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Chapter 1

Preliminaries

1.1 Graphs

A simple graph is a set of vertices and a set of edges. An edge is a subset of the vertex set of
size two. An oriented graph is an orientation of an undirected graph, obtained by assigning
to every edge one of the two possible orientations. An oriented edge is called an arc. If G is a
graph, V (G) denotes its vertex set, E(G) denotes its set of edges (or arcs if G is an oriented
graph). A graph is planar if it can be drawn in the plane without edges (or arcs) crossing.
A plane graph is particular planar embedding of a planar graph. The set of faces of a plane
graph G is denoted F (G). The girth of a graph is the length of its shortest cycle.

Let us now introduce other well-known graph classes. A graph is outerplanar or 1-
outerplanar if it has a planar embedding such that every vertex belongs to the outerface.
For k > 2, a graph is k-outerplanar if it has a planar embedding such that the vertices not
contained in the outerface induce a (k−1)-outerplanar graph. A complete graph on k vertices
is called a clique on k vertices or a k-clique. Partial k-trees are the subgraphs of k-trees, which
are de�ned as follows: the k-clique is a k-tree and every other k-tree G contains a vertex v
whose neighborhood induces a k-clique and is such that G \ v is a k-tree. Finally, a graph is
k-degenerate if all of its non-empty subgraphs contain a vertex of degree at most k. We use
in this thesis the following notations:

Pk denotes the class of planar graphs with girth at least k.

out(k) denotes the class of k-outerplanar graphs.

Sk denotes the class of graphs with maximum degree at most k.

Tk denotes the class of partial k-trees.

Dk denotes the class of k-degenerate graphs.

bip denotes the class of bipartite graphs.

A proper vertex coloring of a simple graph G is an assignment c of colors to the vertices
of G such that c(u) 6= c(v) if the vertices u and v are adjacent in G. A k-coloring is a proper
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4 CHAPTER 1. PRELIMINARIES

vertex coloring using k colors. The chromatic number χ(G) is the smallest integer k such that
G has a k-coloring. A graph is bipartite if it has 2-coloring. In the next sections, we introduce
other types of coloring and the corresponding chromatic numbers, if it is de�ned. For any type
of chromatic number χx of a graph, we also de�ne the (possibly in�nite) chromatic number
χx(C) of a graph class C as the maximum of χx(G) taken over every graph G ∈ C.

The four color Theorem and Grötzsch's Theorem state respectively that planar graphs are
4-colorable and triangle-free planar graphs are 3-colorable.

Theorem 1.1.

1. χ(P3) = 4 [2, 3].

2. χ(P4) = 3 [31].

1.2 Oriented colorings

A homomorphism from an oriented graph G to an oriented graph H is a mapping ϕ from
V (G) to V (H) which preserves the arcs, that is (x, y) ∈ E(G) =⇒ (ϕ(x), ϕ(y)) ∈ E(H). We
say that H is a target graph of G if there exists a homomorphism from G to H. The oriented
chromatic number χo(G) of an oriented graph G is de�ned as the smallest order of a target
graph of G. The oriented chromatic number χo(G) of an undirected graph G is then de�ned
as the maximum oriented chromatic number of its orientations. We will say that a graph G
is H-colorable if H is a target graph of G and the vertices of H will be called colors.

Raspaud and Ne²et°il introduced in [55] the strong oriented chromatic number of an ori-
ented graph G (denoted χs(G)), which de�nition di�ers from that of χo(G) by requiring
that the target graph is an oriented Cayley graph. Various bounds on the (strong) oriented
chromatic number have been found for subclasses of planar graphs:

Theorem 1.2.

1. χo(P3) 6 80 [64].

2. χs(P3) 6 271 [50].

3. χo(P3) > 17 [49].

4. χs(P5) 6 19 [10].

5. χs(P6) 6 11 [10].

6. χs(P8) 6 7 [10].

7. χs(P14) = 5 [10, 56].

8. χo(out(1)) = χs(T2) = 7 [70].
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1.3 Acyclic improper colorings

A vertex coloring c of a graph G is acyclic if for every two distinct colors i and j, the edges
uv such that c(u) = i and c(v) = j induce a forest. A cycle or a path is said to be alternating
if it is properly colored with two colors. Notice that only even cycles can be alternating and
that a coloring is acyclic if and only if there exists no alternating cycle. The acyclic chromatic
number χa(G) is the smallest number of colors needed in an acyclic proper coloring of the
graph G. The next theorem summarizes the known bounds on the acyclic chromatic number
of planar graphs with given girth.

Theorem 1.3.

1. χa(P3) = 5 [8].

2. χa(P4 ∩ bip ∩ D2) = 5 [41].

3. χa(P5) 6 4 [11].

4. χa(P7) 6 3 [11].

Raspaud and Sopena showed that the oriented chromatic number of a graph is bounded
in terms of its acyclic chromatic number:

Proposition 1.1. [64] For every graph G such that χa(G) = k, χo(G) 6 k2k−1.

Kostochka, Sopena, and Zhu then proved that the acyclic chromatic number of a graph is
bounded in terms of its oriented chromatic number :

Proposition 1.2. [42] For every graph G such that χo(G) = k > 4, χa(G) 6 k2 +
k3+dlog2 log2 ke.

The result of Borodin that planar graphs are acyclically 5-colorable (i.e. χa(P3) = 5) thus
implies that the oriented chromatic number of a planar graph is at most 80 (i.e. χo(P3) 6 80),
which is yet the best known upper bound. In order to get a better upper bound on χo(P3),
if possible, it is interesting to study the tightness of Proposition 1.1, in particular for k = 5.
The previously best known lower bound on the maximum value of χo(G) in terms of χa(G)
was given in Vignal's thesis [77] with a family of graphs Gk, k > 1 such that χa(Gk) = k and
χo(Gk) = 2k − 1.

Improper colorings are de�ned as follows: A graph G belongs to the class C0 ◦ · · · ◦ Ck−1
if and only if G has a k-coloring such that the ith color class induces a graph in Ci, for
0 6 i 6 k− 1. Boiron, Sopena, and Vignal introduced the notion of acyclic improper coloring
[7]. Let C0, . . . , Ck−1 be graph classes. A graph G belongs to the class C0 � · · · � Ck−1 if and
only if G has an acyclic k-coloring such that the ith color class induces a graph in Ci, for
0 6 i 6 k− 1. For brevity, if C0 = · · · = Ck−1 = C we will denote by Ck the class C0 ◦ · · · ◦ Ck−1
and by C(k) the class C0 � · · · � Ck−1.

The main motivation in the study of acyclic improper colorings is the following general-
ization of Proposition 1.1.

Proposition 1.3. [7] Let C0, . . . , Ck−1 be graph classes such that χo(Ci) = ni, for 0 6 i < k.
Every graph G ∈ C0 � · · · � Ck−1 satis�es χo(G) 6 2k−1

∑i<k
i=0 ni.
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The bound of Proposition 1.3 is shown to be tight for k > 3 under mild assumptions in
Section 2.1.

We know from [69, 71] that χo(T3) = χo(T3 ∩ P3) = 16. Thus, Boiron et al. [7] pointed
out that:

1. P3 ⊂ T3 � S0 � S0 would imply that χo(P3) 6 72,

2. P3 ⊂ T3 � S1 � S0 would imply that χo(P3) 6 76.

We will see that the second point is meaningless. Indeed, we have that P3 ⊂ T3�S1�S0 ⇐⇒
P3 ⊂ T3 � S0 � S0 from a general result on acyclic improper colorings of planar graphs given
in Section 2.2.

An acyclic improper coloring is interesting with respect to Proposition 1.3 if every color
class has bounded oriented chromatic number. That is why we often use as color classes the
graph classes S0, S1, and D1: We have that χo(S0) = 1, χo(S1) = 2, and χo(D1) = 3.

1.4 List colorings

For any type x of vertex coloring with a notion of chromatic number, we can de�ne a list-version
of x coloring. A graph G is x L-colorable if for a given list assignment L = {L(v) : v ∈ V (G)}
there exists a coloring c of G such that c(v) ∈ L(v) for every vertex v ∈ V (G) and c is an x

coloring of G. If G is x L-colorable for every list assignment with |L(v)| > k for all v ∈ V (G),
then G is said x k-choosable. The parameter χlx(G) is the smallest integer k such that G is x
L-colorable.

For any type of chromatic number χx of a graph, we also de�ne the (possibly in�nite)
chromatic number χx(C) of a graph class C as the maximum of χx(G) taken over every graph
G ∈ C.

Thomassen proved that every planar graph is properly 5-choosable [74] and Voigt proved
that there exist planar graphs which are not properly 4-choosable [79], thus χl(P3) = 5.
Borodin et al. studied the acyclic choosability of planar graphs and obtained χla(P3) 6 7
[9], they also conjectured that every planar graph is acyclically 5-choosable. The following
Proposition provides two examples of coloring results that easily extend to their list-version.

Proposition 1.4.

χla(Tk) = k + 1.

χl(Dk) = k + 1.

In Section 2.6, we investigate the acyclic choosability of some sparse graphs.

1.5 Edge colorings

Many graph parameters in the litterature are de�ned as the minimum size of a partition of
the edges of the graph such that each part belongs to some graph class C. The most common
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is the chromatic index χ′(G), in this case C is the class of graphs with maximum degree one.
Vizing [78] proved that χ′(G) either equals ∆(G) or ∆(G) + 1. Deciding whether χ′(G) = 3
is shown to be NP-complete for general graphs in [36]. The arboricity a(G) is another well
studied parameter, for which C is the class of forests. In [54], Nash-Williams proved that:

a(G) = max
H⊆G

⌈ |EH |
|VH | − 1

⌉
(1.1)

with the maximum being over all the subgraphs of G. Even with this nice formula, the
polynomial algorithm computing the arboricity of a graph is not trivial [35]. Other similar
parameters have been studied. A star is a tree of diameter at most two. A caterpillar is a
tree whose non-leaf vertices form a path. For the star arboricity sa(G) (resp. linear arboricity
la(G), caterpillar arboricity ca(G)), the corresponding class C is the class of star forests (resp.
linear forests, caterpillar forests). Since paths are caterpillars and since stars are caterpillars
which are trees, we have the following two inequalities for any graph G.

la(G) > ca(G) (1.2)

sa(G) > ca(G) > a(G) (1.3)

Since trees are easily partitionable into two forests of stars we have that:

2× a(G) > sa(G) (1.4)

Hakimi et al. [34] showed the following inequality.

χa(G) > sa(G) (1.5)

Other interesting graph parameters include the track number t(G) [33, 43] and the sub-
chromatic index χ′sub(G) [23], for which C is respectively the class of interval graphs and the
class of forests of stars and triangles. Notice that the class of triangle-free interval graphs is
equivalent to the class of caterpillar forests. Thus, if G is triangle-free, then t(G) = ca(G) and
χ′sub(G) = sa(G).

A T -free forest is a forest without subgraphs isomorphic to T . For example, the Pn-free
forests and the K1,n-free forests correspond to, respectively, the forests with diameter at most
n−2 and to the forests with degree at most n−1. We de�ne the T -free arboricity T -fa(G) of
a graph G as the minimum number of T -free forests needed to cover the edges of G. Using this
terminology, we can rede�ne some of the parameters we introduced. The chromatic index, the
star arboricity, the linear arboricity, and the caterpillar arboricity correspond to, respectively,
the P3-free arboricity, the P4-free arboricity, theK1,3-free arboricity, and the S3-free arboricity.

n

Figure 1.1: The path P4 and the tree Sn.

If a tree T1 is a subtree of a tree T2, then T1-fa(G) > T2-fa(G). So, the poset of trees
produces a poset of arboricities. In this thesis, we focus on the chain P4 ⊂ S2 ⊂ S3 ⊂ Sn, for
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n > 4. We study the maximum value of these parameters, taken over the graphs of a class
C, T -fa(C) = max{T -fa(G), G ∈ C}. We mainly consider the classes of planar graphs with
girth at least g (i.e. Pg). Since Pg+1 ⊂ Pg, we have T -fa(Pg) > T -fa(Pg+1) for any tree T .
For a graph class C, we de�ne U -fa(C) as the minimum value of T -fa(C), taken over every
�nite tree T . Thus, for every tree T and every class C, we have that:

T -fa(C) > U -fa(C) > a(C) (1.6)

Theorem 3.2 shows in particular that P4 and T2 are examples of graph classes C such that the
strict inequality U -fa(C) > a(C) holds. By the above relations, for any class C, the parameters
listed in Table 3.4 are ordered as follows:

χa(C) > P4-fa(C) > S2-fa(C) > S3-fa(C) > S4-fa(C) > U -fa(C) > a(C) (1.7)

1.6 Forbidden con�gurations and maximum average degree

Let us explain in general the method we use to prove coloring results. Such a result has the
form �every graph G ∈ C has a coloring c�. We de�ne a partial order ≺ on the set of graphs
that extends the subgraph partial order. Then we consider a potential counter-example G ∈ C
which is not colorable and is minimal with this property according to ≺. This means that if
H ∈ C, H 6= G, and H ≺ G, then H is colorable. Now, we provide a set S of con�gurations
that G cannot contain due to its minimality property. To show that a con�guration C ∈ S is
forbidden, we suppose that G contains C and proceed as follows:

1. We �nd a suitable graph H such that H ∈ C, H 6= G, and H ≺ G.
2. We show that any coloring of H induces a coloring of a proper subgraph G′ of G that

can be extended in a coloring of G.

This is a contradiction because H is supposed to be colorable but not G. Thus G cannot
contain the forbidden con�guration C. To �nish the proof, we show that no counter-example
exists because every graph in C contains at least one con�guration in S.

There are several ways to do this last step, i.e. the unavoidability of S, most often using
a discharging method. We now present the discharging method used by Borodin et al. [10] to
obtain Theorems 1.2.(4) to 1.2.(7). It uses the following graph parameter.

