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Abstract

A homomorphism from an oriented gra@hto an oriented graphl is a mappingp from the
set of vertices o6 to the set of vertices dfl such thath(u)¢(v) is an arc inH wheneveiuv is an
arc inG. The oriented chromatic index of an oriented gr&pis the minimum number of vertices
in an oriented graphl such that there exists a homomorphism from the line digtdp{G) of G
to H (the line digrapiLD(G) of G is given byV (LD(G)) = A(G) andab e A(LD(G)) whenever
a= uvandb = W)).

We give upper bounds for the oriented chromatic index of lgsapith bounded acyclic chro-
matic number, of planar graphs and of graphs with bounderkdedVe also consider lower and
upper bounds of oriented chromatic number in terms of cegrchromatic index. We finally
prove that the problem of deciding whether an oriented gtegshoriented chromatic index at
mostk is polynomial time solvable ik < 3 and is NP-complete K > 4.
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AMS Subiject Classification: 05C15

1 Introduction

We consider finite simpleriented graphsthat are digraphs with no opposite arcs. For an oriented
graphG, we denote by (G) its set of vertices and b&(G) its set of arcs. For two adjacent vertices
u andv, we denote byuv the arc fromu to v or simply uv whenever its orientation is not relevant
(thereforeuv= tv or uv= V).

The notion of oriented vertex-coloring was introduced byfcelle [7] as follows: aroriented
k-vertex-coloringof an oriented grapks is a mappingp from V (G) to a set ofk colors such thati)



®(u) # ¢(v) wheneveruv € A(G) and (i) ¢ (V) # ¢ (x) wheneverav,Xy € A(G) and ¢ (u) = d(y).
The oriented chromatic numbeof G, denoted byx,(G), is defined as the smallektsuch thatG
admits an orientedt-vertex-coloring. The notion of oriented chromatic numban be extended to
graph classes: the oriented chromatic numggf) of a class of oriented grapligis defined as the
maximum ofxo(G) taken over all graph& in F. Observe that conditiong) and (ii) above insure
that two vertices linked by a directed path of length one ar tmust get distinct colors in any oriented
vertex-coloring.

Let G andH be two oriented graphs. Bomomorphisnfrom G to H is a mappingp fromV (G) to

V (H) that preserves the arcg(u)dp(v) € A(H) wheneveriv € A(G). An orientedk-vertex-coloring
of an oriented grapf® can be equivalently defined as a homomorphisfrom G to H, whereH is an
oriented graph of ordét. The existence of such a homomorphism frGo H is denoted by — H.
The vertices of are calleccolors and we say thab is H-colorable. The oriented chromatic number
of G can then be equivalently defined as the smallest order ofianted grapid such thaiG — H.
Links between colorings and homomorphisms are presentetbia details in the recent monograph
[12] by Hell and NeSetfil.

Oriented vertex-colorings have been studied by severhbagiin the last decade and the problem
of bounding the oriented chromatic number has been inastigfor graphs with bounded acyclic
chromatic number [21], graphs with bounded maximum avedmgree [6], graphs with bounded
degree [15], graphs with bounded treewidth [22, 23] andlgsbdivisions [24].

One can defin@riented arc-coloringsof oriented graphs in a natural way by saying that, as in
the undirected case, an oriented arc-coloring of an otkegtaphG is an oriented vertex-coloring
of its line digraphLD(G) (recall thatLD(G) is given byV(LD(G)) = A(G) andab ¢ A(LD(G))
whenevera = uv andb = vW). We say that an oriented grahis H-arc-colorableif there exists a
homomorphisnp from LD(G) to H and¢ is then arH-arc-coloring or simply anarc-coloring of G.
Therefore, an oriented arc-coloriggof G must satisfy(i) ¢ (TV) # ¢ (VW) wheneveiiv andvware two
consecutive arcs i, and (i) ¢ (VW) # d(Xy) wheneverav, v, Xy, yz € A(G) with ¢ (Uv) = ¢(y2).
Note that these two conditions insure that two arcs belantgira directed path of length two or three
must get distinct colors in any oriented arc-coloring. Atexte that two incident but non-consecutive
arcs (i.e. two arcs incoming into a same vertex or two arcgamg from a same vertex) can get the
same color since the two corresponding verticek{G) are not adjacent and does not belong to
a directed 2-path. Theriented chromatic indewrf G, denoted byx,(G), is defined as the smallest
order of an oriented grapH such that.D(G) — H. Therefore x,(G) = Xo(LD(G)). The oriented
chromatic indexx,,(¥) of a class of oriented graplisis defined as the maximum gf(G) taken over
all graphsG in F.

The first easy result concerning oriented arc-coloringtesl#he oriented chromatic index to the
oriented chromatic number:

Observation 1 Let G be an oriented graph. Theg(G) < Xo(G).

To see that, consider an oriented gradphvith Xo(G) = k and an oriented-vertex-coloringf of
G. The mapping defined byg(Uv) = f(u) for every arcdiv € A(G) is clearly an oriented arc-coloring
of G.

Therefore, all upper bounds for the oriented chromatic remare also valid for the oriented
chromatic index. In this paper, we provide better upper bsuior the oriented chromatic index of
several classes of graphs and consider the complexity afrteeted arc-coloring problem.



