromatic index and acyclic chromatic number

A proper vertex-coloring of an undirected graphG is acyclic if every subgraph induced by any two
color classes is a forest (in other words, the graph has no bichromatic cycle). Theacyclic chromatic
numberof G, denoted byχa(G), is the smallestk such thatG admits an acyclick-vertex-coloring.

One of the first problems considered for oriented vertex-colorings was to characterize the families
of graphs having bounded oriented chromatic number. It was shown that these families are exactly the
ones having bounded acyclic chromatic number [15, 21].

In particular, Raspaud and Sopena [21] proved that every oriented graph whose underlying undi-
rected graph has acyclic chromatic number at mostk has oriented chromatic number at mostk ·2k−1.
Recently, Ochem [18] proved that this bound is tight by constructing, for everyk≥ 3, an oriented
graphG such thatχa(G) = k andχo(G) = k ·2k−1.

By Observation 1, every oriented graph with acyclic chromatic numberk has oriented chromatic
index at mostk ·2k−1. By adapting the proof of the above-mentioned result of Raspaud and Sopena,
we get a new upper bound which is quadratic in terms of the acyclic chromatic number:

Theorem 2 Every oriented graph whose underlying undirected graph hasacyclic chromatic number
at most k has oriented chromatic index at most2k(k−1)−

⌊

k
2

⌋

.

To show that, we need the two following lemmas :

Lemma 3 Let F be an oriented forest. Then F admits a C3-arc-coloring where C3 is the directed
cycle on three vertices.

Proof. For each connected componentG, choose one arc and color it with the color 0. Then, as long
as it remains uncolored arcs, choose a vertexu with at least one incident arcuv colored with colorc.
If −→uv∈ G (resp.−→vu∈ G), then color all outgoing (resp. incoming) arcs fromu with the colorc and
all incoming (resp. outgoing) arcs fromu with the colorc−1 (mod 3) (resp.c+ 1 (mod 3)). This
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arc-coloring is clearly aC3-arc-coloring. 2

Lemma 4 Let F be a forest, c be a 2-vertex-coloring of F using i and j (i< j) and
−→
F be any

orientation of F. There exists an oriented4-arc-coloring f of
−→
F using{i, j}×{0,1} such that for

every vertex u, c(u) and the first component of f(−→uv) coincide, for each−→uv∈ A(F).

Proof. The coloring f can easily be obtained fromc by using the following rule: if−→uv and−→vw are
two consecutive arcs in

−→
F , then let f (−→uv) = (c(u),α) and f (−→vw) = (c(v),β) with α = β if and only if

c(u) < c(v). 2

Proof of Theorem 2: Let G be an oriented graph andV1, . . . ,Vk be thek color classes ofV(G) induced
by an acyclick-coloring ofG. By definition,Fi, j = G[Vi ,Vj ] is a forest fori, j ∈ [1,k], i < j and there

are k(k−1)
2 such forests; moreover, consider thel =

⌊

k
2

⌋

forestsF1,2,F3,4, . . . ,F2l−1,2l (these forests do
not share any vertex). We say that thesel forests are oftype 1while the remaining ones are oftype
2. Then, we define an oriented arc-coloringfi, j for each forestFi, j as follows. If Fi, j is of type 1,
let fi, j be any oriented 3-arc-coloring given by Lemma 3. IfFi, j is of type 2, let fi, j be any oriented
4-arc-coloring given by Lemma 4.

Recall that each−→uv∈ A(G) belongs to a unique forestFi, j , i, j ∈ [1,k], i < j. We now define the
following mapping f onA(G):

∀ −→uv∈ Fi, j , f (−→uv) = (x, i, j) wherex = fi, j(
−→uv).

We shall prove thatf is an oriented arc-coloring ofG. We first have to check that any pair of consec-
utive arcs−→uv and−→vw get distinct colors. If−→uv and−→vw belong to two distinct forests, say−→uv∈ Fi, j and
−→vw∈ Fj,k, then f (−→uv) = (x, i, j) 6= (y, j,k) = f (−→vw) for anyx,y sincei 6= k. Now if −→uv,−→vw∈ Fi, j , then
f (−→uv) = ( fi, j (

−→uv), i, j) 6= ( fi, j (
−→vw), i, j) = f (−→vw) since fi, j is an oriented arc-coloring. Therefore, iff

is not an oriented arc-coloring ofG, there are four arcs−→uv,−→vw,−→xy,−→yz of G with f (−→uv) = f (−→yz) and
f (−→vw) = f (−→xy). Since anyfi, j is an oriented arc-coloring, the arcs−→uv,−→vw,−→xy,−→yz does not belong to
the same forest and then−→uv,−→yz∈ Fi, j and−→vw,−→xy∈ Fj,k, i 6= k. Since two forests of type 1 do not share
any vertex, we assume w.l.o.g. thatFi, j is of type 2. Suppose thatf (−→uv) = f (−→yz) = ((i, p), i, j)
(resp. (( j, p), i, j,)) for some p ∈ {0,1}. This implies thaty ∈ Vi (resp. v ∈ Vi). Then, since
f (−→vw) = f (−→xy) = (r, j,k) for somer, the vertexy (resp. v) belongs either toVj or to Vk. This is a
contradiction sincei 6= j 6= k 6= i. This coloring uses at most 2k(k−1)−

⌊

k
2

⌋

colors. That completes
the proof. 2

In order to study the relevance of the bound given by Theorem 2, we now construct graphs with
bounded acyclic chromatic number and high oriented chromatic index.