De�nition 1.1. Let G be a graph, the maximum average degree of G, denoted by mad(G), is:

mad(G) = max{2|E(H)|/|V (H)|, H ⊆ G}

We assign to every vertex v of the counter-example G an initial charge equal to its degree
d(v) and de�ne a discharging procedure that preserves the total charge. Then, we show that
if the discharging procedure is applied to a graph K avoiding S, then the �nal charge d∗(v)
of every vertex v ∈ V (K) satis�es d∗(v) > q. We thus have

mad(K) >
2|E(K)|
|V (K)| =

∑
v∈V (K) d(v)

|V (K)| =

∑
v∈V (K) d

∗(v)

|V (K)| >
q|V (K)|
|V (K)| = q.

This implies a statement of the form �every graph G such that mad(G) < q has a coloring
c�. We can get a corollary of such a statement for planar graphs thanks to the following well
known observation:
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Observation 1.1. G ∈ Pg =⇒ mad(G) < 2g
g−2 .

Proof. If a planar graph G has girth g, then |F (G)| 6 2|E(G)|
g . By Euler's formula we get that

mad(G) = 2|E(H)|
|V (H)| 6

2g|E(H)|
2g+(g−2)|E(H)| <

2g
g−2 , for some graph H ⊆ G.

Let us �nish this part with some conventions. We call respectively k-vertex, >k-vertex,
and 6k-vertex a vertex of degree k, > k, and 6 k. We also de�ne k-neighbor, >k-neighbor,
and 6k-neighbor in the same way. In a �gure representing a forbidden con�guration, all the
neighbors of �white� vertices are drawn, whereas �black� vertices may have other neighbors in
the graph. Two or more black vertices may coincide in a single vertex, provided they do not
share a common white neighbor.
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Chapter 2

Vertex colorings

This chapter is devoted to various positive and negative results in graph coloring. We consider
oriented coloring and acyclic coloring, which are closely related, and two variants of the latter,
namely acyclic improper colorings and acyclic list coloring.

2.1 Acyclic improper coloring versus oriented coloring

The following theorem shows that the upper bound of Proposition 1.3 is best possible in many
cases.

Theorem 2.1. Let k > 3. Let C0, . . . , Ck−1 be hereditary graph classes closed under disjoint
union, and such that χo(Ci) = ni. Then χo(C0 � · · · � Ck−1) = 2k−1

∑i<k
i=0 ni.

Proof. We construct an oriented graph G ∈ C0 � · · · � Ck−1 such that χo(G) = 2k−1
∑i<k

i=0 ni.
Let u1, u2, u3 be a directed 2-path with arcs u1u2 and u2u3, or u3u2 and u2u1. We say that u1
and u3 are the endpoints of the directed 2-path. By de�nition, the endpoints of the directed
2-path get distinct colors in any oriented coloring. Since χo(Ci) = ni, there exists a witness
oriented graph W i such that χo(W i) = ni. The graph Gi contains k− 1 independent vertices
vij , 0 6 j < k − 1 and 2k−1 disjoint copies W i

l , 0 6 l < 2k−1 of W i. We consider the binary

representation l =
∑n<k−1

n=0 2nxn(l) of l. For every two vertices vij and u
i
l ∈ W i

l , we put the
arc viju

i
l (resp. uilv

i
j) if xj(l) = 1 (resp. xj(l) = 0). If l 6= l′, their binary representations

di�er at the nth digit, thus uil ∈ W i
l and uil′ ∈ W i

l′ are the endpoints of a directed 2-path
uil, v

i
n, u

i
l′ . So the same color cannot be used in distinct copies of W i, which means that at

least 2k−1ni colors are needed to color the copies of W i in any oriented coloring of Gi. To
show that Gi ∈ C0 � · · · � Ck−1, we acyclically color Gi as follows. The k − 1 vertices vij
get pairwise distinct colors in {0, . . . , k − 1} \ {i} and every vertex uil get color i (that is
why we need the "closed under disjoint union" assumption). Let Si denote the set of colors
in some oriented coloring of the vertices uil of Gi. Now we take one copy of each graph Gi
and �nish the construction of G. For every two vertices uil ∈ W i

l and ui
′
l′ ∈ W i′

l′ , such that
i 6= i′, we add a new vertex l and create a directed 2-path uil, l, u

i′
l′ . So, for i 6= i′, we have

Si∩Si′ = ∅, which means that at least 2k−1
∑i<k

i=0 ni colors are needed in any oriented coloring
of G. To obtain an acyclic coloring of G, the new vertex l adjacent to uil and u

i′
l′ gets a color

in {0, . . . , k − 1} \ {i, i′}, which is non-empty if k > 3.

11
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Notice that Theorem 2.1 cannot be extended to the case k = 2 in general. By setting
k = 2 and C0 = C1 = S0, we obtain the class of forests S(2)0 = D1. Proposition 1.3 provides the

bound χo(S(2)0 ) 6 4. This is not a tight bound, since oriented forests have a homomorphism

to the oriented triangle, and thus χo(S(2)0 ) = 3.

The proof of Theorem 2.1 is constructive, but it does not help for the problem of deter-
mining χo(P3). Indeed, the graph corresponding to the proper 5-acyclic coloring (i.e. k = 5
and C0 = · · · = C4 = S0) is highly non-planar (it contains e.g. K32,48 as a minor).

2.2 Acyclic improper colorings of planar graphs

In this section, we study which acyclic improper colorings may be able to color every planar
graph. The next result implies that in such colorings, a �too small� class is not more useful
than an independent set.

Theorem 2.2. Let 2 6 k 6 4. Suppose that χo(Ck−1) 6 14,
then P3 ⊂ C0 � · · · � Ck−2 � Ck−1 ⇐⇒ P3 ⊂ C0 � · · · � Ck−2 � S0.

=⇒

w

v

Figure 2.1: The graph we add to an arc.

Proof. Let G be an oriented graph. The oriented graph f(G) is obtained from G by adding
to every arc 12 vertices as described in Figure 2.1. We also de�ne fn(G) such that f0(G) =
G and fn+1(G) = f(fn(G)). Notice that if G is planar, then f(G) is also planar. We
consider the family Gk from [77] mentioned in Section 1.1, and in particular the oriented
planar graph G4 whose oriented chromatic number is 15. It is easy to check that G4 is
a subgraph of f2(K2). Let us consider now any acyclic improper k-coloring c of fn(K2)
such that c(v) = c(w) = 0. To avoid an alternating cycle vxwy for some vertices x and y,
fk(K2) must contain a monochromatic copy of f1(K2) colored 0. By induction, fi×k(K2)
must contain a monochromatic copy of fi(K2) for i > 1. The �⇐=� implication of Theorem
2.2 holds by de�nition. We now prove the �=⇒� implication by contradiction. Suppose
there exists an oriented planar witness graph W such that W ∈ C0 � · · · � Ck−2 � Ck−1 and
W 6∈ C0�· · ·�Ck−2�S0. This means that any C0�· · ·�Ck−2�Ck−1-coloring ofW contains a
monochromatic edge vw colored k−1. So, by previous discussions, the graph f8(W ) contains a
monochromatic copy of G4 colored k−1, which contradicts the requirement χo(Ck−1) 6 14.

Theorem 2.2 allows us to study which statement of the form �every planar graph belongs
to C0�· · ·�Ck−1� may improve the upper bound χo(P3) 6 80. If k = 4, the "least" candidate
class would be C0 � S0 � S0 � S0 with χo(C0) = 15, but the corresponding bound is too large:
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24−1(15+1+1+1) = 144 > 80. If k = 3, there must be exactly one improper color, otherwise
the least candidate, C0 � C1 � S0 with χo(C0) = χo(C1) = 15, provides a too large bound:
23−1(15 + 15 + 1) = 124 > 80.
The constant 14 in Theorem 2.2 can be improved to 15 using ideas in [71].
We have not been able to get similar results for planar graphs with larger girth.

2.3 Acyclic improper colorings and k-outerplanar graphs

A theorem of Boiron et al. [7] states that some planar graphs have no acyclic T (2)
3 -coloring,

actually they even showed that out(3) 6⊂ D(2)
3 . This result on acyclic improper colorings of

planar graphs still holds with larger color classes.

Theorem 2.3. out(3) 6⊂ F1 �F2, where for 1 6 i 6 2, Fi = D3, T4, or out(2).

Figure 2.2: The graph I (the icosahedron) and the graph I−.

Let I denote the icosahedron graph depicted in Figure 2.2 (left). The next lemma considers
improper acyclic 2-colorings of I without restriction on the color classes. Let G denote the
class of all simple graphs.

Lemma 2.1. Up to symetries, there are only two types of G(2)-coloring of the icosahedron:

(i) At most one vertex is colored 1 and all others are colored 2.

(ii) Two vertices at distance 3 are colored 1 and all others are colored 2.

gem S3 W5 A

Figure 2.3: Small graphs.
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Proof. We can assume w.l.o.g. that at most 6 vertices are colored 1. Suppose �rst that two
adjacent vertices are colored 1. They have two common neighbors, so at least one of them
must be colored 1 to avoid an alternating C4. Thus we have a 1-monochromatic K3. Three
vertices outside of this K3 are adjacent to two vertices of the K3, so at least one of them must
be colored 1 to avoid an alternating C6. Thus we have a 1-monochromatic K−4 . Four vertices
outside of this K−4 are adjacent to two vertices of the K−4 , and at least one of them must be
colored 1 to avoid an alternating C8. Thus we have a 1-monochromatic gem (see Figure 2.3).
Four vertices outside of this gem are adjacent to at least two vertices of the gem, and at least
one of them must be colored 1 to avoid an alternating C8. Thus we have a 1-monochromatic
subgraph S, which is either S3, W5, or A) (see Figure 2.3). Since |S| = 6, I \ S must be
2-monochromatic. We easily verify that for each possible S there exists an alternating cycle
in I. Suppose now that two vertices at distance two are colored 1. They have two common
neighbors, and at least one of them must be colored 1 to avoid an alternating C4. Thus we
have a 1-monochromatic P3 and we fall in the previous case.

Let us denote by I− the graph obtained by deleting one vertex from I (see Figure 2.2
(right)).

Lemma 2.2. I− is neither 3-degenerate, 2-outerplanar, nor a partial 4-tree.

Proof. Since the minimum degree of I− is four, it is not 3-degenerate. The graph I− is 3-
connected, so it has a unique embedding on the sphere. Notice that I− contains four distinct
non-equivalent types of faces: one of degree �ve and three types of triangles. For every face
F , the graph obtained by removing the vertices incident to F is not outerplanar, thus I− is
not 2-outerplanar. Finally, to prove that I− is not a partial 4-tree, we show that we cannot
obtain the empty graph from I− by repeatedly deleting a 64-vertex and placing a clique on
its neighbors [67]. Any such vertex elimination ordering must start with one of the 4-vertices
of the outerface of I−, which all play the same role. Deleting a 4-vertex of I− and placing
a clique on its neighbors gives a graph J . Now J has two 64-vertices playing the same role.
Deleting one of them and placing a clique on its neighbors gives a graph K. Since K has
minimum degree �ve, I− has no elimination ordering and thus is not a partial 4-tree.

Lemmas 2.1 and 2.2 proves that the only improper acyclic colorings of I with the color
classes of Theorem 2.3 are of type (ii).

Remark 2.1. If I has a coloring of type (ii), then for every 2-monochromatic triangle t, there
is a vertex colored 1 adjacent to two vertices of t.

Consider now the graph G depicted in Fig 2.4 (left) obtained from K4 by identifying each
of the 3 marked faces with the outerface of a copy of an icosahedron.

Lemma 2.3. If G is acyclically 2-colored such that every copy of I has a coloring of type (ii),
then the outer-face is monochromatic and there is an alternating path beetwen a0 and a1.

Proof. Suppose the �rst part of statement is false and assume that c(a0) = c(a1) = 2 and
c(a2) = 1 (see Fig 2.4 (middle)). We must have c(m) = 2 to avoid an alternating cycle
a2, a0,m, a1. By remark 2.1, one ui must be colored 1, and this creates an alternating C4, a
contradiction. Now we check the last part of statement (see Fig 2.4 (right)). By the previous



2.3. ACYCLIC IMPROPER COLORINGS AND K-OUTERPLANAR GRAPHS 15

w0

v0
2

a1a0

a2 2

v2 w2

v1

u0
2

2m

2 2

2

22

a0

m

u0 u1

u2

a2 1

a2

∗ ∗

∗
a0 a1

w1
2

1
u12u2

m

a1

Figure 2.4: The graph G considered in Lemma 2.3.

discussion, the vertices ai are colored 2, and c(m) = c(u2) = 2 to avoid an alternating path
beetwen a0 and a1. By remark 2.1, one of the ui's must be colored 1 and we suppose w.l.o.g.
that u1 = 1. This forces c(w1) = 2 to avoid an alternating C4 and u0 = v0 = 2 to avoid an
alternating path beetwen a0 and a1. By remark 2.1, either v1 or v2 (resp. w1 or w0) must be
colored 1. In these 4 cases we have either an alternating cycle or an alternating path beetwen
a0 and a1.

To �nish the proof of Theorem 2.3, we take two copies G′ and G′′ of G and we identify a′0
and a′′0 (resp. a′1 and a′′1) to obtain the 3-outerplanar graph G∗. By the previous lemmas, if
G′ and G′′ are both colored as in Lemma 2.3, then there exist one alternating path beetwen
a′0 and a′1 in G′ and another one in G′′, which create an alternating cycle in G∗.

We now consider acyclic improper colorings of partial k-trees and show that the equality
χa(Tk) = k + 1 is best possible in this context.

Theorem 2.4. For every k ∈ N∗ and for every G ∈ Tk, Tk 6⊂ (G-free)(k).