A weaker version of arc-coloring of oriented graphs whenedition (ii ) is dropped has been con-
sidered [2, 11]. The corresponding chromatic number is Wb (G)). Various other types of
arc-colorings were considered in the literature (©eg[10, 13]).

This paper is organized as follows. The link between orgrferomatic index and acyclic chro-
matic number is discussed in Section 2. The oriented chionmatex of planar graphs and of graphs
with bounded degree are respectively considered in Sec8aand 4. In Section 5, we investigate
lower and upper bounds of the oriented chromatic numberingef the oriented chromatic index.
Finally, the complexity of determining the oriented chrdiméndex of a graph is studied in Section 6.

In the rest of the paper, we will use the following notions. értex of degreé will be called a
k-vertex. Ifuvis an arc,u is apredecessoof v andv is asuccessopf u. A vertex will be called a
sourceif it has no predecessors angiakif it has no successors.

For a graphG and a vertex of V(G), we denote bys \ v the graph obtained fror® by removing
vtogether with the set of its incident arcs. This notion isexied to sets of vertices in a standard way.
Let G be an oriented graph arfdbe an oriented arc-coloring @&. For a given vertex of G, we
denote byC{ (v) andC; (v) the outgoing color sebf v (i.e. the set of colors of the arcs outgoing from

v) and theincoming color sebf v (i.e. the set of colors of the arcs incomingo respectively.

2 Oriented chromatic index and acyclic chromatic number

A proper vertex-coloring of an undirected gra@hs acyclicif every subgraph induced by any two
color classes is a forest (in other words, the graph has rwditatic cycle). Theacyclic chromatic
numberof G, denoted by, (G), is the smallesk such thaiG admits an acyclik-vertex-coloring.

One of the first problems considered for oriented vertexngs was to characterize the families
of graphs having bounded oriented chromatic number. It Wwaw/s that these families are exactly the
ones having bounded acyclic chromatic number [15, 21].

In particular, Raspaud and Sopena [21] proved that eveent@d graph whose underlying undi-
rected graph has acyclic chromatic number at rkdsis oriented chromatic number at mksgk—1.
Recently, Ochem [18] proved that this bound is tight by camgsing, for everyk > 3, an oriented
graphG such thatya(G) = k andxo(G) = k- 2¢1.

By Observation 1, every oriented graph with acyclic chracnatimberk has oriented chromatic
index at mosk- 2<~1. By adapting the proof of the above-mentioned result of Badmnd Sopena,
we get a new upper bound which is quadratic in terms of theliaogferomatic number:

Theorem 2 Every oriented graph whose underlying undirected graphd@glic chromatic number
at most k has oriented chromatic index at meletk — 1) — | % |.

To show that, we need the two following lemmas :

Lemma 3 Let F be an oriented forest. Then F admits g&c-coloring where G is the directed
cycle on three vertices.

Proof. For each connected componéhtchoose one arc and color it with the color 0. Then, as long
as it remains uncolored arcs, choose a veutwith at least one incident atev colored with colorc.
If GV € G (resp. VU € G), then color all outgoing (resp. incoming) arcs framvith the colorc and
all incoming (resp. outgoing) arcs fromwith the colorc—1 (mod 3 (resp.c+1 (mod 3). This
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arc-coloring is clearly &s-arc-coloring. O

Lemma4 Let F be a forest, ¢ be a 2-vertex-coloring of F using i and k(ij) and F be any
orientation of F. There exists an orientdearc-coloring f of F using{i, j} x {0,1} such that for
every vertex u, @) and the first component of @V) coincide, for eactuv € A(F).

Proof. The coloring f can easily be obtained fromby using the following rule: iftv andvw are
two consecutive arcs iff , then letf (GV) = (c(u),a) and f (W) = (c(v), B) with a = B if and only if
c(u) < c(v). O

Proof of Theorem 2: Let G be an oriented graph aM, . . ., Vi be thek color classes of (G) induced
by an acyclick-coloring of G. By definition,F ; = G, V;] is a forest foii, j € [1,k], i < j and there
are&;1> such forests; moreover, consider the ['gj forestsFi2,Fs4,...,Fa_12 (these forests do
not share any vertex). We say that théderests are ofype 1while the remaining ones are tfpe
2. Then, we define an oriented arc-colorifig for each forest; ; as follows. IfF ; is of type 1,
let fi ; be any oriented 3-arc-coloring given by Lemma 3Flf is of type 2, letf; ; be any oriented
4-arc-coloring given by Lemma 4.

Recall that eacluv € A(G) belongs to a unique fore§t j, i, j € [1,K],i < j. We now define the

following mappingf on A(G):
vave R, f(uv) = (xi,j) wherex = fi (V).