The notion oforiented k-treecan be defined as follows: a tournamentTk with k vertices is an
orientedk-tree; if G is an orientedk-tree then the graphG′ obtained fromG by adding a new vertex
v linked to every vertex of ak-clique subgraph ofG is a k-tree and there are no furtherk-trees. A
subgraph of an orientedk-tree is called an orientedpartial k-tree. We denote byTk the class of
orientedk-trees.

Theorem 5 χ′o(Tk) = Ω
(

k2

log k

)

.

It is well known that the acyclic chromatic number of anyk-tree is at mostk+1. Indeed, at each
step of the construction ak-tree, we color the new added vertexv with a color distinct from those of
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the k adjacent vertices ofv; this coloring is clearly acyclic. Moreover, the clique of size k+ 1 is a
k-tree and needsk+1 colors for any acyclic coloring. Thereforeχa(Tk) = k+1, and we thus get:

Corollary 6 There exist oriented graphs with acyclic chromatic number kand oriented chromatic

indexΩ
(

k2

log k

)

.

Recall that for a given vertexv of a graphG and a given oriented arc-coloringf of G, C+
f (v) and

C−f (v) denote the outgoing color set ofv and the incoming color set ofv, respectively.

Proof of Theorem 5 : Let h(k) = χ′o(Tk). Every graphG∈ Tk has anh(k)-arc-coloring f such that
∀v∈V(G), |C+

f (v)| ≤ h(k)−h(k−1). Otherwise, we could construct a graphG′ ∈ Tk with no h(k)-
arc-coloring by adding to every vertexvof G a copyHv of a graphH ∈Tk−1 such thatχ′o(H)= h(k−1)
and every arc−→xv for x∈V(Hv). It is easy to check that the mappingg defined byg(v) = C+

f (v) for

everyv∈V(G) is an oriented vertex-coloring ofG. Sinceχo(Tk)≥ 2k+1−1 [22], we obtain:

h(k)−h(k−1)

∑
i=0

(

h(k)
i

)

≥ 2k+1−1

h(k)h(k)−h(k−1) ≥ 2k+1−1

(h(k)−h(k−1)) log h(k)≥ k

h(k) = Ω
(

k2

log k

)

2

3 Planar graphs

In this section, we consider planar graphs. In the next subsection, we give general bounds on the
oriented chromatic index of planar graphs. In subsection 3.2, we investigate the oriented chromatic
index of planar graphs with high girth.

3.1 General bounds

A celebrated result of Borodin [3] states that every planar graph has acyclic chromatic number at
most five. Thus, from their previously mentioned result, Raspaud and Sopena [21] obtained that every
oriented planar graph has oriented chromatic number at most80, which is the best known upper bound
for planar graphs up to now.

Sopena [22] constructed an oriented planar graph with oriented chromatic number 16. More
recently, Marshall [16] showed that an oriented planar graph with oriented chromatic number at least
17 exists. The gap between the lower and the upper bound is large and seems to be very hard to
reduce.

Concerning oriented arc-coloring of planar graphs, Theorem 2 and Borodin’s result give the fol-
lowing upper bound:

Corollary 7 Let G be a planar graph. Thenχ′o(G)≤ 38.
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Figure 1: The oriented outerplanar graphO with oriented chromatic index 7.

x
O1 O2

(a) The planar graphH.

O′′1 O′′2

O′1

x′

x′′

O′2
(b) The planar graphH∗.

Figure 2: Graphs of Lemma 8 and Theorem 9

We give in the following a lower bound for the oriented chromatic index of the class of planar
graphs: we construct a planar graph with oriented chromaticindex at least 10.

Pinlou and Sopena [20] proved that the oriented outerplanargraphO depicted on Figure 1 has
oriented chromatic index 7.

Let H be the planar graph obtained by taking two copies of the graphO, namelyO1 andO2, one
new vertexx, and adding all arcs from the vertices ofO1 towardx and all the arcs fromx toward the
vertices ofO2 (see Figure 2(a)). In the following, the vertexx will be called thejoining vertex of H.
We denote byA−(H) (resp.A+(H)) the set of incoming arcs to (resp. outgoing arcs from) the joining
vertex ofH.

Lemma 8 Any oriented9-arc-coloring of H uses seven colors to color A(O1), the same seven colors
to color A(O2), the eighth color to color A−(H) and the ninth color to color A+(H).

Proof. We consider oriented 9-arc-colorings ofH. Suppose that we use at most seven colors to color
A(O1)∪A−(H), which would be best possible sinceχ′o(O1) = 7.

• If exactly one color is used to colorA−(H), then this color cannot appear onA(O1), a contra-
diction.