Proof. The case k = 1 is obvious, so assume k > 2 is a �xed integer in the following. Let us
call good a clique c such that 2 6 |c| 6 k. Now we de�ne the graphs Uk,n, n > 1, such that:

1. Uk,1 = K2.

2. For each good clique c of Uk,n, we add a new vertex adjacent to every vertex of c to
obtain Uk,n+1.

Clearly, every graph in Tk is a subgraph of Uk,n for some n. To �nish the proof, we will show
that in any improper acyclic k-coloring, Uk,n×k contains a monochromatic copy of Uk,n. For
n = 1, we have that Uk,k contains a clique Kk+1, and thus contains a monochromatic K2.
Now assume that Uk,n×k contains a monochromatic copy of Uk,n. For every good clique c of
that copy there are k new vertices adjacent to c in Uk,n×k+k, and one of these k new vertices
must get the same color as c. This implies that Uk,(n+1)×k contains a monochromatic copy of
Uk,n+1.

Finally, we obtain the following result on acyclic improper colorings of k-outerplanar
graphs.
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Theorem 2.5. out(k + 1) ⊂ S0 � S0 � S0 � out(k)

Proof. We show that there always exists a coloring of a (k+1)-outerplanar graph such that any
vertex of the outerface gets one of the �rst three colors and all other vertices are colored with
the last color. Let us characterize a counter-example T for the speci�ed coloring with minimal
number of vertices. The special type of coloration considered allows us to assume w.l.o.g.
that the non outer-vertices of T induce an indepedent set, as a potential alternating cycle
contains no monochromatic edge. We can also add a maximal number of edges connecting
outer-vertices of T inside the outerface. This way, the neighborhood of any non outer-vertex
induces a single vertex, aK2, or a cycle of the outerface. The outerface cannot contain a vertex
cut of size two. These two vertices would be adjacent, therefore they would get di�erent colors
in a valid coloring of "one part" of T . We could extend this coloring to the whole graph, as a
potential minimal alternating cycle cannot lie on both parts. The only remaining possibility
is that T is a wheel, and a wheel has the speci�ed coloring.

2.4 Paley tournaments and Sk,n properties

For a prime power q ≡ 3 (mod 4), the vertices of the Paley tournament QRq are the elements
of the �nite �eld Fq and (i, j) is an arc in QRq if and only if j − i is a non-zero quadratic
residue of Fq. The condition q ≡ 3 (mod 4) ensures that for every i 6= 0, i is a quadratic
residue if and only if −i is a quadratic non-residue. Paley tournaments are oriented Cayley
graphs with addition in Fq as operation and non-zero quadratic residues as generators. An
interesting property of Paley tournaments is the arc-transitivity. For any arc (i, j) ∈ E(QRq),
the mapping x→ x−i

j−i is an automorphism of QRq which maps (i, j) to (0, 1). So every arc in

QRq plays the same role. If K is an oriented graph, let KR be the graph obtain by reversing
every arc in K. The tournament QRq is self-reverse in the sense that is QRq automorphic to
QRRq by the mapping x→ −x. Notice that q = pr ≡ 3 (mod 4) if and only if p ≡ 3 (mod 4)
and r ≡ 1 (mod 2). An orientation vector of size k is a sequence α = {α1, α2, . . . , αk} in
{0, 1}k. let G be an oriented graph and X = (x1, x2, . . . , xk) be a sequence of pairwise distinct
vertices of G. A vertex y of G is said to be an α-successor of X if for every i, 1 6 i 6 k, we
have αi = 1 =⇒ (xi, y) ∈ E(G) and αi = 0 =⇒ (y, xi) ∈ E(G). The graph G satis�es property
Sk,n if for every sequence X = (s1, s2, . . . , sk) of k pairwise distinct vertices of G, and for every
orientation vector α of size k, there exist at least n vertices in V (G) which are α-successors
of X. The next lemma provides some useful Sk,n properties of Paley tournaments.

Lemma 2.4.

1. The Paley tournament QRq satis�es S1,b q2c.

2. The Paley tournament QRq satis�es S2,b q4c.

3. The Paley tournament QR27 satis�es S3,2.

4. The Paley tournament QR59 satis�es S3,5.

Proof. We easily check that QRq satis�es property S1,b q2c, which simply means that every

vertex has
⌊ q
2

⌋
successors and

⌊ q
2

⌋
predecessors. Proposition 1 in [10] means that QRq also
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satis�es property S2,b q4c. We now prove the two statements of the form �QRq satis�es S3,n�.

Note that the order of the vertices in a sequence does not matter. Thus, since any oriented
triangle contains a directed 2-path, we only have to consider sequences (s1, s2, s3) in which
(s1, s2) and (s2, s3) are arcs of QRq. Now, by the arc-transitivity of QRq, we only need to check
the property on sequences of the form (0, 1, v) such that v ∈ F\{0, 1} and v−1 is a quadratic
residue of F. Let us write 〈v1, v2, v3〉 if and only if v1 6= v2 and there are automorphisms of QRq
mapping (0, 1, v1) to (v2, 0, 1) and (1, v3, 0). We easily see that if 〈v1, v2, v3〉 and (0, 1, v1) is
checked, then (0, 1, v2) and (0, 1, v3) need no check. In the case of QR27, we have

〈
x5, x19, x15

〉
and

〈
x7, x21, x11

〉
(see Figure 2.5 for the elements of F27). For every remaining sequence and

for every orientation vector, two α-successors are listed in Figure 2.6. In the case of QR59, we
have 〈2, 58, 30〉, 〈6, 47, 50〉, 〈8, 42, 23〉, 〈10, 13, 54〉, and 〈18, 52, 37〉 (see Figure 2.7 for quadratic
residues). For every remaining sequence and for every orientation vector, �ve α-successors are
listed in Figure 2.8.

element (mod 3, x3 − x+ 1) element (mod 3, x3 − x+ 1)

0 0
1 1 x13 -1
x x x14 −x
x2 x2 x15 −x2
x3 −1 + x x16 1− x
x4 −x+ x2 x17 x− x2
x5 −1 + x− x2 x18 1− x+ x2

x6 1 + x+ x2 x19 −1− x− x2
x7 −1− x+ x2 x20 1 + x− x2
x8 −1− x2 x21 1 + x2

x9 1 + x x22 −1− x
x10 x+ x2 x23 −x− x2
x11 −1 + x+ x2 x24 1− x− x2
x12 −1 + x2 x25 1− x2

Figure 2.5: Multiplicative and additive representations of the elements of F27.

(0,1,v) {0,0,0} {0,0,1} {0,1,0} {0,1,1} {1,0,0} {1,0,1} {1,1,0} {1,1,1}
(0,1,x2) x, x3 x9, x17 x5, x11 x7, x13 x10, x12 x4, x8 x6, x14 x16, x18

(0,1,x5) x, x23 x3, x9 x7, x11 x13, x15 x10, x12 x4, x8 x16, x18 x2, x6

(0,1,x6) x3, x9 x, x17 x5, x7 x11, x13 x4, x10 x8, x12 x14, x16 x2, x22

(0,1,x7) x3, x9 x, x17 x13, x21 x5, x11 x12, x20 x4, x8 x2, x14 x6, x16

(0,1,x13) x, x3 x17, x23 x5, x15 x7, x11 x8, x20 x4, x10 x2, x6 x14, x16

(0,1,x14) x17, x23 x, x3 x5, x11 x7, x19 x8, x12 x4, x10 x18, x22 x2, x6

(0,1,x16) x17, x27 x, x3 x7, x13 x5, x11 x10, x20 x4, x8 x2, x14 x6, x18

(0,1,x18) x, x9 x3, x23 x15, x19 x5, x7 x4, x12 x8, x10 x2, x16 x6, x14

(0,1,x22) x23, x27 x, x3 x5, x13 x7, x11 x4, x8 x10, x12 x6, x16 x2, x14

Figure 2.6: The table of α-successors in QR27.
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0 1 3 4 5 7 9 12 15 16 17 19 20 21 22 25 26 27 28 29 35 36 41 45 46 48 49 51 53 57

Figure 2.7: The quadratic residues modulo 59.

(0,1,v) {0,0,0} {0,0,1} {0,1,0} {0,1,1}
{1,0,0} {1,0,1} {1,1,0} {1,1,1}

(0,1,2) 32.33.34.39.40 11.14.24.31.38 8.10.13.42.52 6.18.23.30.37
12.15.25.35.41 3.7.9.19.48 4.16.20.26.36 5.17.21.22.27

(0,1,4) 14.34.38.43.44 11.24.31.32.33 6.10.18.37.42 2.8.13.23.30
3.12.15.35.41 7.9.19.25.45 17.22.27.28.36 5.16.20.21.26

(0,1,5) 11.38.39.43.44 14.24.31.32.33 2.13.18.23.37 6.8.10.30.50
7.15.19.35.45 3.9.12.25.41 4.16.28.29.36 17.20.21.22.26

(0,1,6) 14.24.38.39.40 11.31.32.33.34 2.8.30.37.50 10.13.18.23.42
3.12.19.45.48 7.9.15.25.35 5.16.17.20.29 4.21.22.26.27

(0,1,8) 14.31.32.38.39 11.24.33.34.43 10.18.42.47.50 2.6.13.23.30
3.7.19.41.45 9.12.15.25.35 4.5.16.21.22 17.20.27.28.29

(0,1,10) 24.33.34.40.43 11.14.31.32.38 6.18.23.42.47 2.8.13.30.37
3.7.9.12.41 15.19.25.35.45 5.16.20.21.28 4.17.22.26.27

(0,1,16) 11.24.34.39.40 14.31.32.33.38 13.18.30.47.50 2.6.8.10.23
7.9.12.15.48 3.19.25.35.41 4.22.26.27.29 5.17.20.21.28

(0,1,17) 14.31.40.55.56 11.24.32.33.34 2.8.10.13.23 6.18.37.42.52
12.19.25.35.41 3.7.9.15.45 5.16.27.28.49 4.20.21.22.26

(0,1,18) 11.14.24.31.32 33.34.38.39.40 2.6.13.42.50 8.10.23.30.37
3.9.15.41.48 7.12.19.25.35 17.20.26.28.29 4.5.16.21.22

(0,1,20) 11.31.33.34.38 14.24.32.39.40 8.13.30.50.52 2.6.10.18.23
3.15.19.51.53 7.9.12.25.35 4.5.16.17.22 21.27.29.36.46

(0,1,21) 14.31.32.34.39 11.24.33.38.40 2.6.18.23.52 8.10.13.30.37
9.12.35.45.51 3.7.15.19.25 4.5.16.17.20 22.26.28.36.46

(0,1,22) 24.32.33.40.55 11.14.31.34.38 2.6.10.13.18 8.23.37.42.47
3.7.15.19.35 9.12.25.41.48 5.17.21.28.36 4.16.20.26.27

(0,1,26) 11.14.32.34.39 24.31.33.38.43 6.10.23.37.50 2.8.13.18.30
7.9.19.25.57 3.12.15.35.41 4.5.17.21.22 16.20.27.29.46

(0,1,27) 11.24.33.38.40 14.31.32.34.39 2.6.8.10.18 13.30.42.47.52
7.12.15.35.41 3.9.19.25.48 5.20.22.26.29 4.16.17.21.28

(0,1,28) 11.24.34.38.39 14.31.32.33.40 2.6.8.13.23 10.18.37.47.50
3.7.9.12.19 15.35.45.48.53 16.21.27.36.46 4.5.17.20.22

(0,1,29) 14.24.31.39.40 11.32.33.34.38 2.8.10.13.37 6.18.23.30.50
3.7.9.12.25 15.19.41.45.48 4.17.20.22.26 5.16.21.27.36

(0,1,36) 11.14.24.31.32 34.39.40.43.55 8.10.42.47.50 2.6.13.18.23
7.9.15.19.35 3.12.25.41.45 16.17.20.21.27 4.5.22.26.28

(0,1,46) 11.24.31.34.39 14.32.33.38.40 10.18.30.37.42 2.6.8.13.23
19.25.41.45.48 3.7.9.12.15 5.17.20.21.26 4.16.22.28.36

(0,1,49) 14.24.32.33.34 11.31.38.39.43 8.13.23.30.37 2.6.10.18.47
3.45.48.51.57 7.9.12.15.19 4.20.21.22.27 5.16.17.26.36

(0,1,50) 14.24.31.33.34 11.32.39.40.44 2.23.30.47.52 6.8.10.13.18
9.15.25.35.41 3.7.12.19.48 4.5.21.22.28 16.17.20.26.27

Figure 2.8: The table of α-successors in QR59.
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2.5 Oriented colorings of triangle-free planar graphs

In this section, we focus on triangle-free planar graphs and prove the following theorem:

Theorem 2.6.

1. χo(P4 ∩ bip ∩ out(2) ∩ D2) > 11.

2. χs(P4) 6 59.

3. χs(P4 ∩ out(2)) 6 27.

2.5.1 The lower bound

b

a

Figure 2.9: How to force a good pair in a target graph.

Let N+(x) and N−(x) be respectively the out-neighborhood and in-neighborhood of the
vertex x. We say that a pair (x, y) of distinct vertices forms a good pair if the sets N+(x) ∩
N+(y), N+(x) ∩ N−(y), N−(x) ∩ N+(y) and N−(x) ∩ N−(y) are all of size at least 2. A
triplet (x, y, z) is a good triplet if (x, y), (y, z) and (z, x) are all good pairs. Consider the
graph G in Figure 2.9. We remark that every two distinct >3-vertices are joined by an arc
or a directed 2-path. Therefore every two >3-vertices must be assigned distinct colors in any
oriented coloring of G. This provides a simple proof that χo(G) = 10. It also implies that the
colors of a and b form a good pair in any target graph of G. We now construct the graph G∗

by taking 3 copies G1, G2, G3 of G and identifying a1 and b2, a2 and b3, a3 and b1. Similarly,
the colors of a1, a2, a3 form a good triplet in any target graph of G∗. A computer check
shows that no tournament of order 10 contains a good triplet. We can see that G∗ has a
homomorphism to QR11. First, we give pairwise distinct colors to a1, a2, a3. Notice that
QR11 satis�es S2,2 by Lemma 2.4.(2). Thus, in each copy of G, we can give pairwise distinct
colors to the eight 3-vertices. Then we can easily color the 2-vertices. So G∗ is a 2-degenerate
2-outerplanar bipartite graph such that χo(G∗) = 11, which proves Theorem 2.6.(1).
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2.5.2 Triangle-free planar graphs

We use the method of reducible con�gurations to show that every triangle-free planar graph
is QR59-colorable. We de�ne the partial order ≺ for the set of all graphs. Let n3(G) be the
number of >3-vertices in G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if
at least one of the following conditions hold:

• G1 is a proper subgraph of G2.