We shall prove that is an oriented arc-coloring @. We first have to check that any pair of consec-
utive arcsuv andvw get distinct colors. 10V andvw belong to two distinct forests, say € F j and
Wi € Fjx, thenf (V) = (x,i, ) # (v, j,k) = f(WW) for anyx,y sincei # k. Now if Gv,vW € F j, then
f(av) = (fij(QV),i, ) # (fij(W),i, j) = f(W) sincef;j is an oriented arc-coloring. Thereforefif

is not an oriented arc-coloring @, there are four arcav, Wi, xy, yz of G with f(uv) = f(yz) and
f(W) = f(Xy). Since anyfi; is an oriented arc-coloring, the aras, W, Xy, yz does not belong to
the same forest and thew, yz € F ; andvw, Xy € Fj , i # k. Since two forests of type 1 do not share
any vertex, we assume w.l.o.g. thag is of type 2. Suppose that(uv) = f(yz) = ((i,p),i, |)
(resp. ((j,p),i,],)) for somep € {0,1}. This implies thaty € V; (resp. v € V}). Then, since
f(W) = f(Xy) = (r, j,k) for somer, the vertexy (resp. v) belongs either t&; or to k. This is a
contradiction sinceé # j # k # i. This coloring uses at moskg — 1) — | ¥| colors. That completes
the proof. O

In order to study the relevance of the bound given by Theoreme2now construct graphs with
bounded acyclic chromatic number and high oriented chricnvadex.

The notion oforiented k-treecan be defined as follows: a tournamédptwith k vertices is an
orientedk-tree; if G is an orientedk-tree then the grap@®’ obtained fromG by adding a new vertex
v linked to every vertex of &-clique subgraph o6 is ak-tree and there are no furthkstrees. A
subgraph of an orientekitree is called an orientepartial k-tree. We denote by the class of
orientedk-trees.

Theorem 5 X, (Tk) = Q (%)

It is well known that the acyclic chromatic number of dayree is at mosk+ 1. Indeed, at each

step of the construction latree, we color the new added vertexvith a color distinct from those of
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the k adjacent vertices of; this coloring is clearly acyclic. Moreover, the clique atesk+ 1 is a
k-tree and needs+ 1 colors for any acyclic coloring. Therefogg(7x) = k+ 1, and we thus get:

Corollary 6 There exist oriented graphs with acyclic chromatic numbemi oriented chromatic
. k2
indexQ (W)

Recall that for a given vertexof a graphG and a given oriented arc-colorinfgof G, C{ (v) and
C; (v) denote the outgoing color setwand the incoming color set of respectively.

Proof of Theorem 5: Let h(k) = X5 (Tk). Every graphG € Tk has arh(k)-arc-coloring f such that
Y eV(G), IC{ (v)] < h(k) —h(k—1). Otherwise, we could construct a graBhe Ty with no h(k)-
arc-coloring by adding to every verteof G a copyH, of a graptH € J_1 such thak,(H) =h(k—1)
and every ar&v for x € V(Hy). Itis easy to check that the mappigglefined byg(v) = C{ (v) for
everyv € V(G) is an oriented vertex-coloring @. Sincexo(T) > 21 — 1 [22], we obtain:

h(k)—h(k—1) <h(k)

Z} _ > 22k+l_1
i=

i
h(k)PK-htk-1) > kil _q
(h(k) — h(k— 1)) log h(k) > k

3 Planar graphs

In this section, we consider planar graphs. In the next siose we give general bounds on the
oriented chromatic index of planar graphs. In subsecti@n\8e investigate the oriented chromatic
index of planar graphs with high girth.

3.1 General bounds

A celebrated result of Borodin [3] states that every plarmaiph has acyclic chromatic number at
most five. Thus, from their previously mentioned result, f@asl and Sopena [21] obtained that every
oriented planar graph has oriented chromatic number at®@psthich is the best known upper bound
for planar graphs up to now.

Sopena [22] constructed an oriented planar graph with wuechromatic number 16. More
recently, Marshall [16] showed that an oriented planar lgn&jth oriented chromatic number at least
17 exists. The gap between the lower and the upper boundge &rd seems to be very hard to
reduce.

Concerning oriented arc-coloring of planar graphs, Theo2eand Borodin’s result give the fol-
lowing upper bound:

Corollary 7 Let G be a planar graph. Thex{,(G) < 38.



Figure 1: The oriented outerplanar graphwith oriented chromatic index 7.
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(a) The planar grapHl. (b) The planar graphi*.

Figure 2: Graphs of Lemma 8 and Theorem 9

We give in the following a lower bound for the oriented chradimandex of the class of planar
graphs: we construct a planar graph with oriented chronnadiex at least 10.

Pinlou and Sopena [20] proved that the oriented outerplgregsh O depicted on Figure 1 has
oriented chromatic index 7.

Let H be the planar graph obtained by taking two copies of the g&@ypiamelyO; andO,, one
new vertexx, and adding all arcs from the vertices@f towardx and all the arcs from toward the
vertices ofO, (see Figure 2(a)). In the following, the vertexvill be called thejoining vertex of H
We denote byA~ (H) (resp.A™ (H)) the set of incoming arcs to (resp. outgoing arcs from) tiverjg
vertex ofH.

Lemma 8 Any orientedd-arc-coloring of H uses seven colors to colof@ ), the same seven colors
to color A(Oy), the eighth color to color A(H) and the ninth color to color A(H).