• If exactly two colors, say 1 and 2, are used to colorA−(H), then these colors have to appear

also onA(O1). So there exist arcs−→uv and
−→
u′v′ in O1 respectively colored 1 and 2. Therefore, the

arcs−→vx and
−→
v′x must be respectively colored 2 and 1, which is forbidden.

• If at least three colors are used to colorA−(H), then there remain at most six colors to color
A(O2), which contradictsχ′o(O2) = 7.
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1

4 3

2

Figure 3: The tournamentT4.

We thus need at least eight colors to colorA(O1)∪A−(H). This implies that there remains (at most)
one color, say 9, to colorA+(H). By a similar argument, we obtain that one color distinct from 9, say
8, has to be used to colorA−(H). Seven colors distinct from 8 and 9 are needed to colorA−(H) and
A+(H). 2

Let H∗ be the graph obtained by taking two copies of the graphH, namelyH ′ andH ′′, and adding
an arc from the joining vertex ofH ′ towards the joining vertex ofH ′′ (see Figure 2(b)). The joining
vertex ofH ′ (resp.H ′′) is denoted byx′ (resp.x′′).

Theorem 9 The graph H∗ has oriented chromatic index10.

Proof. We suppose thatH∗ admits an oriented 9-arc-coloring. By Lemma 8, we may assumew.l.o.g.
thatA(O′1) andA(O′2) use colors 1,2, . . . ,7, A−(H ′) uses color 8 andA+(H ′) uses color 9. The only

available color for
−−→
x′x′′ is color 9. Now, colors 8 and 9 are obviously forbidden forA+(H ′′) and, from

Lemma 8, we may assume w.l.o.g. thatA+(H ′′) is colored with color 1; thusA(O′′2) uses the seven
colors 2,3, . . . ,8. Notice that the graphO contains neither sources nor sinks. Therefore, there exists
a colorc ∈ {2,3, . . . ,7} such that two consecutive arcs inO′1 are respectively colored withc and 1.
Now, the colorc is clearly used onA(O′′2), which implies thatH ′′ also contains two consecutive arcs
respectively colored with 1 andc, which is a contradiction. The graphH ′′ has oriented chromatic
index at least 10.

To show thatH∗ has oriented chromatic index 10, we colorA(O′1), A(O′2), A(O′′1) andA(O′′2) with

the colors 1,2, . . . ,7, A−(H ′) andA−(H ′′) with color 8,A+(H ′) andA+(H ′′) with color 9, and
−−→
x′x′′

with color 10. 2

3.2 Planar graphs with high girth

Thegirth of a planar graph is the size of a smallest cycle. Oriented chromatic number of planar graphs
with large girth was widely studied [4, 5, 6, 17]. In particular, Nešetřilet. al [17] proved that for every
g≥ 3, there exists a planar graphG with girth g such thatχo(G)≥ 5.

We now prove that in case of oriented arc-coloring, this bound can be decreased to 4 for some high
girth. Moreover, observe that for a directed cycle of lengthl 6≡ 0 (mod 3), any oriented arc-coloring
needs at least 4 colors. Then, for anyg≥ 3, consider the connected oriented graphGg obtained by
taking two directed cycles sharing one arc, the first one of size g and the second one of sizek≥ g,
k 6≡ 0 (mod 3). Clearly,Gg has girthg and oriented chromatic index 4, that shows the tightness of the
bound we prove in the sequel.

Let T4 be the tournament on four vertices depicted in Figure 3. We say that aT4-arc-coloring f of
an oriented graphG is good if
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3−→

s1

4−→

s2

1−→

s3

2−→

s4

34−→

s5

14−→

s6

123−→

s7

234−→

s8

134−→

s9

1234−−→

s10

2←−
s11

1←−
s12

4←−
s13

3←−
s14

12←−
s15

14←−
s16

234←−
s17

123←−
s18

124←−
s19

1234←−−
s20

Figure 4: The auxiliary graphH of Lemma 10.

1. ∀ u∈V(G), C+
f (u) ∈ { /0,{1}, {2}, {3}, {4}, {2,3}, {3,4}},

2. ∀ u∈V(G), C−f (u) ∈ { /0,{1}, {2}, {3}, {4}, {1,2}, {2,3}}.

We first prove the following:

Lemma 10 Let P= v0v1 . . .v9v10 be an oriented 10-path of 2-vertices (d(vi) = 2 for 1≤ i ≤ 9). Then,
any good T4-arc-coloring of P′ = P\{v2, . . . ,v8} can be extended to a good T4-arc-coloring of P.

Proof. Let f ′ be a goodT4-arc-coloring ofP′. To prove that the coloringf ′ can be extended toP, we
will use the auxiliary graphH depicted in Figure 4 (the construction ofH is explained below).

The arcv0v1 of P′ is colored byf ′: there exist eight possible cases, also called states, depending
on the two possible orientations ofv0v1 and the four possible colors. The eight verticess1,s2,s3,s4,
s11,s12,s13,s14 of H correspond to these eight possible states. To construct thegraphH, we consider
all the possible cases of orientations and colorings. Suppose for instance that−−→v0v1∈A(P), f ′(−−→v0v1)= 2
(which corresponds to states4) and considerv1v2. If −−→v1v2∈A(P), we can assign it colors 3 or 4, which
corresponds to the states5. If −−→v2v1 ∈ A(P), we can assign it colors 1, 2, or 3 which corresponds to the
states18. Proceeding in a similar way from any state, we eventually get the auxiliary graphH.