• n3(G1) < n3(G2).

Note that this partial order is well-de�ned, since if G1 is a proper subgraph of G2, then
n3(G1) 6 n3(G2). So ≺ is a partial linear extension of the subgraph poset.

Lemma 2.5. Let QRq be a Paley tournament satisfying S3,n for some n > 1. Let G be a
graph having no homomorphism to QRq which is minimal with this property according to ≺.

1. The graph G is 2-connected and its cut sets of size two consist of non-adjacent vertices.

2. For every 2-cut {u, v} of G, the graph G \ {u, v} has exactly two connected components,
and one of them is a single vertex.

3. The graph G contains no vertex adjacent to at most (n− 1) 2-vertices and at most three
other vertices.

4. The graph G contains no 3-vertex.

u31 ≤ m ≤ n− 1

ul

u1

(i)

c

x1

xm vm

v1

1 ≤ l ≤ 3

(ii)

u1

u2

c

Figure 2.10: Forbidden con�gurations for Lemma 2.5.

Proof.

1. If G is not 2-connected, then we can obtain a QRq-coloring of G from the coloring of its
2-connected components since QRq is a circular tournament. Moreover G cannot contain
a cut set consisting of two adjacent vertices since QRq is an arc-transitive tournament.

2. Suppose that G contains a 2-cut {u, v} contradicting Lemma 2.5. Let A1, . . . An denote
the connected components of G \ {u, v} of size at least two. For 1 6 i 6 n, we construct
the graph Bi from the graph induced by V (Ai) ∪ {u, v} by adding a directed 2-path
between u and v. Notice that if G is triangle-free and planar (resp. 2-outerplanar), then
Ai is triangle-free and planar (resp. 2-outerplanar). Moreover G′ ≺ G since n3(Ai) <
n3(G). Since QRq is arc transitive and self-reverse, Ai has a QRq-coloring f such that
f(u) = 0 and f(v) = 1. These colorings of the Ai's induce a coloring of the Bi's that
can be extended to G.
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3. Consider con�guration (i) in Figure 2.10. Let f be any QRq-coloring of G\{x1, . . . , xm}.
By property S3,n, we can choose f such that f(c) 6∈ {f(v1), . . . , f(vm)} and extend this
coloring to G.

4. Consider con�guration (ii) in Figure 2.10. Notice that u1, u2, and u3 are >3-vertices since
con�guration (i) with l = 2, m = 1 is forbidden. Since QRq is self-reverse, we assume
w.l.o.g. that d−(c) 6 d+(c) by considering either G or GR. We have d−(c) 6= 0 since
otherwise we can extend any QRq-coloring of G \ {c} to G. Suppose now d−(c) = 1,
which is the only remaining case. Let us set N−(c) = {u1}, N+(c) = {u2, u3}. We
now consider the graph G′ obtained from G \ {c} by adding directed 2-paths joining
respectively u1 and u2, and u1 and u3. Notice that if G is triangle-free and planar (resp.
2-outerplanar), then G′ is triangle-free and planar (resp. 2-outerplanar). Moreover
G′ ≺ G since n3(G′) = n3(G) − 1. Any QRq-coloring f of G′ induces a coloring of
G \ {c} such that f(u1) 6= f(u2) and f(u1) 6= f(u3), which can be extended to G.

Euler's formula |V (G)|+ |F (G)| = |E(G)|+ 2 and∑
v∈V (G)

d(v) =
∑

f∈F (G)

d(f) = 2|E(G)|

show that ∑
v∈V (G)

(d(v)− 4) +
∑

f∈F (G)

(d(f)− 4) = −8.

We set an initial charge ch to every vertex and every face:

∀x ∈ V (G) ∪ F (G), ch(x) = d(x)− 4

Then we use a discharging procedure consisting of the following two rules, and we get a �nal
charge ch∗.

Rule 1. Every >4-vertex v gives 1
2 to each face f incident to both v and a 2-neighbor of v.

Rule 2. Every face f gives 1 to each 2-vertex incident to f .

Since the above procedure preserves the total charge, we have:∑
x∈V (G)∪F (G)

ch(x) =
∑

x∈V (G)∪F (G)

ch∗(x) = −8.

We now prove the following to get a contradiction:

∀x ∈ V (G) ∪ F (G), ch∗(x) > 0.

case x ∈ V (G)

d(x) = 2: By Rule 2, x receives exactly 1 from each of the two faces incident to x and
thus ch∗(x) = −2 + 2× 1 = 0.

d(x) = 3: G contains no 3-vertex by Lemma 2.5.(4).
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d(x) = k, 4 6 k 6 7: By Lemma 2.5.(3) with l = 3, m = k− 3, x has at most (k− 4) 2-
neighbors, so x gives 1

2 to at most 2×(k−4) faces and thus ch∗(x) > k−4−2×(k−4)× 1
2 =

0.

d(x) = k > 8: x gives 1
2 to at most k faces and thus ch∗(x) > k − 4− k × 1

2 > 0.

case x ∈ F (G)

d(x) = 3: G is triangle-free, so it contains no face of degree 3.

d(x) = 4: By Lemma 2.5.(3) with l = m = 1, x is not incident two adjacent 2-vertices.
The face x cannot be incident to two non-adjacent 2-vertices, since otherwise the >2-
vertices incident to x would create a 2-cut that would contradict Lemma 2.5.(2). Thus
x is incident to at most one 2-vertex. If x is incident to a 2-vertex then ch∗(x) =
0 + 2× 1

2 − 1 = 0, otherwise ch∗(x) = ch(x) = 0.

d(x) = k > 5: Let n be the number of 2-vertices incident to x. Since x is not incident
two adjacent 2-vertices, we have n 6

⌊
k
2

⌋
and x receives 1

2 from at least n vertices, thus
ch∗(x) > k − 4 + n× 1

2 − n× 1 = k − 4− n
2 > k − 4−

⌊
k
4

⌋
=
⌈
3k
4

⌉
− 4 > 0.

This proves Theorem 2.6.(3).

2.5.3 Triangle-free 2-outerplanar graphs

Lemma 2.6. Let G be a connected triangle-free outerplanar graph on at least three vertices.
Then G contains at least one of the following:

1. A >2-vertex adjacent to at least (d(u)− 1) 1-vertices.

2. A >3-vertex contained in a cycle adjacent to (d(u)− 2) 1-vertices.

3. Two adjacent 2-vertices which are contained in a cycle.

Proof. Suppose G does not contain any of the two �rst items. Since G is outerplanar, its
2-connected components form a tree-like structure. A 2-connected triangle-free outerplanar
contains at least two times two adjacent 2-vertices. Thus a 2-connected component of G which
is a leaf in the tree-like structure contains at least one time two adjacent 2-vertices, which is
the third item.

We consider a potential counter-example G to Theorem 2.6.(3) which is minimal according
to the partial order ≺. Let us �x a 2-outerplanar embedding of G. Lemma 2.5.(1) implies
that the outerface induces a chordless cycle. Let C denote the outerface of G. The graph
H = G \ C is thus an outerplanar triangle-free graph. Moreover, H must be connected,
otherwise G would contain a 2-cut in C that contradicts Lemma 2.5.(2). In what follows we
consider C and H together with their embeddings, as implied by the embedding of G.

A vertex v ∈ H is very special if and only if dH(v) = 1. A vertex v ∈ G is special if and
only if either v is very special or v ∈ C.
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Lemma 2.7. Every very special vertex v satis�es dG(v) = 2.

Proof. By Lemma 2.5.(4), dG(v) 6= 3. Now, if dG(v) > 4, then dC(v) > 3 thus there exists a
vertex x ∈ NC(v) such that dG(x) = dC(x) + dH(x) = 2 + 1 = 3, which contradicts Lemma
2.5.(4).

Lemma 2.8. A vertex v ∈ H has no three consecutive special neighbors.

Proof. We suppose that H contains such a vertex v and we note v1, v2, v3 its three consecutive
special neighbors. We consider the vertices w1, w2, w3 de�ned as follows: For i = 1, 2, 3,
wi = vi if vi ∈ C and wi is the neighbor of vi which belongs to H if is vi very special. Since G
does not contain triangles nor con�guration (iii), we have w1 6= w2 6= w3 6= w1. This implies
that dG(w2) = 3, which contradicts Lemma 2.5.(4).

Let u be a vertex in H and N1
H(u) = {x ∈ NH(u) | dH(x) = 1} (i.e. N1

H(u) is the set of
very special neighbors of u). We consider now four cases:

1. H is an isolated vertex. In this case we have clearly a 3-vertex v in G, which is a
contradiction.

2. H contains a vertex u such that |N1
H(u)| > dH(u)− 1 > 1. Let v be a vertex in N1

H(u).
Since v is a very special vertex then according to Lemma 2.7, dG(v) = 2. Now, if
dG(u) 6 4, then we have a 2-vertex v adjacent to a 64-vertex, which contradicts Lemma
2.5.(3). If dG(u) > 5, then u has at least three consecutive special neighbors, which
contradicts Lemma 2.8.

3. H contains a vertex u such that |N1
H(u)| = dH(u)− 2 > 1 and u is contained in a cycle

in H. Let v be a vertex in N1
H(u). Since v is a very special vertex in H then dG(v) = 2

according to Lemma 2.7. Now, if dG(u) 6 4, then we have a 2-vertex v adjacent to a
64-vertex, which contradicts Lemma 2.5.(3). If dG(u) > 5, then u has at least three
consecutive special neighbors, which contradicts Lemma 2.8.

4. H contains two adjacent 2-vertices u and v which are contained in a cycle in H. We
assume w.l.o.g. that dG(u) 6 dG(v) and consider the following subcases:

(a) If dG(v) > 5, then v has at least three consecutive special neighbors and this
contradicts Lemma 2.8. So, we have dH(u) 6 dH(v) 6 4.

(b) If dG(u) = 2, we have a 2-vertex adjacent to a 64-vertex, which is forbidden by
Lemma 2.5.(3).

(c) The case dG(u) = 3 is forbidden by Lemma 2.5.(4).

(d) If dG(u) = dG(v) = 4, there exists a vertex x ∈ NC(u) such that dG(x) = 3.

This proves Theorem 2.6.(3).

Concerning 2-outerplanar graphs in general, we know from Theorem 2.5 that out(2) ⊂
S0 �S0 �S0 � out(1). By Proposition 1.3, the oriented chromatic number of a 2-outerplanar
graph is thus at most 24−1× (1 + 1 + 1 + 7) = 80. This is not an improvement over the bound
χo(out(2)) 6 χo(P3) 6 80, but it provides another target graph of size 80 for 2-outerplanar
graphs.



24 CHAPTER 2. VERTEX COLORINGS

2.6 Acyclic choosability

In this section, we study the list version of (proper) acyclic coloring on graphs with bounded
maximum average degree.

Theorem 2.7.

1. Every graph G with mad(G) < 8
3 is acyclically 3-choosable.

2. Every graph G with mad(G) < 19
6 is acyclically 4-choosable.

3. Every graph G with mad(G) < 24
7 is acyclically 5-choosable.

For planar graphs, thanks to Observation 1.1, we get:

Corollary 2.1.

1. χla(P8) = 3.

2. χla(P6) 6 4.

3. χla(P5) 6 5.

A d(k)-vertex is a d-vertex adjacent to at least k 2-vertices. Every item of Theorem 2.6
is proved using the method described in Section 1.6. The partial order on graphs considered
here is the subgraph partial order. Let H be graph that is not acyclically n-choosable and is
minimal with this property. To prove that a con�guration C is forbidden, we suppose that H
contains C and show that an acyclic coloring c chosen from L of some proper subgraph of H
can be extended in a acyclic coloring chosen from L of the whole graph H, for every L.

2.6.1 Proof of Theorem 2.7.(1)

We prove now that every graph G with mad(G) < 8/3 is acyclically 3-choosable.

Lemma 2.9. Let n > 3 and let H be a minimal graph such that χla(H) > n. Then H does
not contain

1. a d-vertex adjacent to the vertices a d-clique (0 6 d 6 n− 1),

2. a d(d)-vertex (2 6 d 6 n2 − 1),

3. a d(d− 1)-vertex (2 6 d 6 (n− 1)2),

4. a d(2)-vertex (2 6 d 6 n),

5. a d(1)-vertex (2 6 d 6 n− 1).

Proof.

1. Suppose that H contains such a vertex w. Any coloring c of H \ {w} can be extended
to H by giving w a color distinct from those of its neighbors.
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Figure 2.11: (i): A d(d)-vertex. (ii): A d(d− 1)-vertex. (iii): A d(2)-vertex.

2. Suppose that H contains a d(d)-vertex w adjacent to d 2-vertices v1, . . . , vd. Each vertex
vi is adjacent to w and to another vertex ui, 1 6 i 6 d (see Figure 2.11(i)). Let c be
a coloring of H \ {w, v1, . . . , vd}. Since d 6 n2 − 1 and |L(w)| = n, the pigeonhole
principle ensures that some j ∈ L(w) is used at most n− 1 times to color the ui's. We
set c(w) = j. If c(ui) 6= j, we can choose c(vi) in L(vi) \ {c(ui), j} since |L(vi)| = n > 3.
The number of vi such that c(ui) = j is at most n− 1, so we can give these vi distinct
colors di�erent from j.