Proof. We consider oriented 9-arc-coloringstéf Suppose that we use at most seven colors to color
A(O1) UA~(H), which would be best possible singg(O1) = 7.
e If exactly one color is used to coléx (H), then this color cannot appear &(0O;), a contra-
diction.

e If exactly two colors, say 1 and 2, are used to cdor(H ), then these colors have to appear
—
also onA(Oy). So there exist ardsv andu'Vv' in Oy respectively colored 1 and 2. Therefore, the
_
arcsvx andv'x must be respectively colored 2 and 1, which is forbidden.

e If at least three colors are used to cokor(H), then there remain at most six colors to color
A(O2), which contradictx,(O2) = 7.



Figure 3: The tournamerit.

We thus need at least eight colors to cof@©;) UA™(H). This implies that there remains (at most)
one color, say 9, to colok™ (H). By a similar argument, we obtain that one color distinctrfr®, say
8, has to be used to colér (H). Seven colors distinct from 8 and 9 are needed to calqiH) and
AT (H). 0

Let H* be the graph obtained by taking two copies of the gridphamelyH’ andH”, and adding
an arc from the joining vertex dfl’ towards the joining vertex dfl” (see Figure 2(b)). The joining
vertex ofH’ (resp.H”) is denoted by’ (resp.x”).

Theorem 9 The graph H has oriented chromatic indetO.

Proof. We suppose thati* admits an oriented 9-arc-coloring. By Lemma 8, we may assuie.g.
thatA(O;) andA(OY,) use colors 12,...,7, A~ (H’) uses color 8 ané*(H’) uses color 9. The only

B

available color fox'x” is color 9. Now, colors 8 and 9 are obviously forbiddenAdr(H”) and, from
Lemma 8, we may assume w.l.o.g. ti#&gt(H") is colored with color 1; thug&\(O}) uses the seven
colors 23,...,8. Notice that the grapB contains neither sources nor sinks. Therefore, theresexist
acolorc € {2,3,...,7} such that two consecutive arcs@ are respectively colored withand 1.
Now, the colorc is clearly used o\(O}), which implies thaH” also contains two consecutive arcs
respectively colored with 1 and which is a contradiction. The gragh” has oriented chromatic
index at least 10.

To show thaH* has oriented chromatic index 10, we coltiO), A(O5), A(O}) andA(O%) with
the colors 12,...,7, A~ (H’) and A~ (H") with color 8, A" (H’) and A" (H”) with color 9, andXx’
with color 10. O

3.2 Planar graphs with high girth

Thegirth of a planar graph is the size of a smallest cycle. Orientedmhtic number of planar graphs
with large girth was widely studied [4, 5, 6, 17]. In partiaylNeSetfilet. al[17] proved that for every
g > 3, there exists a planar gra@with girth g such thatx,(G) > 5.

We now prove that in case of oriented arc-coloring, this ldocem be decreased to 4 for some high
girth. Moreover, observe that for a directed cycle of lerigthO (mod 3), any oriented arc-coloring
needs at least 4 colors. Then, for amy 3, consider the connected oriented graéghobtained by
taking two directed cycles sharing one arc, the first one zif giand the second one of sike> g,
k#0 (mod 3. Clearly,Gq has girthg and oriented chromatic index 4, that shows the tightnedseof t
bound we prove in the sequel.

Let T4 be the tournament on four vertices depicted in Figure 3. \Wehset aT,-arc-coloringf of
an oriented grapks is goodif



Figure 4: The auxiliary graphl of Lemma 10.

1. YueV(G),Cf (u) € {0,{1}, {2}, {3}, {4}, {23}, {3,4}},
2. VueV(G),C; (u) € {0,{1}, {2}, {3}, {4}, {1.2}, {2,3}}.

We first prove the following:

Lemma 10 Let P=vpv; ... Vgvio be an oriented 10-path of 2-vertices(f) =2 for 1 <i < 9). Then,
any good J-arc-coloring of P = P\ {v,,...,vg} can be extended to a goog-arc-coloring of P.

Proof. Let f’ be a goodl-arc-coloring ofP’. To prove that the coloring’ can be extended t8, we
will use the auxiliary graptd depicted in Figure 4 (the constructionldfis explained below).

The arcvgv; of P is colored byf’: there exist eight possible cases, also called statesndie
on the two possible orientations @fv; and the four possible colors. The eight vertisgss,, S3, s,
S11,512, 913, S14 Of H correspond to these eight possible states. To construgrdpdH, we consider
all the possible cases of orientations and colorings. Segofww instance thagv; € A(P), f/(Vovi) = 2
(which corresponds to stasg) and considev;vs. If viv; € A(P), we can assign it colors 3 or 4, which
corresponds to the stasg. If Vav; € A(P), we can assign it colors 1, 2, or 3 which corresponds to the
states;g. Proceeding in a similar way from any state, we eventualttlggauxiliary graptH.

Finally, observe that every directed path of length ninéliends either in state;g or syp. This
means that we may obtain any possible colounéetg, which proves that every godd-arc-coloring
f’ can be extended to a godgarc-coloring ofP. O

Theorem 11 Let G be a planar graph with girth ¢ 46. Then G admits a good,farc-coloring.