Finally, observe that every directed path of length nine inH ends either in states10 or s20. This
means that we may obtain any possible colour forv9v10, which proves that every goodT4-arc-coloring
f ′ can be extended to a goodT4-arc-coloring ofP. 2

Theorem 11 Let G be a planar graph with girth g≥ 46. Then G admits a good T4-arc-coloring.

Proof. Consider a minimal counter-exampleH to Theorem 11. We prove thatH contains neither a
1-vertex nor an oriented 10-path of 2-vertices.

• Suppose thatH contains a 1-vertexu, let v be its neighbor and suppose that−→uv∈ A(H). Let
H ′ = H \ u. Due to the minimality ofH, H ′ admits a goodT4-arc-coloring f . Therefore,
C+

f (v) ∈ {{1},{2},{3},{4},{2,3},{3,4}}. For each possible case, there exists a predecessor
in T4 we can use to extendf to goodT4-arc-coloring ofH. The proof of the case−→vu∈ A(H) is
similar.

• Suppose thatH contains a 10-pathuv1v2 . . .v9w of 2-vertices (therefored(vi) = 2 for all i ∈
[1,9]) and letH ′ = H \{v2,v3, . . . ,v8}. Due to the minimality ofH, H ′ admits a goodT4-arc-
coloring f . Lemma 10 insures thatf can be extended to a goodT4-arc-coloring ofH.
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Nešetřil et al. [17] proved that every planar graphG of girth g(G) ≥ 5d + 1 contains either a 1-
vertex or a(d+1)-path of 2-vertices. Therefore, sinceg(H)≥ 46, a counter-example to Theorem 11
does not exist. That completes the proof. 2

4 Graphs with bounded degree

Every oriented graph with maximum degree three has orientedchromatic number at most 11 [23].
Sopena [22] conjectured that the oriented chromatic numberof connectedoriented graphs with maxi-
mum degree three is at most 7. In case of oriented arc-coloring, Pinlou [19] recently proved that every
oriented graph with maximum degree three has oriented chromatic index at most 7.

For the general case, Kostochkaet al.[15] proved that every oriented graph with maximum degree
∆ has oriented chromatic number at most 2∆22∆ using a probabilistic argument. Therefore, for such a
graphG we also haveχ′o(G)≤ 2∆22∆. Alon et al.[1] proved that every graph with maximum degree∆
has acyclic chromatic number at mostO(∆4/3). Using Theorem 2, we thus get the better upper bound
of O(∆8/3) for the oriented chromatic index of oriented graphs with maximum degree∆.

We improve this latter bound and show the following:

Theorem 12 Let G be an oriented graph with maximum degree∆. Then,χ′o(G)≤ 2
(⌊

∆2

2

⌋

+ ∆
)

.

Proof. Let G∗ be the undirected graph defined byV(G∗) = V(G) and uv∈ E(G∗) if and only if
−→uv ∈ A(G) or −→vu ∈ A(G) or there exists a vertext such that−→ut ,−→tv ∈ A(G). Gonçalveset al. [9]

proved that such a graphG∗ is
(⌊

∆2

2

⌋

+ ∆
)

-degenerate (recall that a graph isk-degenerate if every

subgraph contains a vertex of degree at mostk). Let p be a proper vertex-coloring ofG∗ using at most
⌊

∆2

2

⌋

+ ∆ +1 colors from
{

0, . . . ,
⌊

∆2

2

⌋

+ ∆
}

obtained by a greedy coloring.

Let nowc be the mapping fromA(G) to
{

1, . . . ,
⌊

∆2

2

⌋

+ ∆
}

×{0,1} defined byc(−→uv) = (p(v),0)

if p(u) < p(v) andc(−→uv) = (p(u),1) if p(u) > p(v).
We will show thatc is an arc-coloring ofG.
Suppose first that−→uv and−→vw are two consecutive arcs ofG such thatc(−→uv) = c(−→vw) = (α, i). If

i = 0 (resp. i = 1) thenp(v) = p(w) (resp. p(u) = p(v)), a contradiction sincevw∈ E(G∗) (resp.
uv∈ E(G∗)).

Suppose now that there are four arcs−→uv,−→vw,−→xy, and−→yz of G such thatc(−→uv) = c(−→yz) = (α, i)
andc(−→vw) = c(−→xy) = (β, j). If i = j = 0, we getα = p(v) = p(z) and p(v) < p(w) on one hand,
β = p(y) = p(w) andp(w) = p(y) < p(z) = p(v) on the other hand, a contradiction. The casei = j = 1
leads to a contradiction in a similar way. Assume now thati 6= j and w.l.o.g. thati = 0 and j = 1.
Then we haveα = p(v) = p(z) on one hand andβ = p(v) = p(x) on the other hand. Thusp(z) = p(x),
a contradiction sincexz∈ E(G∗).

