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Abstract

A k-subcoloring of a graph is a partition of the vertex set into at most k cluster graphs, that is,
graphs with no induced P3. 2-subcoloring is known to be NP-complete for comparability graphs and
three subclasses of planar graphs, namely triangle-free planar graphs with maximum degree 4, planar
perfect graphs with maximum degree 4, and planar graphs with girth 5. We show that 2-subcoloring
is also NP-complete for planar comparability graphs with maximum degree 4.

1. Introduction

A k-subcoloring of a graph is a partition of the vertex set into at most k cluster graphs, that is,
graphs with no induced P3. Unlike k-coloring, k-subcoloring is already NP-complete for k = 2:

Theorem 1. 2-subcoloring is NP-complete for the following classes:

c1: (K4, bull, house, butterfly, gem, odd-hole)-free graphs with maximum degree 5 [1],

c2: triangle-free planar graphs with maximum degree 4 [2, 3],

c3: (K1,3,K4,K
−
4 , C4, odd-hole)-free planar graphs [4],

c4: planar graphs with girth 5 [7].

We refer to [5] for the description of the forbidden induced subgraphs. A graph G is (d1, . . . , dk)-
colorable if the vertex set of G can be partitioned into subsets V1, . . . , Vk such that the graph induced
by the vertices of Vi has maximum degree at most di for every 1 6 i 6 k. Notice that every (1, 1)-
colorable graph is 2-subcolorable. Moreover, on triangle-free graphs, (1, 1)-colorable is equivalent
to 2-subcolorable. As it is well known, for every a, b > 0, every graph with maximum degree
a + b + 1 is (a, b)-colorable [6]. Thus, every graph with maximum degree 3 is 2-subcolorable, so
that the degree bound of 4 in the classes c2 and c3 is best possible. Notice that the graphs in c1 are
comparability graphs since they are (bull, house, odd-hole)-free [5].

A natural question is whether 2-subcolorability is NP-complete for the intersection of two classes
in Theorem 1. Except maybe for c2 ∩ c4, that is, planar graphs with girth 5 and maximum degree 4,
all other intersections contain only 2-subcolorable graphs:

• Graphs in c1 and c3 are odd-hole-free and graphs in c2 and c4 are triangle-free. So graphs in
c1 ∩ c2, c1 ∩ c4, c2 ∩ c3, and c3 ∩ c4 are bipartite.

• A graph G in c1 ∩ c3 is (K1,3,K4,K
−
4 , butterfly)-free. So, the neighborhood of every vertex

in G is (3K1,K3, P3, 2K2)-free. Thus, the maximum degree of G is at most 3.

Our result restricts the class c1 to planar graphs and lowers the maximum degree from 5 to 4.

Theorem 2. Let G denote the class of (K4, bull, house, butterfly, gem, odd-hole)-free planar graphs
with maximum degree 4. 2-subcoloring is NP-complete for G.
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2. Main result

We reduce the problem of deciding whether a triangle-free planar graph with maximum degree 4
is (1, 1)-colorable. As already mentioned, this is equivalent to decide whether such a graph is 2-
subcolorable, which is NP-complete by the case of the class c2 in Theorem 1 [2, 3]. From a graph
G in c2, we construct a graph G′ in G. Every vertex v of G is replaced by a copy Hv of the vertex
gadget H depicted in Figure 1. The six vertices labeled ai,j in H are called ports. For every edge uv
of G, we use two copies of the edge gadget E depicted in Figure 2 to connect Hu and Hv as follows:

• We identify the two vertices of degree 1 of one copy of E with the port ap,0 of Hu and the
port aq,1 of Hv , with 0 6 p 6 3 and 0 6 q 6 3.

• We identify the two vertices of degree 1 of the other copy of E with the port ap,1 of Hu and
the port aq,0 of Hv .