Proof. Consider a minimal counter-exampteto Theorem 11. We prove that contains neither a
1-vertex nor an oriented 10-path of 2-vertices.

e Suppose thak contains a 1-vertex, let v be its neighbor and suppose thatc A(H). Let
H"=H\u. Due to the minimality ofH, H’ admits a goodTs-arc-coloring f. Therefore,
C{(v) € {{1},{2},{3},{4},{2,3},{3,4}}. For each possible case, there exists a predecessor
in T, we can use to extentlto goodT;-arc-coloring ofH. The proof of the casel € A(H) is
similar.

e Suppose thaH contains a 10-pathv;vs...vow of 2-vertices (thereforel(vi) = 2 for all i €
[1,9]) and letH’ = H\ {v»,v3,...,vg}. Due to the minimality oH, H" admits a good-arc-
coloring f. Lemma 10 insures thdtcan be extended to a godgarc-coloring ofH.



NeSetfil et al. [17] proved that every planar graplof girth g(G) > 5d + 1 contains either a 1-
vertex or a(d + 1)-path of 2-vertices. Therefore, singéH) > 46, a counter-example to Theorem 11
does not exist. That completes the proof. O

4 Graphs with bounded degree

Every oriented graph with maximum degree three has oriecitedmatic number at most 11 [23].
Sopena [22] conjectured that the oriented chromatic numbesnnectedriented graphs with maxi-
mum degree three is at most 7. In case of oriented arc-cgld®iimlou [19] recently proved that every
oriented graph with maximum degree three has oriented chironmdex at most 7.

For the general case, Kostochddzal.[15] proved that every oriented graph with maximum degree
A has oriented chromatic number at mo&€2* using a probabilistic argument. Therefore, for such a
graphG we also have(,(G) < 24222, Alon et al.[1] proved that every graph with maximum degree
has acyclic chromatic number at mm4/3). Using Theorem 2, we thus get the better upper bound
of O(A®/3) for the oriented chromatic index of oriented graphs with immaxn degree\.

We improve this latter bound and show the following:

Theorem 12 Let G be an oriented graph with maximum degfeehen x,(G) < 2 ( L%ZJ +A>.

Proof. Let G* be the undirected graph defined W¥yG*) = V(G) anduv € E(G¥) if and only if
UV € A(G) or Vi € A(G) or there exists a verte such thatut,tv € A(G). Goncalveset al. [9]

proved that such a grap@* is Q%ZJ +A> -degenerate (recall that a graphkisiegenerate if every
subgraph contains a vertex of degree at mapsttet p be a proper vertex-coloring @& using at most
L%ZJ +A+1 colors from{o, ey L%ZJ +A} obtained by a greedy coloring.

Let nowc be the mapping from\(G) to {1,..., L%ZJ +A} x {0,1} defined byc(tv) = (p(v),0)
it p(u) < p(v) ande(@V) = (p(u), 1) if p(u) > p(v).

We will show thatc is an arc-coloring of.

Suppose first thaliv and v are two consecutive arcs & such thatc(Uv) = c(W) = (a,i). If
i =0 (resp.i = 1) thenp(v) = p(w) (resp. p(u) = p(v)), a contradiction sincew € E(G*) (resp.
uve E(GY)).

Suppose now that there are four aiggvw, Xy, and yz of G such thatc(Uv) = ¢(yz) = (a,i)
andc(W) = c(xy) = (B, ). If i = j =0, we geta = p(v) = p(z) and p(v) < p(w) on one hand,
B=p(y) = p(w) andp(w) = p(y) < p(z) = p(v) on the other hand, a contradiction. The casg =1
leads to a contradiction in a similar way. Assume now thatj and w.l.o.g. that =0 andj = 1.
Then we haver = p(v) = p(z) on one hand anfl = p(v) = p(x) on the other hand. Thyxz) = p(x),
a contradiction sincgze E(G*).

Therefore, the mappingis an arc-coloring ofs which uses at most @A—;J +A) colors. O

Concerning the lower bound, Pinlou [19] constructed a cghbaph with chromatic oriented index
6 = 2A. We are also able to construct an infinite family of orienteabfis with maximum degre®
and oriented chromatic indexXA2- 1. For that, len = 2A — 1 and consider the oriented bipartite graph
Bnn defined by (Bnn) = {Xo, - -, Xn-1,Y0; - -, Yn-1}, X¥i € A(Bnp) forall 0 <i < nandyix € A(Bnn)
forall0<i<n 1<j<Aandk=i+j (modn). The graptB,, is aA-regular graph and any pair
of arcs of{Xy;,0 < i < n} belongs to a directed 3-path and thus needs distinct colors.
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Figure 5: The four non-isomorphic tournaments on four zesi

5 Oriented chromatic index vs. oriented chromatic number

In this section, we show that the oriented chromatic numf@é&) of an oriented grapl® can be
bounded in terms of the oriented chromatic ingig4G).

Recall that we have(,(G) < Xo(G) for every oriented grapls by Observation 1. This lower
bound is tight since, for eveny, we can construct a gragh with X;,(G) =n = Xo(G). LetTT, be
the transitive tournament anvertices withV (T T,) = {Vo,V1,...,Vn_1} andViVj € A(TT,) whenever
i < j. Then, let us consideF,, the tournament on vertices obtained frorT T, by reversingvovn_1
(thereforev,_1vp € A(T,)). Any pair of arcs ofS= {ViVi;1 € T,,i € [0,n— 1]} (subscripts are taken
modulo n) belongs to a directed 3-path and thus all arc§imust get distinct colors. Therefore,
Xo(Tn) =N=Xo(Tn).