Therefore, the mappingc is an arc-coloring ofG which uses at most 2
(⌊

∆2

2

⌋

+ ∆
)

colors. 2

Concerning the lower bound, Pinlou [19] constructed a cubicgraph with chromatic oriented index
6 = 2∆. We are also able to construct an infinite family of oriented graphs with maximum degree∆
and oriented chromatic index 2∆−1. For that, letn= 2∆−1 and consider the oriented bipartite graph
Bn,n defined byV(Bn,n) = {x0, . . . ,xn−1,y0, . . . ,yn−1},−→xiyi ∈A(Bn,n) for all 0≤ i < n and−→yixk ∈A(Bn,n)
for all 0≤ i < n, 1≤ j < ∆ andk = i + j (mod n). The graphBn,n is a∆-regular graph and any pair
of arcs of{−→xiyi ,0≤ i < n} belongs to a directed 3-path and thus needs distinct colors.

9
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(b) T2
4

1
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2

(c) T3
4
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2

(d) T4
4 = T4

Figure 5: The four non-isomorphic tournaments on four vertices.

5 Oriented chromatic index vs. oriented chromatic number

In this section, we show that the oriented chromatic numberχo(G) of an oriented graphG can be
bounded in terms of the oriented chromatic indexχ′o(G).

Recall that we haveχ′o(G) ≤ χo(G) for every oriented graphG by Observation 1. This lower
bound is tight since, for everyn, we can construct a graphG with χ′o(G) = n = χo(G). Let TTn be
the transitive tournament onn vertices withV(TTn) = {v0,v1, . . . ,vn−1} and−→viv j ∈ A(TTn) whenever
i ≤ j. Then, let us considerTn, the tournament onn vertices obtained fromTTn by reversing−−−→v0vn−1

(therefore−−−→vn−1v0 ∈ A(Tn)). Any pair of arcs ofS= {−−−→vivi+1 ∈ Tn, i ∈ [0,n−1]} (subscripts are taken
modulo n) belongs to a directed 3-path and thus all arcs inS must get distinct colors. Therefore,
χ′o(Tn) = n = χo(Tn).

We now focus on the upper bound on the oriented chromatic number in terms of oriented chromatic
index. We first need the following definitions and the two nextlemmas.

Let G be an oriented graph and letP(G) be the power set ofV(G). We define the mappingµG as
follows:

µG : P(G) → P(G)

s 7→ s∪
[

v∈s

Γ+
G(v)

For any oriented graphG, we then denote byQ(G) the setQ(G) = {µG(s),s∈ P(G)} (Q(G)
is therefore the codomain ofµG). Clearly, Q(G) ⊆ P(G). For an elements∈ Q(G), let s = {v ∈
s;Γ+

G(v)⊆ s} ands= {v∈ s;Γ+
G(v) 6⊆ s}; thus we haves= s⊎s (disjoint union).

For instance, consider the tournamentT4 depicted on Figure 5(d). We haveQ(T4) = { /0, {1,4},
{3,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}}. Moreover, if we consider the elements= {1,2,3} of
Q(T4), we haves= {1} ands= {2,3}.

Lemma 13 Let G be an oriented graph withχ′o(G) = k and let Tk be an oriented graph on k vertices
such that G admits a Tk-arc-coloring (i.e. LD(G)→ Tk). Then we haveχo(G)≤ |Q(Tk)|.

Proof. W.l.o.g., we shall consider thatTk is a tournament (otherwise, we complete it).
Let f be a homomorphism fromLD(G) to Tk; we define the mappingg as follows:

g : V(G) → Q(Tk)
v 7→ µTk(C

+
f (v))
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We claim thatg is an oriented vertex-coloring ofG. Let−→uv∈ A(G) with f (−→uv) = a. Sincea∈C+
f (u),

we havea∈ g(u) anda /∈C+
f (v); moreover, by definition off , for every colorc∈C+

f (v), −→ca /∈ A(Tk),
that is−→ac∈ A(Tk). Thereforea /∈ g(v) andg is a proper vertex-coloring ofG.

Now, if g is not an oriented vertex-coloring ofG, there exist two arcs−→uv and−→xy of G with
g(u) = g(y) and g(v) = g(x). Let f (−→uv) = a and f (−→xy) = b. If a 6= b, sinceTk is a tournament,

we may assume w.l.o.g. that
−→
ab∈ A(Tk). Then, we haveb ∈ g(u) and thereforeb ∈ g(y). Now, if

a = b, we haveb∈ g(u) and thereforeb∈ g(y). Thus, in both cases,b∈ g(y). Since f is an oriented

arc-coloring ofG, b /∈ C+
f (y). Hence, there exists a colorc ∈ C+

f (y) such that
−→
cb ∈ A(Tk). Since

f (−→xy) = b, we also have
−→
bc∈ A(Tk), that is a contradiction sinceTk is antisymmetric. 2

In particular every oriented graphG which admits aT4-arc-coloring has oriented chromatic num-
ber at most 7 since|Q(T4)|= 7 as observed above.

We now prove that the bound given by Lemma 13 is tight:

Lemma 14 For every tournament Tk on k vertices, there exists an oriented graph G such thatχ′o(G)≤
k, LD(G)→ Tk andχo(G) = |Q(Tk)|.