3. Suppose that H contains a d(d− 1)-vertex w adjacent to (d− 1) 2-vertices v1, . . . , vd−1
and to another vertex z. Each vertex vi is adjacent to w and to another vertex ui,
1 6 i 6 d − 1 (see Figure 2.11(ii)). Let c be a coloring of H \ {w, v1, . . . , vd−1}. Note
that we have |L(w) \ {c(z)}| > n− 1 and d− 1 6 (n− 1)2 − 1. We set c(w) = j where
j ∈ L(w)\{c(z)} is used at most n−2 times to color the ui's. If c(ui) 6= j, we can choose
c(vi) in L(vi) \ {c(ui), j} since L(vi) = n > 3. The number of vi such that c(ui) = j is
at most n− 2, so we can give these vi distinct colors di�erent from j and c(z).

4. Suppose that H contains a d(2)-vertex w adjacent to z1, . . . , zd−2, and to two 2-vertices
v1, v2 that are adjacent respectively to u1, u2 (see Figure 2.11(iii)). We assume n > 4
since the case n = 3 is implied by Lemma 2.9.(3). Let c be a coloring of H \ {w, v1, v2}.

4.1 If the c(zi) are pairwise distinct, we choose c(w) ∈ L(w)\{c(z1), . . . , c(zd−2), c(u1)}
and c(v1) ∈ L(v1) \ {c(w), c(u1)}. If c(w) = c(u2), we choose c(v2) ∈ L(v2) \
{c(z1), . . . , c(zd−2), c(w)}; otherwise we choose c(v2) ∈ L(v2) \ {c(w), c(u2)}.

4.2 If the c(zi) are not pairwise distinct, we consider a coloring c of H \ {v1, v2} and
assume w.l.o.g. that c(z1) = c(z2). If c(w) = c(u1), we choose c(v1) ∈ L(v1) \
{c(z2), . . . , c(zd−2), c(w)}, otherwise we choose c(v1) ∈ L(v1) \ {c(u1), c(w)}. If
c(w) = c(u2), we choose c(v2) ∈ L(v2) \ {c(z2), . . . , c(zd−2), c(v1), c(w)}, otherwise
we choose c(v2) ∈ L(v2) \ {c(u2), c(w)}.

5. The proof is similar (and simpler) to that of Lemma 2.9.(4).

It follows that the minimum degree of H is at least 2 and that no 2-vertex is in a triangle.

We use the following discharging rule: Each vertex gives 1
3 to each of its 2-neighbors. Let

us check that for every v ∈ V (H), d∗(v) > 8
3 :
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• If d(v) = 2, then d∗(v) = 2 + 21
3 = 8

3 , since v has no 2-neighbor by Lemma 2.9.(3) and
v receives 1

3 from each neighbor.

• If d(v) = 3, then d∗(v) > 3 − 1
3 = 8

3 , since v has at most one 2-neighbor by Lemma
2.9.(3), so it gives at most 1

3 .

• If d(v) = k > 4, then d∗(v) > k − k 1
3 = 2k

3 > 8
3 because v gives at most k times 1

3 .

2.6.2 Proof of Theorem 2.7.(2)

We prove now that every graph G with mad(G) < 19/6 is acyclically 4-choosable.

Lemma 2.10. Let n > 4 and let H be a minimal graph such that χla(H) > n. Then H does
not contain

1. a 5(3)-vertex adjacent to a 3-vertex,

2. a 3-vertex adjacent to two 3-vertices.

w

z′1

z′′1

z2

u1

u2

u3

v1

v2

v3

z1

Figure 2.12: A 5(3)-vertex adjacent to a 3-vertex.

Proof. 1. Suppose that H contains a 5(3)-vertex w adjacent to three 2-vertices v1, v2, v3
(each adjacent to another vertex ui), a 3-vertex z1 (adjacent to z′1 and z′′1 ) and another
vertex z2 (see Figure 2.12). Let c be a coloring of H \ {v1}. If c(u1) 6= c(w), we give a
proper color to v1. Now, we assume that c(u1) = c(w) = 1:

1.1 If c(z1) 6= c(z2), we erase the colors of v2, v3 and we modify the color of w: In
L(w) \ {c(z1), c(z2)}, there is a color which appears on at most one of u1, u2, u3;
we choose this color for w. Then, we give a color di�erent from c(z1), c(z2), c(w) to
the vertex vj (if it exists) whose neighbors have the same color (c(w)) and we give
a proper color to the other vi.

1.2 If c(z1) = c(z2) and w.l.o.g., c(z1) = 2. Observe that L(v1) contains 1 and 2;
otherwise, we can color v1 with a color di�erent from 1,2 and c(v2), c(v3). We
assume w.l.o.g. that L(v1) = {1, 2, 3, 4}. If we cannot color v1 this implies that
c(u1) = c(u2) = c(u3) = 1, c(v2) = 3, c(v3) = 4 and c(z1) = 2.

1.2.1 If c(z′1) 6= c(z′′1 ), we modify the colors of z1, w and give a proper color to
v1, v2, v3: c(z1) ∈ L(z1) \ {c(z′1), c(z′′1 ), 2}, c(w) ∈ L(w) \ {c(z1), c(z2), 1}.

1.2.2 If c(z′1) = c(z′′1 ), we modify the color of w with a color di�erent from 1, 2, c(z′1)
and give proper colors to v1, v2, v3.
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w

z
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u1 u2

u′
2

v2v1

Figure 2.13: A 3-vertex having two 3-neighbors.

2. First suppose that H contains a 3-vertex adjacent to two adjacent 3-vertices (see
Figure 2.13, left). Let c be a coloring of H \ {v1, v2, v3}. We can choose c(v1) in
L(v1) \ {c(u1), c(u2), c(u3)}, c(v2) in L(v2) \ {c(v1), c(u2), c(u3)}, and then c(v3) in
L(v3) \ {c(v1), c(v2), c(u3)}. Now suppose that H contains a 3-vertex w adjacent to
two 3-vertices v1, v2 (each adjacent to u1, u′1 and u2, u

′
2) and to another vertex z (see

Figure 2.13, right). Let c be a coloring of H \ {w}. We have to consider the following
cases:

2.1 c(v1), c(v2) and c(z) are pairwise distinct. We color w with a proper color.

2.2 c(v1) = c(v2) 6= c(z). W.l.o.g., suppose that c(v1) = c(v2) = 2 and c(z) = 1.
Observe that L(w) contains 1 and 2; otherwise, we color w with a color di�erent
from 1 or 2 and di�erent from c(u1), c(u

′
1). Assume that L(w) = {1, 2, 3, 4}. If we

cannot color w, this implies that {c(u1), c(u′1)} = {c(u2), c(u′2)} = {3, 4}. As well,
observe that L(v1) = L(v2) = {1, 2, 3, 4}; otherwise, we modify the color of v1 (or
v2) with a color di�erent from 1,2,3,4 to get case 2.1. Hence, we recolor v1 and v2
with 1 and color w with 2.

2.3 c(v1) = c(z) 6= c(v2). W.l.o.g., suppose that c(v1) = c(z) = 1 and c(v2) = 2.
With the same argument as above, we can assume that L(w) = {1, 2, 3, 4} and
L(v1) = {1, 2, 3, 4} (for the same reasons). We recolor v1 with 2 to get case 2.2.

2.4 c(v1) = c(v2) = c(z). Observe that c(u1) = c(u′1); otherwise, we modify the color
of v1 to get a previous case. We have c(u2) = c(u′2) for the same reason and we
can choose c(w) ∈ L(w) \ {c(u1), c(u2), c(z)}.

We use the following discharging rule: Each >4-vertex gives 7
12 to each of its 2-neighbors

and 1
12 to each of its 3-neighbors. Let us check that for every v ∈ V (H), d∗(v) > 19

6 :

• If d(v) = 2, then v has two >4-neighbors by Lemma 2.9.(5), so d∗(v) = 2 + 2 7
12 = 19

6 .

• If d(v) = 3, then v has at least two >4-neighbors by Lemma 2.9.(5) and Lemma 2.10.(2),
so d∗(v) > 3 + 2 1

12 = 19
6 .

• If d(v) = 4, then v has at most one 2-neighbor by Lemma 2.9.(4), so d∗(v) > 4− 7
12−3 1

12 =
19
6 .

• If d(v) = 5, then v has at most three 2-neighbors by Lemma 2.9.(3). If v is a 5(3)-vertex,
then it has no 3-neighbor by Lemma 2.10.(1), so d∗(v) = 5− 3 7

12 = 13
4 > 19

6 . Otherwise,
d∗(v) > 5− 2 7

12 − 3 1
12 = 43

12 >
19
6 .
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• If d(v) = k, 6 6 k 6 7, then v has at most (k − 2) 2-neighbors by Lemma 2.9.(3), so
d∗(v) > k − (k − 2) 7

12 − 2 1
12 = 5k

12 + 1 > 7
2 >

19
6 .

• If d(v) = k > 8, then d∗(v) > k − k 7
12 = 5k

12 > 10
3 > 19

6 .

2.6.3 Proof of Theorem 2.7.(3)

We prove now that every graph G with mad(G) < 19/6 is acyclically 5-choosable. A vertex
is said weak if it is either a 3-vertex or a 6(4)-vertex.

Lemma 2.11. Let n > 5 and let H be a minimal graph such that χla(H) > n. Then H does
not contain

1. a d(d− 2)-vertex adjacent to a weak vertex, 3 6 d 6 10,

2. a 6(3)-vertex adjacent to three weak vertices,

3. a 6(4)-vertex adjacent to a 64-vertex,

4. a 4-vertex adjacent to three 3-vertices.

Proof. 1. Suppose that H contains a d(d − 2)-vertex w adjacent to (d − 2) 2-vertices vi,
1 6 i 6 d− 2 (each adjacent to another vertex ui), a 3-vertex z (adjacent to two other
vertices z1, z2) and a vertex y, 3 6 d 6 10 (see Figure 2.14).

y

x′
3

x′
4

x′
2

x′
1

x4

x1

x2

x3

vd−2

v1u1

ud−2

z

s

wz2

z1

yvd−2

v1 zu1

ud−2

w

Figure 2.14: A d(d− 2)-vertex adjacent to a weak vertex.

Let c be a coloring of H \ {vi, 1 6 i 6 d− 2}.

• c(z) 6= c(y). We recolor w with a color, di�erent from c(z), c(y), which appears on
at most two of the ui's, 1 6 i 6 d − 2. If c(ui) 6= c(w), we color vi with a proper
color. At most two of the ui's (say u1, u2) satisfy c(ui) = c(w). We can choose
c(v1) ∈ L(v1) \ {c(w), c(y), c(z)} and c(v2) ∈ L(v2) \ {c(w), c(y), c(z), c(v1)}.
• c(z) = c(y). Observe that c(z1) = c(z2); otherwise, we replace the color of z with
a color di�erent from c(z1), c(z2), c(y), c(w) and we are in the previous case. Now,
we recolor w with a color, di�erent from c(z), c(z1), which appears on at most wo
of the ui's, 1 6 i 6 d− 2. As above, it is easy then to color vi, 1 6 i 6 d− 2.

Now, we consider the case where the d(d − 2)-vertex w is adjacent to a 6(4)-vertex z
adjacent to four 2-vertices xj , 1 6 j 6 4 and another vertex s (see Figure 2.14). Observe
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that xi 6= uj for all i, j since there is no 2(1)-vertex by Lemma 2.9.(3). Let c be a coloring
of H \ {x1}.

• c(w) 6= c(s). We erase the colors of the vertices z, x2, x3, x4. We recolor z with
a color, di�erent from c(s), c(w), which appears on at most one of x′i, 1 6 i 6 4.
Then, we give a proper color to xi for each index i such that c(x′i) 6= c(z) and give
a color di�erent from c(z), c(w), c(s) to the vertex xj such that c(z) = c(x′j).

• c(w) = c(s). If c(x′1) 6= c(z), we color x properly, which su�ces. If c(z) 6= c(x′i)
for some i, we color x1 avoiding c(w), c(z), and all c(xj) for j 6= i, j > 1, which
su�ces.

Thus we may assume that c(x′1) = c(x′2) = c(x′3) = c(x′4) = c(z) = 1 and c(s) = c(w) =
2. Now, we erase the colors of the vertices xi (1 6 i 6 4), vj (1 6 j 6 d− 2), w and z.
We recolor w with a color di�erent from c(y) and 2, which appears on at most 2 of the
uj 's. So, c(s) 6= c(w) and we recolor z with a color di�erent from 1,2, c(w), c(y), then we
color each xi with a proper color. Finally, we recolor the vi's as in the case c(z) 6= c(y).

2. Suppose that H contains a 6(3)-vertex w adjacent to three 2-vertices v1, v2, v3 (each
adjacent to another vertex ui) and three weak vertices z1, z2, z3. Let c be a coloring of
H \ {v1, v2, v3}.

u1

u3

v1

v2

v3

w

z1

z2

z3

z′2

z′′2

z′3

z′′3

z′′1

z′1

u2

Figure 2.15: A 6(3)-vertex w adjacent to three 3-vertices.

First, observe that if c(z1), c(z2), c(z3) are all di�erent, we can color v1, v2, v3: We recolor
w with a color di�erent from c(z1), c(z2), c(z3), which appears on at most one of u1, u2, u3.
Then, we give proper color to vi for each index i for which c(ui) 6= c(w) and a color
di�erent from c(w), c(z1), c(z2), c(z3) otherwise.

Second, observe that if c(z1) = c(z2) = c(z3), we can color v1, v2, v3: If c(ui) 6= c(w), we
give a proper color to vi. In the worst case, we have c(u1) = c(u2) = c(u3) = c(w) and
we color v1 with c(v1) ∈ L(v1)\{c(w), c(z1)}, v2 with c(v2) ∈ L(v2)\{c(w), c(z1), c(v1)}
and v3 with c(v3) ∈ L(v3) \ {c(w), c(z1), c(v1), c(v2)}.
Consider now the case where two of z1, z2, z3 have the same color. W.l.o.g., we assume
that c(w) = 1, c(z1) = c(z2) = 2, c(z3) = 3.