We now focus on the upper bound on the oriented chromatic rumtierms of oriented chromatic

index. We first need the following definitions and the two rlertmas.

Let G be an oriented graph and [&{G) be the power set of (G). We define the mappings as
follows:

be: PG — P(G)
s sulJrémw
veSs

For any oriented grapks, we then denote bg(G) the setQ(G) = {ps(s),s € P(G)} (2(G)
is therefore the codomain @). Clearly, Q(G) C P(G). For an elemens € Q(G), lets= {ve
s;TE(v) Cshands= {ve sT(v) Z s}; thus we haves = s s (disjoint union).

For instance, consider the tournamé@gtdepicted on Figure 5(d). We hav®T,) = {0, {1,4},
{3,4},{1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4} }. Moreover, if we consider the elemesx {1,2, 3} of
Q(T4), we haves= {1} ands= {2,3}.

Lemma 13 Let G be an oriented graph witk{,(G) = k and let T be an oriented graph on k vertices
such that G admits agJarc-coloring (i.e. LO0G) — Tk). Then we havg,(G) < |Q(Tk)|.

Proof. W.l.o.g., we shall consider thag is a tournament (otherwise, we complete it).
Let f be a homomorphism fromD(G) to T; we define the mapping as follows:

g: V(G — Q(Ty)
v o= pR(CE(V)

10



We claim thatg is an oriented vertex-coloring @. Let Uv € A(G) with f(uv) = a. Sincea € C{ (u),
we havea € g(u) anda ¢ C{ (v); moreover, by definition of , for every colorc € C{ (v), ca ¢ A(Tk),
that isac € A(Ty). Thereforea ¢ g(v) andg is a proper vertex-coloring d®.

Now, if g is not an oriented vertex-coloring @, there exist two arcsiv and Xy of G with
g(u) = g(y) andg(v) = g(x). Let f(uv) = a and f(Xy) = b. If a+# b, sinceTy is a tournament,
we may assume w.l.o.g. thab ¢ A(Ty). Then, we havé € g(u) and thereforé € g(y). Now, if
a= b, we haveb € g(u) and thereford € g(y). Thus, in both cases, € g(y). Sincef is an oriented

arc-coloring ofG, b ¢ C{ (y). Hence, there exists a colere C{ (y) such thatcb € A(T). Since
f(Xy) = b, we also havéac e A(Ty), that is a contradiction sinck is antisymmetric. O

In particular every oriented gragh which admits alz-arc-coloring has oriented chromatic num-
ber at most 7 sinc(T4)| = 7 as observed above.
We now prove that the bound given by Lemma 13 is tight:

Lemma 14 For every tournamentglon k vertices, there exists an oriented graph G suchxped) <
k, LD(G) — Tk andXo(G) = |Q(Tk)!-

Proof. Let G be the digraph defined as follow¥:(G) = Q(Tx) andXy € A(G) if and only if there
existsv € V(Ti) such that € X andv ¢ y.

We first have to check th& is an oriented graph (without opposite arcs nor loops). Bs@po
the contrary thax,y € V(G) are two vertices such that there exisiandv, with vy € X, v1 ¢y, v, €y
andv, ¢ x. W.l.o.g. we assume thafvs € A(Ty): we obtain a contradiction sinae must belong to
X. The graphG is oriented.

We now show that any oriented vertex-coloring@®fieedgQ(Ty)| colors (that is one distinct color
for each vertex of5). Since any oriented vertex-coloring is a proper vertebofiog, we just have to
check that any pair of verticesandy of G which are not adjacent belongs to a directed 2-path. Let
X,y € V(G) which are not adjacent; by construction we havwe y andy C x. Moreover,x #y, and
w.l.o.g. that implies that there existise V (Ti) such thatu € x andu ¢ y. Furthermore, there exists
v € X such thatvti € A(Ty). Consider the vertex = py, ({u}) of G. We haveu € zandv ¢ z. By
constructionxz, zy € A. Thereforexo(G) = |Q(Tk)|-

Finally, we construct a mappin@ which is an orientec-arc-coloring ofG. Let Xy € A(G).
Therefore, there exists such thatu € X andu ¢ y. This implies that any; € y is a successor of
in T (otherwise,u would belong toy). Let f : A(G) — {1,...,k} be a mapping such thdt{xy) = u
for someu € x andu ¢ y: any arc outgoing frony will then be colored by a successor win Ti.
ThereforeLD(G) — Ty andx,(G) < k. 0

Note that the graph constructed in the previous theoreneisrtiallest possible since it haXTy)|
vertices and need®&(Tk)| colors for any oriented vertex-coloring.

For instance, using the construction described in the pusvproof, we are able to construct the
graphG depicted on Figure 6 which admits an orienfdarc-coloring and has oriented chromatic
number|Q(Ty)| = 7.

Let @(k) = max{|Q(Tk)|, Tk is a tournament ok vertices. From the two previous lemmas, we
obtain the following upper bound :

Theorem 15 Let G be an oriented graph witk},(G) = k. Thenxo(G) < @(k). Moreover, this bound
is tight.