Proof. Let G be the digraph defined as follows:V(G) = Q(Tk) and−→xy ∈ A(G) if and only if there
existsv∈V(Tk) such thatv∈ x andv /∈ y.

We first have to check thatG is an oriented graph (without opposite arcs nor loops). Suppose to
the contrary thatx,y∈V(G) are two vertices such that there existv1 andv2 with v1 ∈ x, v1 /∈ y, v2 ∈ y
andv2 /∈ x. W.l.o.g. we assume that−−→v1v2 ∈ A(Tk): we obtain a contradiction sincev2 must belong to
x. The graphG is oriented.

We now show that any oriented vertex-coloring ofG needs|Q(Tk)| colors (that is one distinct color
for each vertex ofG). Since any oriented vertex-coloring is a proper vertex-coloring, we just have to
check that any pair of verticesx andy of G which are not adjacent belongs to a directed 2-path. Let
x,y ∈V(G) which are not adjacent; by construction we havex⊆ y andy⊆ x. Moreover,x 6= y, and
w.l.o.g. that implies that there existsu∈V(Tk) such thatu∈ x andu /∈ y. Furthermore, there exists
v ∈ x such that−→vu∈ A(Tk). Consider the vertexz = µTk({u}) of G. We haveu ∈ z andv /∈ z. By
construction,−→xz,−→zy∈ A. Thereforeχo(G) = |Q(Tk)|.

Finally, we construct a mappingf which is an orientedk-arc-coloring ofG. Let −→xy ∈ A(G).
Therefore, there existsu such thatu ∈ x andu /∈ y. This implies that anyvi ∈ y is a successor ofu
in Tk (otherwise,u would belong toy). Let f : A(G)→ {1, . . . ,k} be a mapping such thatf (−→xy) = u
for someu ∈ x andu /∈ y: any arc outgoing fromy will then be colored by a successor ofu in Tk.
Therefore,LD(G)→ Tk andχ′o(G)≤ k. 2

Note that the graph constructed in the previous theorem is the smallest possible since it has|Q(Tk)|
vertices and needs|Q(Tk)| colors for any oriented vertex-coloring.

For instance, using the construction described in the previous proof, we are able to construct the
graphG depicted on Figure 6 which admits an orientedT4-arc-coloring and has oriented chromatic
number|Q(T4)|= 7.

Let φ(k) = max{|Q(Tk)|,Tk is a tournament onk vertices}. From the two previous lemmas, we
obtain the following upper bound :

Theorem 15 Let G be an oriented graph withχ′o(G) = k. Then,χo(G)≤ φ(k). Moreover, this bound
is tight.
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{1,2,3,4}

{1,2,3}

{2,3,4}

/0

{1,4}

{1,3,4}

{3,4}

Figure 6: An oriented graph with oriented chromatic index 4 and oriented chromatic number 7.

G1 G2

z

Figure 7: The graphH of Lemma 17.

Proof. Sinceχ′o(G) = k, there exists a tournamentTk on k vertices such thatG admits aTk-arc-
coloring. By Lemma 13, we haveχo(G)≤ |Q(Tk)|, and therefore,χo(G)≤ φ(k).

Now, let Tmax
k be a tournament onk vertices such thatφ(k) = |Q(Tmax

k )|. By Lemma 14, there
exists an oriented graphG such thatχo(G) = |Q(Tmax

k )|= φ(k). 2

For instance, we can easily check for the four tournaments onfour vertices depicted on Figure
5 that we have|Q(T1

4 )| = 5, |Q(T2
4 )| = 6, |Q(T3

4 )| = 6 and |Q(T4)| = 7. We thus haveφ(4) = 7
and therefore any oriented graph with oriented chromatic index at most 4 has an oriented chromatic
number at most 7.

The following theorem provides exact values ofφ(k) for k≤ 9 and estimates fork≥ 10:

Theorem 16
• φ(0) = 1, φ(1) = 2, φ(2) = 3, φ(3) = 5, φ(4) = 7, φ(5) = 12, φ(6) = 15,

φ(7) = 25, φ(8) = 31, φ(9) = 51;

• α2
k
2 −1≤ φ(k)≤

(⌊

k
2

⌋

+2
)

2⌊ k−1
2 ⌋ for k≥ 10, whereα = 2 if k is even andα = 13

4
√

2
if k is odd.

To prove Theorem 16, we need the following lemma and the two following properties.

Lemma 17 Let G be an oriented graph such thatχ′o(G) = p andχo(G) = q. Then there exists a graph
H such thatχ′o(H) = p+2 andχo(H) = 2q+1.

Proof. Let H be the oriented graph obtained by taking two disjoint copiesof G (denoted byG1 and
G2) and a new vertexzand adding all the arcs from the vertices ofG1 towardzand all the arcs fromz
toward the vertices ofG2 (see Figure 7).

12



Since every pair of vertices(v1,v2) ∈ V(G1)×V(G2) belongs to a directed 2-path inH, we get
χo(H) = 2q+1.