Third, observe that if c(u1) 6= 1, we can color v1, v2, v3: We color v1 and v2 such that
c(v1) ∈ L(v1) \ {1, c(u1)} and c(v2) ∈ L(v2) \ {1, 2, 3, c(u2)}. Then if c(u3) = 1, we
choose c(v3) in L(v3)\{1, 2, 3, c(v2)} and otherwise we choose c(v3) in L(v3)\{1, c(u3)}.
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So, suppose now that c(u1) = c(u2) = c(u3) = c(w) = 1, c(z1) = c(z2) = 2, c(z3) = 3.
The idea is to consider the neighborhood of the two vertices of z1, z2, z3 which have the
same color (z1, z2 in our case) and modify if necessary the color of one of these two
vertices to get a previous case.

By permuting indices, we have only two cases to study:

2.1 z1 is a 6(4)-vertex. The 6(4)-vertex z1 is adjacent to w, to four 2-vertices xi (each
adjacent to another vertex x′i) and another vertex s. Observe that since there
is no 2(1)-vertex by Lemma 2.9.(3), xi 6= uj for all i, j. We erase the colors of
w, z1, x1, x2, x3, x4. We recolor z1 with a color, di�erent from 2, 3, c(s), which
appears on at most two of x′i, 1 6 i 6 4. We recolor now w with a color di�erent
from 1, 2, 3, c(z1) and give proper colors to v1, v2, v3. Finally, we color the xi,
1 6 i 6 4: For the two or fewer vertices whose neighbors have the same color,
we give distinct colors di�erent from c(s), c(w), c(z1) and give proper colors to the
other vertices xi.

2.2 z1 and z2 are 3-vertices. The vertex z1 is adjacent to w and two other vertices z′1, z
′′
1

and the vertex z2 is adjacent to w and two other vertices z′2, z
′′
2 (see Figure 2.15).

It may be that zi, z′j , z
′′
k are not distinct, but it will not matter. If c(z′1) 6= c(z′′1 )

we can recolor z1 and w such that c(z1) ∈ L(z1) \ {2, 3, c(z′1), c(z′′1 )} and c(w) ∈
L(w) \ {1, 2, 3, c(z1)}, and then give proper colors to the vi's, 1 6 i 6 3. Thus
c(z′1) = c(z′′1 ) and, for the same reason, c(z′2) = c(z′′2 ). Now we can recolor w with
a color di�erent from 1, 2, 3, c(z′1) and we give proper colors to the vi's, 1 6 i 6 3.

3. Suppose that H contains a 6-vertex w adjacent to four 2-vertices v1, v2, v3, v4 (each
adjacent to another vertex ui), a 64-vertex z and another vertex y (see Figure 2.16).
Notice that if d(z) < 4 then the con�guration is forbidden by Lemma 2.10.(1) and
Lemma 2.9.(3). So suppose z is a 4-vertex adjacent to z1, z2, z3 (see Figure 2.16).

u2

u3

v1

v2

v3

v4

z2

z1

z3

u1

w

y

z

u4

Figure 2.16: A 6(4)-vertex adjacent to a 4-vertex

Let c be a coloring of H \ {v1, v2, v3, v4}. If c(y) 6= c(z), we recolor w with a color from
L(w) \ {c(z), c(y)} that appears on at most one ui, then properly color each vi avoiding
c(ui), c(w), c(z), and c(y). Suppose that c(y) = c(z). If c(ui) 6= c(w), we properly color
vi and then may ignore it, so the worst case is c(u1) = c(u2) = c(u3) = c(u4) = c(w).
Assume that c(u1) = 1 and c(z) = 2. Consider the following three cases:

3.1 If c(z1) 6= c(z2) 6= c(z3) 6= c(z1), we modify the color of z, then we recolor w with a
color di�erent from 1, c(z), c(y), then we color vi (i = 1, . . . , 4) with proper colors.

3.2 If c(z1) = c(z2) 6= c(z3), we recolor w such that c(w) ∈ L(w) \ {1, 2, c(z1), c(z3)}
and give proper colors to vi.
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3.3 If c(z1) = c(z2) = c(z3). We modify the color of w. We color w with c(w) ∈
L(w) \ {1, 2, c(z1)} and give proper colors to vi.

4. Suppose that H contains a 4-vertex w adjacent to three 3-vertices x1, x2, x3 (each adja-
cent to x′i, x

′′
i ) and to another vertex z (see Figure 2.17). Although xi, x′j , x

′′
k may not

all be distinct, it will not matter.

w

x1

x2

x3

x′
1

x′′
1

x′
2

x′′
2

x′
3

x′′
3

z

Figure 2.17: A 4-vertex adjacent to three 3-vertices

Let c be a coloring of H \ {w}. We consider the following cases:

4.1 If c(x1), c(x2), c(x3), c(z) are all di�erent, then we color w with a proper color.

4.2 Suppose that two neighbors of w have the same color, and no color is shared by
three neighbors of w.

4.2.1 Suppose that c(x1) = c(x2) 6= c(x3). W.l.o.g. we assume that c(x1) = 1.

4.2.1.1 If c(x3) 6= c(z) and c(x3) 6= 1, c(z) 6= 1, we assume
that c(x3) = 2 and c(z) = 3. Necessarly, L(w) contains
1, 2, 3; otherwise, we can color w with a color di�erent from
1, 2, 3, c(x′1) and c(x′′1). W.l.o.g., we suppose that L(w) =
{1, 2, 3, 4, 5}. If we cannot color w, this implies that {c(x′1), c(x′′1)} =
{c(x′2), c(x′′2)} = {4, 5}. Observe now that L(x1) = L(x2) = {1, 2, 3, 4, 5};
otherwise, we can recolor x1 with a color di�erent from 1, 2, 3, 4, 5 to get
case 4.1. So, we recolor x1 and x2 with 3 and color w with 1.

4.2.1.2 If c(x3) = c(z) and c(x3) 6= 1, we assume that c(x3) = 2. Observe �rst
that c(x′3) = c(x′′3); otherwise, we can recolor x3 with a color di�erent from
1, 2, c(x′3), c(x

′′
3) to get case 4.2.1.1. So, suppose that c(x′3) = c(x′′3) = 3

(c(x′3) = c(x′′3) = 1 is an easier case). Necessarily, L(w) contains 1, 2, 3;
otherwise, we can color w with a color di�erent from 1, 2, 3, c(x′1) and c(x

′′
1).

W.l.o.g., L(w) = {1, 2, 3, 4, 5}, and {c(x′1), c(x′′1)} = {c(x′2), c(x′′2)} =
{4, 5}. So, we recolor x1 and x2 with a color di�erent from 1, 2, 4, 5
and we color w with 1.

4.2.2 Suppose that c(x1) = c(z). W.l.o.g. we assume that c(x1) = 1. Observe that
c(x2) 6= c(x3); otherwise, we get case 4.2.1.2. We assume that c(x2) = 2 and
c(x3) = 3. Observe that c(x′1) = c(x′′1); otherwise we can recolor x1 with a
color di�erent from 1, c(x′1), c(x

′′
1) to get case 4.1 or 4.2.1.1. Hence, we color w

with a color di�erent from 1, 2, 3, c(x′1).
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4.3 Suppose that exactly three neighbors of w have the same color.

4.3.1 We assume that c(x1) = c(x2) = c(x3) = 1 and c(z) = 2. Observe that
c(x′1) = c(x′′1); otherwise, we can recolor x1 with a color di�erent from 1, 2,
c(x′1), c(x

′′
1) to get case 4.2.1.1. by the same way, c(x′i) = c(x′′i ), i = 1, 2, 3.

Then L(w) = {1, 2, c(x′1), c(x′2), c(x′3)} with c(x′1) 6= c(x′2) 6= c(x′3) 6= c(x′1);
otherwise, we color w with a color di�erent from 1, 2, c(x′1), c(x

′
2), c(x

′
3). So,

we color w with c(x′1).

4.3.2 We assume that c(z) = c(x1) = c(x2) = 1 and c(x3) = 2. As above, observe
that c(x′1) = c(x′′1) and c(x′2) = c(x′′2); otherwise we can recolor x1 or x2 to
obtain a previous case. Hence, we color w with a color di�erent from 1, 2,
c(x′1), c(x

′
2).

4.4 All the neighbors of w have the same color. Suppose that c(x1) = c(x2) = c(x3) =
c(z) = 1. As above, for i = 1, 2, 3, c(x′i) = c(x′′i ) (otherwise we can get a previous
case). We color w with a color di�erent from 1, c(x′1), c(x

′
2), c(x

′
3).

We use the following discharging rule: Each >4-vertex gives 5
7 to each of its 2-neighbors,

3
14 to each of its 3-neighbors and 1

7 to each of its 6(4)-neighbors. Let us check that for every
v ∈ V (H), d∗(v) > 24

7 :

• If d(v) = 2, then v has two >5-neighbors by Lemma 2.9.(5), so d∗(v) = 2 + 25
7 = 24

7 .

• If d(v) = 3, then v has at least two >4-neighbor by Lemma 2.9.(5) and Lemma 2.10.(1),
so d∗(v) > 3 + 2 3

14 = 24
7 .

• If d(v) = 4, then v has no 2-neighbor by Lemma 2.9.(5), no 6(4)-neighbor by Lemma
2.11.(3), and at most two 3-neighbors by Lemma 2.11.(4), so d∗(v) > 4−2 3

14 = 25
7 > 24

7 .

• If d(v) = 5, then v has at most one 2-neighbor by Lemma 2.9.(4), so d∗(v) > 5− 5
7−4 3

14 =
24
7 .

• If d(v) = 6, by Lemma 2.9.(3), v has at most four 2-neighbors. If v is a 6(4)-vertex,
then it has no weak neighbor by Lemma 2.11.(1), so d∗(v) = 6 − 45

7 + 21
7 = 24

7 . If
v has three 2-neighbors, then it has at most two weak neighbors by Lemma 2.11.(2),
so d∗(v) > 6 − 35

7 − 2 3
14 = 24

7 . Otherwise, v has at most two 2-neighbors, so d∗(v) >
6− 25

7 − 4 3
14 = 26

7 > 24
7 .

• If d(v) = k, 7 6 k 6 10, then v has at most (k − 2) 2-neighbors by Lemma 2.9.(3). If
v is a k(k − 2)-vertex, then it has no weak neighbor by Lemma 2.11.(1) and d∗(v) =
k − (k − 2)57 = 2k+10

7 > 24
7 . Otherwise, d

∗(v) > k − (k − 3)57 − 3 3
14 = 4k+21

14 > 7
2 >

24
7 .

• If d(v) = 11, then v has at most nine 2-neighbors by Lemma 2.9.(3), so d∗(v) > 11 −
95
7 − 2 3

14 = 29
7 > 24

7 .

• If d(v) = k > 12, then d∗(v) > k − k 5
7 = 2k

7 > 24
7 .



2.6. ACYCLIC CHOOSABILITY 33

2.6.4 Optimality of Theorem 2.7

In order to study the tightness of Theorem 2.7, we introduce two measuring functions.

De�nition 2.1. Let f : N→ R be the function de�ned by f(n) = inf{mad(H) | χa(H) > n}.

De�nition 2.2. Let f l : N→ R be the function de�ned by f l(n) = inf{mad(H) | χla(H) > n}.

It is easy to check that f l(2) = f(2) = 2. By Theorem 2.7, we have lower bounds on f l(n)
for 3 6 n 6 5, namely f l(3) > 8

3 , f
l(4) > 19

6 , and f l(5) > 24
7 . We now give graphs that

provide upper bounds on these quantities.

Figure 2.18: A graph G with mad(G) = 8
3 such that χa(G) = χla(G) = 4.

The graph G with mad(G) = 8
3 depicted in Figure 2.18 is acyclically 4-choosable by

Theorem 2.7.(2). To see that G is not acyclically 3-colorable, consider its four 3-vertices: Any
two of them are either adjacent or have three common neighbors. Thus, di�erent colors must
be assigned to four vertices in any acyclic 3-coloring of G. This contradiction shows that:

f l(3) = f(3) =
8

3

Figure 2.19: A graph G with mad(G) = 13
4 such that χa(G) = χla(G) = 5.

The graph G with mad(G) = 13
4 depicted in Figure 2.19 is acyclically 5-choosable: First,

we assign �ve distinct colors to the four 4-vertices and to one of the 3-vertex, then we assign
proper colors to the other vertices. To see that G is not acyclically 4-colorable, consider its
four 4-vertices: Any two of them are either adjacent or have four common neighbors. Thus,
di�erent colors are assigned to the 4-vertices in any acyclic 4-coloring of G. Now, observe
that properly coloring the 3-vertices produces a bicolored C4 in every case. This contradiction
shows that:

19

6
6 f l(4) 6 f(4) 6

13

4

The graph G with mad(G) = 11
3 depicted in Figure 2.20 is acyclically 6-choosable: First,

we assign distinct colors to the six 7-vertices, then we assign proper colors to the 2-vertices.
To see that G is not acyclically 5-colorable, consider its six 7-vertices: Any two of them are
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Figure 2.20: A graph G with mad(G) = 11
3 such that χa(G) = χla(G) = 6.

either adjacent or have �ve common neighbors. Thus, di�erent colors must be assigned to six
vertices in any acyclic 5-coloring of G. This contradiction shows that:

24

7
6 f l(5) 6 f(5) 6

11

3

Figure 2.21: The graph Gn is such that mad(Gn) = 4− 8
n2+2

and χa(Gn) = χla(Gn) = n+ 1.