11



{1,2,3}

{1,3,4} {2,3,4}

{1,4} {3,4}

{1.2.3,4} 0

Figure 6: An oriented graph with oriented chromatic indexnd ariented chromatic number 7.

Figure 7: The graplid of Lemma 17.

Proof. Sincex,(G) =k, there exists a tournameil on k vertices such thaG admits aTg-arc-
coloring. By Lemma 13, we havg,(G) < |Q(Tx)|, and thereforexo(G) < @(Kk).

Now, let T"® be a tournament ok vertices such thap(k) = [Q(T,"®)|. By Lemma 14, there
exists an oriented grapB such thatx(G) = [Q(T,"®)| = @(k). O

For instance, we can easily check for the four tournament®wonvertices depicted on Figure
5 that we haveQ(T})| = 5, |Q(T2)| = 6, |2(T2)| = 6 and |Q(T4)| = 7. We thus havep4) = 7
and therefore any oriented graph with oriented chromatiexmat most 4 has an oriented chromatic
number at most 7.

The following theorem provides exact valuesgk) for k < 9 and estimates fd¢> 10:

Theorem 16
e 90)=1 o1)=2, @2 =3, @3)=5 ¢4 =7 @5 =12 @6) =15
o7)=25 @8 =31 @9 =51
o 0a25-1< oK) < (|5]+2) 2l“2*] for k> 10, wherea = 2if k is even and — % if k is odd.
To prove Theorem 16, we need the following lemma and the tWoviing properties.

Lemma 17 Let G be an oriented graph such thef(G) = p andxo(G) = g. Then there exists a graph
H such thatxg(H) = p+2andxo(H) = 29+ 1.

Proof. Let H be the oriented graph obtained by taking two disjoint copie& (denoted byG; and
G2) and a new vertex and adding all the arcs from the vertices&ftowardz and all the arcs froma
toward the vertices 0B, (see Figure 7).

12



Since every pair of verticeg/,v,) € V(G1) x V(Gz) belongs to a directed 2-path ih, we get
Xo(H) =2q+1.

Now, letA; = A(Gy), A2 =A(Gp), A ={UVe A(H),v=12}, A, = {Wec A(H),u= z}; therefore
AH)=AlWAWA_WA,. Letg: A(G) — {1,...,p} be an orienteg-arc-coloring ofG and let us
then define the following mapping: A(H) — {1,..., p+ 2} as follows :

h@v)={ p+1 ifuveA_

g(m/) if tve AlUA
p+2 ifave A,

The mappingh is an oriented p-+ 2)-arc-coloring ofH and thusx,(H) < p+ 2. Moreover, as in
the proof of Lemma 8, it is not difficult to check thgt(H) = p+ 2. O

For an oriented grap@, we denote byGR thereverse graplof G, that is the graph obtained from
G by reversing every arc d@&. Then, sinceGR — HR whenevelG — H, we clearly have:

Observation 18
1. If Xo(G) = k with G— T, thenxo(GR) =k with &R — TR;
2. If x,(G) =k with LD(G) — Ty, thenx(GR) = k with LD(GR) — TR,

Proof of Theorem 16: Fork < 9, we used a computer to determine the valueg(kf.

Fork> 10, by Lemma 17, we hawgk+ 2) > 2¢(k) + 1, which implies lower bounds af(k).

Now, we prove thatp(k) < (| £] +2) 2l'7'] for k> 10. By Theorem 15, there exists a graph
with X5(G) = k andxo(G) = @(k); therefore it is enough to show thgg(G) < (| §| +2) 27 Let
Ty be a tournament ok vertices such thatD(G) — T. We order the verticeg, o, ...,V of T in
such away thati™ (v;) < d*(vj) fori < j. We first suppose that* (vi) > [%51] forall [¥51] <i <k.
LetPi = {sC {v1,V2,...,Vi},vi € s} andQ; = {pr,(s),s€ Pi}. We then have(Tx) = 0U ], Pi and
thereforeQ(Ty) C 0UU; Q;. On one hand, sind®;| = 21, we havelQj| < 2-1. On the other hand,
since each element & containsv; together with its successorsTp, we haveQ;| < 2¢-4"(V)-1 we
thus have

k
a()| < 14319

k .
< 1+ Zlmin{z'—l,zk—d*wi)—l}

=~

< 1+ Zzl 1 k dt(vi)—1

A
=
_|_
l\l
I\
+
N
T
-1
=
Mz
R—
L

INIA A
N
+
o~
I
7

Thereforexo(G) < (| &| +2)2L 7]
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Now, suppose thad™ (vi) < [%51] for somei > [£]. In this case, let us consid@f. We have
d*(v) > [%] for all 1 <i < [¥]. Using the previous argument, we get tha{T,R)| < (| 5] +
2)2L7']. By Observation 18(2), we havg,(GR) = k and LD(GR) — TR. Therefore,xo(GR) <
(|%] +2)2L2*] and by Observation 18(}(G) < (| &| +2)2L"2'].

k—

We thus havep(k) < (| %] +2)2L"2"] for all k> 10. 0

6 NP-completeness

Complexity results for the oriented chromatic number westaldished recently. Klostermeyer and
MacGillivray [14] have shown that given an oriented gr&ideciding whetheg(G) < kis polyno-
mial time if k < 3 and is NP-complete K > 4. Culus and Demange [8] extended the above result to
the case of bipartite oriented graphs and circuit-freente@ graphs.