Now, letA1 = A(G1), A2 = A(G2), A− = {−→uv∈ A(H),v= z}, A+ = {−→uv∈ A(H),u= z}; therefore
A(H) = A1⊎A2⊎A−⊎A+. Let g : A(G)→ {1, . . . , p} be an orientedp-arc-coloring ofG and let us
then define the following mappingh : A(H)→{1, . . . , p+2} as follows :

h(−→uv) =







g(−→uv) if −→uv∈ A1∪A2

p+1 if −→uv∈ A−
p+2 if −→uv∈ A+

The mappingh is an oriented(p+2)-arc-coloring ofH and thusχ′o(H)≤ p+2. Moreover, as in
the proof of Lemma 8, it is not difficult to check thatχ′o(H) = p+2. 2

For an oriented graphG, we denote byGR thereverse graphof G, that is the graph obtained from
G by reversing every arc ofG. Then, sinceGR→ HR wheneverG→ H, we clearly have:

Observation 18

1. If χo(G) = k with G→ Tk, thenχo(GR) = k with GR→ TR
k ;

2. If χ′o(G) = k with LD(G)→ Tk, thenχ′o(GR) = k with LD(GR)→ TR
k .

Proof of Theorem 16: For k≤ 9, we used a computer to determine the values ofφ(k).
For k≥ 10, by Lemma 17, we haveφ(k+2) ≥ 2φ(k)+1, which implies lower bounds ofφ(k).

Now, we prove thatφ(k) ≤
(⌊

k
2

⌋

+2
)

2⌊ k−1
2 ⌋ for k≥ 10. By Theorem 15, there exists a graphG

with χ′o(G) = k andχo(G) = φ(k); therefore it is enough to show thatχo(G)≤
(⌊

k
2

⌋

+2
)

2⌊ k−1
2 ⌋. Let

Tk be a tournament onk vertices such thatLD(G)→ Tk. We order the verticesv1,v2, . . . ,vk of Tk in
such a way thatd+(vi)≤ d+(v j) for i < j. We first suppose thatd+(vi)≥

⌈

k−1
2

⌉

for all
⌈

k+1
2

⌉

≤ i ≤ k.
Let Pi = {s⊆ {v1,v2, . . . ,vi},vi ∈ s} andQi = {µTk(s),s∈ Pi}. We then haveP(Tk) = /0∪Sn

i=1Pi and
thereforeQ(Tk)⊆ /0∪Sn

i=1Qi . On one hand, since|Pi |= 2i−1, we have|Qi | ≤ 2i−1. On the other hand,
since each element ofQi containsvi together with its successors inTk, we have|Qi | ≤ 2k−d+(vi)−1. We
thus have

|Q(Tk)| ≤ 1+
k

∑
i=1

|Qi |

≤ 1+
k

∑
i=1

min{2i−1,2k−d+(vi)−1}

≤ 1+
⌊ k

2⌋
∑
i=1

2i−1 +
k

∑
i=⌈ k+1

2 ⌉
2k−d+(vi )−1

≤ 1+
⌊ k

2⌋
∑
i=1

2i−1 +
k

∑
i=⌈ k+1

2 ⌉
2k−⌈ k−1

2 ⌉−1

≤ 1+2⌊ k
2⌋−1+

⌈

k
2

⌉

2k−⌈ k−1
2 ⌉−1

≤ 2⌊ k
2⌋+

⌈

k
2

⌉

2⌊ k−1
2 ⌋

≤ (
⌊

k
2

⌋

+2)2⌊ k−1
2 ⌋

Therefore,χo(G)≤ (
⌊

k
2

⌋

+2)2⌊ k−1
2 ⌋.
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Now, suppose thatd+(vi) <
⌈

k−1
2

⌉

for somei ≥
⌈

k
2

⌉

. In this case, let us considerTR
k . We have

d+(vi) ≥
⌈

k−1
2

⌉

for all 1 ≤ i ≤
⌈

k
2

⌉

. Using the previous argument, we get that|Q(TR
k )| ≤ (

⌊

k
2

⌋

+

2)2⌊ k−1
2 ⌋. By Observation 18(2), we haveχ′o(GR) = k and LD(GR)→ TR

k . Therefore,χo(GR) ≤
(
⌊

k
2

⌋

+2)2⌊ k−1
2 ⌋ and by Observation 18(1)χo(G)≤ (

⌊

k
2

⌋

+2)2⌊ k−1
2 ⌋.

We thus haveφ(k)≤ (
⌊

k
2

⌋

+2)2⌊ k−1
2 ⌋ for all k≥ 10. 2

6 NP-completeness

Complexity results for the oriented chromatic number were established recently. Klostermeyer and
MacGillivray [14] have shown that given an oriented graphG, deciding whetherχo(G)≤ k is polyno-
mial time if k≤ 3 and is NP-complete ifk≥ 4. Culus and Demange [8] extended the above result to
the case of bipartite oriented graphs and circuit-free oriented graphs.

In this section, we determine the complexity of deciding whether the oriented chromatic index of
a given oriented graph is at most a fixed positive integer. Since the oriented chromatic index of an
oriented graphG is the oriented chromatic number of its line digraphLD(G), the result we provide
below is then an extension of Klostermeyer and MacGillivray’s result to the case of line digraphs.