We now use the construction proposed in [41] to obtain an asymptotic upper bound on
f(n). Let Gn be the graph de�ned as follows: Gn is a (n + 1)-clique in which each edge is
replaced by n paths with length 2 (see the graph G3 depicted in Figure 2.21). It is easy to
see that mad(Gn) = 4− 8

n2+2
. The graph Gn is acyclically (n+ 1)-choosable: First, we assign

distinct colors to the >2-vertices, then we assign proper colors to the 2-vertices. To see that
Gn is not acyclically n-colorable, consider its >2-vertices: Any two of them have n common
neighbors. Thus, di�erent colors must be assigned to n+ 1 vertices in any acyclic n-coloring
of Gn. This contradiction shows that:

f(n) 6 4− 8

n2 + 2
.

Problem 2.1.

- What are the values of f l(n) and f(n) for n > 3 ?

- Does the equality f l(n) = f(n) hold also for every n > 3 ?

We remark that we cannot reach the results of [11] applied to the acyclic choosability
without using some contraints of planarity: Indeed, to imply Theorem 1.3.(4), we should have
proven that every graph G with mad(G) < 10

3 is acyclically 4-choosable, which is false since
there exists a graph G with mad(G) = 13

4 < 10
3 which is not acyclically 4-colorable (see Figure
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2.19). Similarly, it is impossible to prove that every graph G with mad(G) < 14
5 is acyclically

3-choosable to imply Theorem 1.3.(3), since there exists a graph G with mad(G) = 8
3 <

14
5

which is not acyclically 3-colorable (see Figure 2.18).

2.7 Relationship between χa, χ
l and χla

We �rst consider the relationship between χa and χl. The graph Gn above satis�es χa(Gn) =
χla(Gn) = n + 1 (we assign n + 1 distinct colors to the n + 1 vertices of the initial (n + 1)-
clique; then we color the remaining vertices with proper colors) and χl(Gn) = 3, thus we
cannot bound χa(G) by a function of χl(G) for a general graph G. On the other hand, we
can show that χl(G) 6 2χa(G)− 2 by using the following lemma:

Lemma 2.12. [82] Every maximal acyclically k-colorable graph with n vertices has exactly
(k − 1)(n− k

2 ) edges.

Suppose k > 2: Lemma 2.12 implies that if a graph G is acyclically k-colorable, then G has
arboricity k − 1, so G is (2k − 3)-degenerate, and thus G is (2k − 2)-choosable. The previous
result is best possible for k = 2 since χa(K2) = χl(K2) = 2.

We now consider the relationship between χa and χla.

Lemma 2.13. Let G be a graph which is not l-choosable. Let G′ be the graph obtained by
replacing every edge uv of G by l 2-vertices, each adjacent to u and v. Then G′ is bipartite
and 2-degenerate, but not acyclically l-choosable. Moreover, if G is bipartite then G′ belongs
to S0 �D1, otherwise we have χa(G

′) = χ(G).

Proof. The graph G′ is clearly bipartite and 2-degenerate. A vertex of G′ that is also in G is
called old, and for each edge uv of G, the non-old vertices of G′ adjacent to u and v are called
(u, v)-vertices. If G is bipartite, we have a bipartition V (G) = V0 ∪ V1. In G′, we color an old
vertex v with c(v) = i if and only if v belongs to Vi in G, and we color 1 the non old vertices.
This gives a S0�D1-coloring of G′. If χ(G) = p > 3, we can get an acyclic p-coloring of G′ as
follows: The colors of the old vertices of G′ are induced by a proper p-coloring of G. To color
the (u, v)-vertices, we use a color in S distinct from c(u) and c(v): Such a color exists since
p > 3. We check easily that this coloring is acyclic. Finally we have to show that χla(G

′) > l.
Let L be a list assignment of the old vertices with lists of size l. For each edge uv of G, pick
one endpoint u, and assign the list L(u) to every (u, v)-vertex. Suppose c(u) = c(v). To avoid
a bicolored C4, no two (u, v)-vertices can get the same color. There are l such vertices but
only l − 1 colors in the set L(u) \ c(u). This contradiction shows that c(u) 6= c(v). Given a
non-colorable list assignment of V (G) with lists of size l, we can thus produce a list assignment
of V (G′) with lists of size l that is not acyclically colorable.

It is well known that, for any �xed k, there exist bipartite graphs which are not k-choosable.
There also exist 3-colorable non-4-choosable planar graphs, see [53, 81]. We can use Lemma
2.13 with these graphs to obtain the following corollary.

Corollary 2.2.
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1. For any �xed k, there exist bipartite 2-degenerate graphs in S0�D1 which are not acycli-
cally k-choosable.

2. There exist bipartite 2-degenerate planar graphs which are acyclically 3-colorable but not
acyclically 4-choosable.



Chapter 3

Edge colorings

Recall that a T -fa coloring is an improper coloring of the edges such that every color class
induces a forest which does not contain the tree T . In this chapter, we consider certain T -fa
colorings of some subclasses of planar graphs.

3.1 Introduction

A foot is an edge of a tree T incident to a leaf of T .

If we remove zero or more leaves from a tree T , we obtain a skeleton T ′ of T . If we remove
every leaf of a tree T , we obtain the basic skeleton T ′ of T .

Lemma 3.1. For any tree P with basic skeleton P ′ and any tree T with skeleton T ′, if T ′ is
P ′-free then T is P -free.

Proof. We show the contraposition. If T contains P , then every leaf of T is either a leaf of P
or does not belong to P . So, by removing some leaves of T , we do not remove non-leaves of
P . Thus any skeleton T ′ contains the basic skeleton P ′.

De�nition 3.1. For any tree P with basic skeleton P ′, a k-P -fa coloring of G is a k-coloring
and a partial orientation of its edges such that:

• The graph induced by a color class is a P -free forest.

• If the edge uv is colored i and is oriented towards v, then v is a leaf in the ith forest.

• The graph induced by the unoriented edges of a color class is a P ′-free forest.

By Lemma 3.1, a graph G has P -fa(G) 6 k if and only if it has a k-P -fa coloring. Notice
that the basic skeletons of the trees P4 and Sn, with n > 1, are respectively K2 and K1,n. This
implies that the forest induced by the unoriented edges in a k-P4-fa coloring (resp. k-Sn-fa
coloring) has maximum degree 0 (resp. n − 1). If the graph G is k-P -fa colored, for each
of its k forests, we distinguish two types of vertices: The leaves, which have an incident arc
in this forest oriented toward them, and the inner vertices. A k-P -fa coloring is said to be
suitable if every vertex is an inner vertex in at least k − 1 forests.

37



38 CHAPTER 3. EDGE COLORINGS

Theorem 3.1. Positive results:

1. Every graph G of girth at least 5 with mad(G) < 10
3 has a suitable 3-S4-fa coloring.

2. Every graph G of girth at least 6 with mad(G) < 3 has a suitable 3-S3-fa coloring.

3. Every graph G of girth at least 10 with mad(G) < 5
2 has a suitable 2-S3-fa coloring.

4. Every graph G of girth at least 14 with mad(G) < 7
3 has a suitable 2-S2-fa coloring.

By Observation 1.1, we get:

Corollary 3.1.

1. If G ∈ P5, then S4-fa(G) 6 3.

2. If G ∈ P6, then S3-fa(G) 6 3.

3. If G ∈ P10, then S3-fa(G) 6 2.

4. If G ∈ P14, then S2-fa(G) 6 2.

Theorem 3.2. Negative results:

1. For every tree T , there exist 2-degenerate planar bipartite graphs having no edge partition
into a forest and a T -free forest.

2. For every tree T , there exist partial 2-trees having no edge partition into a forest and a
T -free forest.

3.2 Proofs of the positive results

Every item of Theorem 3.1 is proved using the method described in Section 1.6. The partial
order on graphs considered here is the subgraph partial order. Let us �rst present a general
lemma which is used in the next subsections.

Lemma 3.2. Let n > 2, k > 2 and let H be a minimal graph having no suitable k-Sn-fa
coloring. Then H does not contain

1. a 61-vertex (for n > 2, k > 2),

2. a 2-vertex adjacent to a (2n− 1)-vertex (for n > 2, k = 3).

u v
1 ≤ d ≤ 2n− 2

v w xu1

ud

Figure 3.1: Forbidden con�gurations for Lemma 3.2.
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Proof.

1. Suppose H contains the con�guration depicted in Figure 3.1 (left). Consider a suitable
k-Sn-fa coloring of H \ {v}. Since k− 1 > 1, u is an inner vertex in at least one Sn-free
forest, say Fi. We can extend this coloring to a suitable k-Sn-fa of H by orienting the
edge uv towards v and coloring uv with i.

2. Suppose H contains the con�guration depicted in Figure 3.1 (right). Consider a suitable
coloring of H \ {w} into three forests F1, F2, F3. If v is an inner vertex in all three
forests, then there is a forest Fi such that v is incident to at most

⌊
2n−2

3

⌋
6 n− 2 edges

in Fi. If v is an inner vertex in two forests, say F2, F3, then exactly one edge, say u1v,
is a foot edge for F1. So there is an edge forest Fi such that v is incident to at most⌊
2n−3

2

⌋
6 n− 2 unoriented edges in Fi. The vertex x is an inner vertex in at least two

forests, say Fj , Fk, and thus either j or k is distinct from i (say j). Now we can color
vw with i and wx with j. We check that the coloring is suitable: w may not be an inner
vertex in Fj but is an inner vertex in both Fi and the third forest.

3.2.1 Proof of Theorem 3.1.(1)

Lemma 3.3. Let H be a minimal graph of girth at least 5 having no suitable 3-S4-fa coloring.
Then H does not contain

1. a 3-vertex adjacent to two 3-vertices,

2. a d-vertex adjacent to (d− 1) 2-vertices and one 63-vertex (for d 6 9).

u v w
x1

x2

y

v
x1

u1

u2

ud

x0

x2

xd

Figure 3.2: Forbidden con�gurations for Lemma 3.3.

Proof.

1. Suppose H contains the con�guration depicted in Figure 3.2 (left). Consider a suitable
3-S4-fa coloring of H \ {v} into three forests F1, F2, F3. Let w be an inner vertex in
the forests F1 and F2. If u is an inner vertex in F3, let uv be unoriented and colored 3,
and let yv be oriented toward v and colored 1 or 2 (according to the status of v in F1

and F2), say 1. Now, we just let vw be unoriented and colored 2, and obtain a suitable
3-S4-fa coloring of H. If u is a leaf in F3, one of its incident edges, say x1u, is oriented
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toward u and colored 3. If the edge x2u is colored 1 (resp. 2), let the edges uv and vw
be unoriented and colored 2 (resp. 1). We orient yv toward v and color it 1 or 3 (resp.
2 or 3), thus we obtain a suitable 3-S4-fa coloring of H.

2. Suppose H contains the con�guration depicted in Figure 3.2 (right). Consider a suitable
3-S4-fa coloring of H \ {v, u2, . . . , ud} into three forests F1, F2, F3. W.l.o.g. consider
that u1 is an inner vertex in the forests F1. Let all the edges vui, for 1 6 i 6 d, be
unoriented and color them 1 if 1 6 i 6 3, 2 if 4 6 i 6 6, and 3 if 7 6 i 6 9. We orient
edges xiui toward ui and color them with a color distinct from the color of vui. Thus,
we obtain H has a suitable 3-S4-fa coloring of H.

We use the following discharging rule: each >4-vertex gives 2
3 to each of its 2-neighbors and

1
6 to each of its 3-neighbors. Let us check that for every v ∈ V (H), d∗(v) > 10

3 :

• d(v) = 2: v has two >8-neighbors by Lemma 3.2.(2), so d∗(v) = 2 + 22
3 = 10

3 .

• d(v) = 3: v has no 2-neighbor and at least two >4-neighbor by Lemma 3.3.(1), so
d∗(v) > 3 + 21

6 = 10
3 .

• d(v) = k, 4 6 k 6 7: v has no 2-neighbor so d∗(v) > k − k 1
6 = k 5

6 > 10
3 .

• d(v) = k, 8 6 k 6 9, then v has at most (k − 1) 2-neighbors by Lemma 3.3.(2), so
d∗(v) > k − (k − 1)23 = k+2

3 > 10
3 .

• d(v) = k > 10: d∗(v) > k − k 2
3 = k

3 > 10
3 .

3.2.2 Proof of Theorem 3.1.(2)

We use the following discharging rule: each vertex gives 1
2 to each of its 2-neighbors. Let us

check that for every v ∈ V (H), d∗(v) > 3:

• d(v) = 2: v has two >6-neighbors by Lemma 3.2.(2), so d∗(v) = 2 + 21
2 = 3.

• d(v) = k, 3 6 k 6 5: v has no 2-neighbor by Lemma 3.2.(2), so d∗(v) = k > 3.

• d(v) = k > 6: d∗(v) > k − k 1
2 = k

2 > 3.

3.2.3 Proof of Theorem 3.1.(3)

Lemma 3.4. Let H be a minimal graph of girth at least 10 having no suitable 2-S3-fa coloring.
Then H does not contain any of the con�gurations depicted in Figure 3.3.

Proof.
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yx z
1 ≤ n ≤ 2

(i)

2 ≤ m ≤ 3
v yx z

1 ≤ n ≤ 2

(ii)

Figure 3.3: Forbidden con�gurations for Lemma 3.3.

(i) Suppose H contains the con�guration (i) depicted in Figure 3.3. Consider a suitable
2-S3-fa coloring of H \{y}. In every case, z is an inner vertex in some forest Fi such that
z is incident to at most one non-oriented edge colored i. We can extend this coloring
to H such that xy and yz are non-oriented, vx and xy get di�erent colors, and yz gets
color i.

(ii) Suppose H contains the con�guration (ii) depicted in Figure 3.3. Consider a suitable 2-
S3-fa coloring of the graph H ′ obtained from H by deleting the edge yz. we can always
modify this coloring into a suitable 2-S3-fa coloring of H ′ such that xy is non-oriented
and there exist no monochromatic path connecting y to any ui. In every case, z is an
inner vertex in some forest Fi such that z is incident to at most one non-oriented edge
colored i. We can extend this coloring to H such that yz is non-oriented and gets color
i.