In this section, we determine the complexity of deciding thike the oriented chromatic index of
a given oriented graph is at most a fixed positive integercesthe oriented chromatic index of an
oriented graplG is the oriented chromatic number of its line digrddb(G), the result we provide
below is then an extension of Klostermeyer and MacGillkgagsult to the case of line digraphs.

Theorem 19 Given an oriented graph G, deciding whethgfG) < k is polynomial time if kK 3and
NP-complete if k> 4.

Proof. The casek < 3 directly follows from Klostermeyer and MacGillivray’sselt sincex,(G) =
Xo(LD(G)) andLD(G) can be constructed fro@ in polynomial time.

We show that the caske= 4 is NP-complete using a reduction fromC®LORABILITY. We
construct the oriented gragh from an undirected grap® as follows. For every vertex of G, we
put an aro/ in G'. For every edgey in G, we add a directed 4-path of 2-vertices joining the head
of X' to the tail ofy’, and another 4-path of 2-vertices joining the head db the tail ofX'. Hence,

G’ contains 10-circuits (i.e. a directed cycles on ten ves)iteduced by the edges Gf such a 10-
circuit induced by the edgey is denoted byC, . Thus, any oriented arc-coloring needs at least four
colors. Therefore, we hayg,(G') < 4 if and only if LD(G') has a homomorphism to the tournament
T4 depicted in Figure 3T is the only tournament on four vertices containing a 4-dijcuNotice
that, for any edgey of G, the arcsx’ andy are opposite arcs oBxy. We easily check by a case
study that for every pair of verticasandv of Ty, there exists a 5-walk froma to v unlessu = v, or
u= 3 andv = 2. Therefore, anylz-arc-coloringh of C,y is such thah(x’) # h(y’) and that every
couple of distinct colors can be obtained fd(x'),h(y')) except(2,3) and (3,2). If cis a proper
3-vertex-coloring ofG, thenG’ admits al-arc-coloringh such thah(V') = 1 if ¢(v) = 1, h(V) = 2 if
c(v) = 2, andh(V') = 4 if c(v) = 3. Conversely, i{G' admits aTs-arc-coloringh, then the coloring

of G such that(v) = 1if h(V) =1,c(v) =2if h(V) =2 orh(V) =3, andc(v) =3 if h(V) =4, isa
proper 3-vertex-coloring.

We now consider the case> 4, k even. We consider the problem whetlxg(G) < k restricted
to oriented graph& containing neither sources nor sinks. This case is doneduction onk. Notice
that the oriented graphs in the proof of the clise 4 contain neither sources nor sinks,kse: 4 is
our base case. We construct an oriented g@pWwithout sources nor sinks from an oriented graph
G without sources nor sinks, such thgf(G') = x5(G) + 2. The graphG' is obtained fromG by
adding three verticeg, V», V3, the arcsiivs, Vovz, and the arcsvi, Vv, for every vertew of G. Any
orientedk-arc-coloringf of G can be extended to an orientfd+ 2)-coloring of G’ as follows. The
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arcswv; (resp.vaV) get the same color as one®f (V) (resp.C; (v)) sinceCy (v) # 0 andC; (V) # 0.
The arcsvivs andvovz get additional colors. Conversely, any orientedrc-coloring ofG’ induces
an orientedk — 2)-arc-coloring ofG. To see this, notice that every axg of G is contained in the
5-circuit Xy, yVi, ViV, Vovz, VaX, which implies that the color oXy is distinct from those of;vs and
VA

We finally consider the cade> 4, k odd. We construct an oriented gra@hfrom an oriented
graphG without sources nor sinks, such thg{G') = x,(G) + 1. The graphG’ is obtained fromG
by adding two verticesy, v», the arcvivs, and the arcsvi, for every vertexv of G. As above, we
check that any orientektarc-coloring ofG can be extended to an orient@d+ 1)-coloring of G/, any
orientedk-arc-coloring ofG’ induces an orientetk — 1)-arc-coloring ofG. O

7 Discussion and further work

In this paper, we provided some bounds on the oriented chioimadex. In particular, we proved in
Section 3 that every oriented planar graph has orientedaditio index at most 38, and showed that
this bound can be decreased to 4 when considering planangyveith girth at least 46. It is known
that planar graphs with girth at least 4 (resp. 5,6,7,14¢aiented chromatic number at most 47
(resp. 19, 11, 7, 5) (see [4, 5, 6]). These bounds are alst feailthe oriented chromatic index thanks
to Observation 1. It would be interesting to obtain betteurimts on the oriented chromatic index of
these graph classes.

We also studied and boundgd(G) in terms ofx}(G), x5 in terms ofxo(G) andx,(G) in terms
of xa(G). Kostochkaet al. [15] proved that, for every oriented graghwith xo(G) = k, we have
Xa(G) < k? + k3t[loglogkl- this gives us a first bound fog(G) in terms ofx/(G) using Theorem 16.
So, it would also be interesting to improve this bound by adistudy.
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