Theorem 19 Given an oriented graph G, deciding whetherχ′o(G)≤ k is polynomial time if k≤ 3 and
NP-complete if k≥ 4.

Proof. The casek≤ 3 directly follows from Klostermeyer and MacGillivray’s result sinceχ′o(G) =
χo(LD(G)) andLD(G) can be constructed fromG in polynomial time.

We show that the casek = 4 is NP-complete using a reduction from 3-COLORABILITY . We
construct the oriented graphG′ from an undirected graphG as follows. For every vertexv of G, we
put an arcv′ in G′. For every edgexy in G, we add a directed 4-path of 2-vertices joining the head
of x′ to the tail ofy′, and another 4-path of 2-vertices joining the head ofy′ to the tail ofx′. Hence,
G′ contains 10-circuits (i.e. a directed cycles on ten vertices) induced by the edges ofG: such a 10-
circuit induced by the edgexy is denoted byCx,y. Thus, any oriented arc-coloring needs at least four
colors. Therefore, we haveχ′o(G′)≤ 4 if and only if LD(G′) has a homomorphism to the tournament
T4 depicted in Figure 3 (T4 is the only tournament on four vertices containing a 4-circuit). Notice
that, for any edgexy of G, the arcsx′ andy′ are opposite arcs onCx,y. We easily check by a case
study that for every pair of verticesu andv of T4, there exists a 5-walk fromu to v unlessu = v, or
u = 3 andv = 2. Therefore, anyT4-arc-coloringh of Cx,y is such thath(x′) 6= h(y′) and that every
couple of distinct colors can be obtained for(h(x′),h(y′)) except(2,3) and (3,2). If c is a proper
3-vertex-coloring ofG, thenG′ admits aT4-arc-coloringh such thath(v′) = 1 if c(v) = 1, h(v′) = 2 if
c(v) = 2, andh(v′) = 4 if c(v) = 3. Conversely, ifG′ admits aT4-arc-coloringh, then the coloringc
of G such thatc(v) = 1 if h(v′) = 1, c(v) = 2 if h(v′) = 2 or h(v′) = 3, andc(v) = 3 if h(v′) = 4, is a
proper 3-vertex-coloring.

We now consider the casek≥ 4, k even. We consider the problem whetherχ′o(G) ≤ k restricted
to oriented graphsG containing neither sources nor sinks. This case is done by induction onk. Notice
that the oriented graphs in the proof of the casek = 4 contain neither sources nor sinks, sok = 4 is
our base case. We construct an oriented graphG′ without sources nor sinks from an oriented graph
G without sources nor sinks, such thatχ′o(G′) = χ′o(G) + 2. The graphG′ is obtained fromG by
adding three verticesv1, v2, v3, the arcs−−→v1v2,−−→v2v3, and the arcs−→vv1,−→v3v, for every vertexv of G. Any
orientedk-arc-coloring f of G can be extended to an oriented(k+2)-coloring ofG′ as follows. The
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arcs−→vv1 (resp.−→v3v) get the same color as one ofC+
f (v) (resp.C−f (v)) sinceC+

f (v) 6= /0 andC−f (v) 6= /0.
The arcs−−→v1v2 and−−→v2v3 get additional colors. Conversely, any orientedk-arc-coloring ofG′ induces
an oriented(k− 2)-arc-coloring ofG. To see this, notice that every arc−→xy of G is contained in the
5-circuit−→xy,−→yv1,

−−→v1v2,
−−→v2v3,

−→v3x, which implies that the color of−→xy is distinct from those of−−→v1v2 and
−−→v2v3.

We finally consider the casek≥ 4, k odd. We construct an oriented graphG′ from an oriented
graphG without sources nor sinks, such thatχ′o(G′) = χ′o(G)+ 1. The graphG′ is obtained fromG
by adding two verticesv1, v2, the arc−−→v1v2, and the arcs−→vv1, for every vertexv of G. As above, we
check that any orientedk-arc-coloring ofG can be extended to an oriented(k+1)-coloring ofG′, any
orientedk-arc-coloring ofG′ induces an oriented(k−1)-arc-coloring ofG. 2

7 Discussion and further work

In this paper, we provided some bounds on the oriented chromatic index. In particular, we proved in
Section 3 that every oriented planar graph has oriented chromatic index at most 38, and showed that
this bound can be decreased to 4 when considering planar graphs with girth at least 46. It is known
that planar graphs with girth at least 4 (resp. 5,6,7,14) have oriented chromatic number at most 47
(resp. 19, 11, 7, 5) (see [4, 5, 6]). These bounds are also valid for the oriented chromatic index thanks
to Observation 1. It would be interesting to obtain better bounds on the oriented chromatic index of
these graph classes.

We also studied and boundedχo(G) in terms ofχ′o(G), χ′o in terms ofχo(G) andχ′o(G) in terms
of χa(G). Kostochkaet al. [15] proved that, for every oriented graphG with χo(G) = k, we have
χa(G) ≤ k2 +k3+⌈log logk⌉; this gives us a first bound forχa(G) in terms ofχ′o(G) using Theorem 16.
So, it would also be interesting to improve this bound by a direct study.
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