It is easy to check that G′ can be made planar. Both E and H have maximum degree 4. The port
corresponding to a0,0 and a0,1 has degree 2 in H and is connected to at most two edge gadgets, thus
its degree in G′ is at most 4. The port corresponding to a1,0 has degree 3 in H and is connected to
at most one edge gadget, thus its degree in G′ is at most 4. This means that every port in G′ has
degree at most 4, so the maximum degree of G′ is 4. Let S denote the set of vertices of G′ whose
neighborhood induces a P3. Then G′ \ S is a bipartite graph such that all the ports of the vertex
gadgets belong to the same part of the bipartition. By adding back S to G′ \ S, we create triangles
and induced C4’s, but every larger created induced cycle has the same length (and parity) as a cycle
in G′ \ S. Hence, G′ is odd-hole free. Thus G′ belongs to G. Since G′ is perfect and K4-free,
G′ is expected to admit a proper 3-coloring: a 3-coloring is given by the partition into the bipartite
subgraph G′ \ S and the independent set S.

a1,0 a1,1 a2,0 a2,1 a3,0
a3,1

a0,1
a0,0

Figure 1: The vertex gadget H .
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x2
y1 z1 z2

Figure 2: The edge gadget E.

Let us show that G′ is 2-subcolorable if and only if G is (1, 1)-colorable. Given a 2-subcoloring
of a graph, we say that a vertex p is saturated if there exists a monochromatic edge pq and is
unsaturated otherwise. We will need the following properties of E:

1. In every 2-subcoloring of E \ {x1, x2, y1, y2}, the vertices z1 and z2 get distinct colors and
are saturated.
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2. In every 2-subcoloring of E \ {x1, x2}, the vertices y1 and y2 get distinct colors and are
unsaturated. This follows from Property (1).

3. There exists a 2-subcoloring of E such that the vertices x1 and x2 get distinct colors and are
unsaturated. Just assign to xi the color distinct from the color of yi.

4. In every 2-subcoloring of E such that the vertices x1 and x2 get the same color, exactly one
vertex in {x1, x2} is saturated. This follows from Property (2).

The use of E and its properties were already one of the main ingredients in the reduction to the class
c1 in Theorem 1 [1].

We color blue the top right vertex in H . Then we greedily color the vertices whose color is forced
by Properties (1), (2), and the absence of monochromatic P3. This gives the partial 2-subcoloring of
H depicted in colors red and blue in Figure 1. The top left part of H enforces that for every port, the
two adjacent vertices above the port get the same color. Notice that all the ports in H get the same
color. This common color is said to be the color of H . The color of Hv corresponds to the color of
v in a (1, 1)-coloring of G. Suppose that one port of H is unsaturated. This forces the color of every
black vertex on the bottom horizontal path in Figure 1. Then every other port is saturated. Thus, in
every 2-subcoloring of H , at most one of the ports is unsaturated.

Suppose that uv is an edge in G. Consider the 2-subcolorings of the subgraph of G′ induced by
Hu, Hv , and the two edge gadgets for the edge uv. If distinct colors are given to Hu and Hv , then
this 2-subcoloring can be extended to the edge gadgets using property (3). Since this extension does
not saturate any of the considered ports of Hu and Hv , Hu can be connected to any number of vertex
gadgets with the color distinct from the color of Hu. If the same color is given to Hu and Hv , then
this 2-subcoloring can be extended using property (4). However, this coloring extension saturates
the unique unsaturated port in both Hu and Hv . Thus, Hu can be connected to at most one vertex
gadget with the same color as Hu.

Given a (1, 1)-coloring of G, we assign the color of every vertex u of G to the ports of Hu. If
there exists a monochromatic edge uv in G, we extend the 2-subcoloring of Hu such that one port
of Hu connecting Hu and Hv is unsaturated. Then we color the edge gadgets according to Property
(4) in the case of a monochromatic edge and according to Property (3) otherwise.

Given a 2-subcoloring of G′, we assign the color of Hu to the vertex u in G. Since Hu can be
connected to at most one vertex gadget with the same color as Hu, the obtained coloring of G is a
(1, 1)-coloring.

This shows that G′ is 2-subcolorable if and only if G is (1, 1)-colorable.
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