A 3-vertex is weak if it has three 2-neighbors. A 2-vertex is weak if is adjacent to a 2-
vertex or a weak 3-vertex. We use the following discharging rule: each >4-vertex gives 1

2 to
its weak 2-neighbors and 1

4 to its non-weak 2-neighbors, each non-weak 3-vertex gives 1
4 to its

2-neighbors. Let us check that for every v ∈ V (H), d∗(v) > 3:

• d(v) = 2: if v is weak, then v has a >4-neighbor (see Figure 3.3.(i) and Figure 3.3.(ii)
with m = 2), so d∗(v) = 2 + 1

2 = 5
2 . Otherwise v receives 1

4 from each neighbor, so
d∗(v) > 2 + 21

4 = 5
2 .

• d(v) = 3: if v is weak, then d∗(v) = d(v) = 3 > 5
2 . Otherwise v has at most two

2-neighbors, so d∗(v) > 3− 21
4 = 5

2 .

• d(v) = 4: if v has four 2-neighbors, then its 2-neighbors are not weak (see Figure
3.3.(ii)with m = 3), so d∗(v) > k − k 1

4 = 3k
4 > 3 > 5

2 . Otherwise v has at most three
2-neighbors, so d∗(v) > 4− 31

2 = 5
2 .

• d(v) = k > 5: d∗(v) > k − k 1
2 = k

2 > 5
2 .

3.2.4 Proof of Theorem 3.1.(4)

Lemma 3.5. Let H be a minimal graph of girth at least 14 having no suitable 2-S2-fa coloring.
Then H does not contain the con�guration depicted in Figure 3.4.
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with m + p + r ≥ 1

p ≥ 0

0 ≤ m ≤ 1

n ≥ 0

r ≥ 0
v

Figure 3.4: Forbidden con�guration for Lemma 3.5.

Proof. Suppose that a H contains this con�guration. The graph H ′ is obtained from H by
removing the white vertices of the con�guration, except those inside the circle. The condition
m+p+r > 1 ensures that H ′ is a proper subgraph of H. Consider a suitable 2-S2-fa coloring
of H ′. If necessary, we can always modify this coloring into a suitable 2-S2-fa coloring of H ′

such that v is an inner vertex in both forests. Then this modi�ed coloring can be extended in
a suitable 2-S2-fa coloring of the whole graph H.

A q-chain is a path of q consecutive 2-vertices. The con�guration in Figure 3.4 with
n = m = 1, p = r = 0 ensures that H contains no 4-chain. A 3-vertex is very weak if is
adjacent to a 3-chain and a >2-chain. A 3-vertex is weak if is adjacent to a 3-chain and a
very weak vertex. A >4-vertex or 3-vertex which is neither very weak nor weak is said to be
non-weak. We use the following discharging rule: each >3-vertex v gives:

• 1
6 to each 2-vertex that belong to a q-chain adjacent to v.

• 1
6 to each weak vertex adjacent to v.

• 1
3 to each very weak vertex adjacent to v.

Let us check that for every v ∈ V (H), d∗(v) > 7
3 :

• d(v) = 2: v gets 1
6 from the two >3-vertices adjacent to the q-chain containing v, so

d∗(v) = 2 + 21
6 = 7

3 .

• d(v) = 3 and v is very weak: the third neighbor of v is a >3-vertex (take n = 2, m =
1, p = r = 0) which is neither very weak (take n = 2, p = 1, m = r = 0) nor weak (take
n = 2, r = 1, m = p = 0). So v has a non-weak neighbor and d∗(v) > 3+ 1

3−2×31
6 = 7

3 .

• d(v) = 3 and v is weak: the third neighbor of v is a >3-vertex (take n = 2, p = 1, m =
r = 0) which is neither very weak (take n = 2, r = 1, m = p = 0) nor weak (take
m = 0, n = p = r = 1). So v has a non-weak neighbor and d∗(v) > 3 + 1

6 − 31
6 − 1

3 = 7
3 .
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• d(v) = 3 and v is non-weak: If all the neighbors of v are 2-vertices, then they belong
to 1-chains (take n = 2, m = 1, p = r = 0), so d∗(v) = 3 − 31

6 = 5
2 >

7
3 . Otherwise,

v has a non-weak neighbor (take any combination with n < 3, m = 0, n + p + r = 3).
Since v is non-weak, its two other neighbors are in the worst cases either two 2-chains,
a 2-chain and a very weak vertex, two very weak vertices, a 3-chain and a 1-chain, or a
3-chain and a weak vertex. In every case v gives at most 2

3 , so d
∗(v) > 3− 2

3 = 7
3 .

• d(v) = k > 4: If v has k 2-neighbors, then they belong to 1-chains (take n = k −
1, m = 1, p = r = 0), so d∗(v) = k − k 1

6 = 5k
6 > 10

3 > 7
3 . Otherwise, v has a

non-weak neighbor (take any combination with n < k, m = 0, n + p + r = k), so
d∗(v) > k − 3(k − 1)16 = k+1

2 > 5
2 >

7
3 .

3.3 Proofs of the negative results

3.3.1 Proof of Theorem 3.2.(1)

We de�ne the family of rooted trees Tn, n > 0. Take T0 = K2. For n > 1, Tn is obtained from
n copies of Tn−1 and another vertex, the root of Tn, which is adjacent to the root of every
copy of Tn−1. Let G0 be the 4-cycle (u0xv0y). For n > 1, Gn is obtained from 2n copies of
Gn−1, Gin−1 for 1 6 i 6 2n, and two vertices, un and vn, which are adjacent to the vertices
uin−1 and vin−1 of every copy of Gn−1.

Proposition 3.1. In any edge partition of Gn into two forests F1 and F2, either un or vn is
the root of a tree Tn ⊆ F2.

Proof. It is clear for G0, since F1 cannot cover all the edges of the cycle. So, we prove the
proposition by induction on n. Consider an edge partition of Gn into two forests F1 and F2.
Since uin−1 and vin−1 play similar role in Gin−1, we assume w.l.o.g. that uin−1 is the root of a
tree Tn−1 ⊆ F2 ∩Gin−1 for 1 6 i 6 2n. There is at most one vertex uin−1 such that the edges
unu

i
n−1 and vnuin−1 are in F1, otherwise there would be a 4-cycle in F1. Now if we consider

the remaining 2n − 1 vertices uin−1, then the pigeonhole principle ensures that either un or
vn, say un, has n neighbors uin−1 in F2. This means that un is the root of a tree Tn ⊆ F2 and
proves the proposition.

It is easy to see that every tree is a subtree of Tn for some n. So for every tree T , there
exist some Gn having no edge partition into a forest and a T -free forest. Since every Gn is
clearly 2-degenerate, planar, and bipartite, this proves Theorem 3.2.(1).

3.3.2 Proof of Theorem 3.2.(2)

v

Figure 3.5: The tree T and the graph HT .
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We de�ne another family of rooted trees Tn, n > 0. Take T0 = K1. For n > 1, Tn is
obtained from two copies of Tn−1, such that the root of one copy is the root of Tn and is
adjacent to the root of the root of the other copy.

Let T be a tree. We construct the graph HT by adding to T a new vertex v adjacent to
every vertex of T (see Figure 3.5). We now de�ne a family Gn of graphs, depending on T ,
with a speci�ed vertex s. Let G0 = K1. For n > 1, Gn is obtained from a copy H of HT , by
identifying every vertex of H with the speci�ed vertex of copy of Gn−1. The speci�ed vertex
of Gn is the vertex v of H.

Proposition 3.2. In any edge partition of Gn into a forest F1 and a T -free forest F2, the
speci�ed vertex s is the root of a 2-monochromatic copy of Tn.

Proof. It is clear that G0 contains a 2-monochromatic copy T0. We prove the proposition by
induction on n. Let v denote the speci�ed vertex of Gn. There exist two vertices x, y ∈ H \{s}
such that xy is colored 1, since otherwise H \{s} would be a 2-monochromatic copy of T . The
edges sx and sy cannot be both colored 1, since it would induce a 1-monochromatic triangle
(sxy). So we assume w.l.o.g. that sx is colored 2. By induction, both s and x are the root
of a 2-monochromatic copy of Tn−1 in the associated copy of Gn−1. So s is the root of a
2-monochromatic copy of Tn.

It is easy to see that every tree is a subtree of Tn for some n. So for every tree T , we can
construct a family of partial 2-trees Gi such that Gi have no edge partition into a forest and
a T -free forest if i > n for some n. This proves Theorem 3.2.(2).

3.4 Summary of results

The table below summarizes what is now known about the T -free arboricity of planar graphs
with given girth. Some bounds in this table are given by known results from the litterature.
The bounds on the acyclic chromatic number are reported from Theorem 1.3 and the values
of the arboricity are given by Nash-Williams' formula (1.1). Gonçalves proved that planar
graphs have caterpillar arboricity (i.e. S3-fa) at most four [28], and that there exist planar
graphs with bistar arboricity (i.e. S2-fa) �ve [29]. Corollary 3.1 gives new upper bounds on
the T -free arboricity of some graph classes for some trees T . New lower bounds are derived
from Theorem 3.2.(1) and Theorem 4.4.
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girth χa P4 S2 S3 S4 U arb
3 5 5 5 4 4 3-4 3
4 5 4 4 4 4 3-4 2
5 3-4 3-4 3-4 3-4 3 2-3 2
6 3-4 3-4 3-4 3 3 2-3 2
7-8 3 3 3 2-3 2-3 2-3 2
9 3 3 2-3 2-3 2-3 2-3 2

10-13 3 3 2-3 2 2 2 2
>14 3 3 2 2 2 2 2

Figure 3.6: Table of known results for planar graphs.
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Chapter 4

NP-complete colorings

In this chapter, we expose NP-completeness results concerning the colorings considered in the
two previous chapters. We chose to group them in a same chapter since their proofs often use
similar polynomial reductions.

4.1 Introduction

If C1 and C2 are graph classes, we note (C1 : C2) the problem of deciding whether a given
graph G ∈ C1 belongs to C2. If P1 and P2 are decision problems, we note P1 ∝ P2 if there is a
polynomial reduction from P1 to P2. Notice that if (C1 : C2) is NP-complete, then it implies
in particular that C1 is not a subclass of C2. Actually, whenever we obtained a graph-theoretic
negative result of the form �C1 6⊆ C2�, we have tried to strengthen it into a complexity result
of the form �(C1 : C2) is NP-complete�.

Kratochvil proved that planar (3,6 4)-sat is NP-complete [44]. In this restricted version
of sat, the graph of incidences variable-clause of the input formula must be planar, every clause
is a disjonction of exactly three literals, and every variable occurs in at most four clauses. A
subcoloring is an improper coloring of the vertex set such that each color class induces a union
of disjoint cliques. The problem 2-subcolorability is NP-complete on triangle-free planar
graphs with maximum degree 4 [22, 27]. Notice that on triangle-free graphs, a 2-subcoloring
corresponds to a vertex partition into two graphs with maximum degree 1. Finally, the problem
3-colorability is shown to be NP-complete on planar graphs with maximum degree 4 in
[26]. Thus, using our notations, we have that (P4∩S4 : S21 ) and (P3∩S4 : S30 ) are NP-complete.

4.2 Acyclic and/or improper colorings

Theorem 4.1. planar (3,6 4)-sat ∝ (P6 ∩ S3 : S0 ◦ S1)

Proof. In a S0 ◦ S1 or S0�S1 coloring c, a vertex v gets color c(v) = i if v is in the color class
Si, 0 6 i 6 1. We observe that the graph depicted in Figure 4.1(i) has no S0 ◦ S1 coloring
such that c(u) = c(v) = 1. This implies that the vertex u in the graph depicted in Figure
4.1(ii) must be colored 1. Given an instance I of planar (3,6 4)-sat, we build a graph G as

47
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x x
x

x x
x1 1

v

0 0
1 1

0 0

1 1

0 0

1 1

1

?

u

0

1 u

Figure 4.1: The forcing gadget for the reduction of Theorem 4.1.

[1] xx [1] xx [1] xx [1] xx

[1]xx [1]xx [1]xx [1]xx

Figure 4.2: The variable gadget for the reduction of Theorems 4.1 and 4.2.
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v2 v3

0

1

1

1

1

1
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1

0 0

1 1

1 1
0

x y

x y 101

1 100 [1]

0 [1]

(i) (ii) (iii)

Figure 4.3: The clause gadget for the reduction of Theorems 4.1
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follows. We replace every variable of I by a copy the variable gadget depicted in Figure 4.2.
We replace every clause of I by a copy the clause gadget depicted in Figure 4.3(i). The way we
link variables to clauses is best explained with an example: for a clause gadget C = (x, y, z)
and variables gadgets X,Y, Z, we add an edge between a big vertex x of X and the vertex
v1 of C, between a big vertex y of Y and the vertex v2 of C, and between a big vertex z of
Z and the vertex v3 of C. The boolean value true (resp. false) is associated with the color 0
(resp. 1). We see in �gure 4.3(ii) that an unsatis�ed clause is not S0 ◦ S1 colorable, whereas
any satis�ed clause (i.e. such that at least one v1, v2, v3 is colored 1) is colorable, see �gure
4.3(ii). This means that I is satis�able if and only if G belongs to S0 ◦ S1. We easily check
that G is indeed planar, with girth 6, and maximum degree 3.

Notice that on triangle-free graphs, the S0◦S1 coloring correspond to the (1, 2)-subcoloring
de�ned in [47]. Theorem 4.1 improves a result in [47] stating that (P4 ∩ S3 : S0 ◦ S1) is NP-
complete.

Theorem 4.2. planar (3,6 4)-sat ∝ (P10 ∩ S3 ∩ bip : S0 � S1)

0 1

1

1 1

1

1

1

u

Figure 4.4: The forcing gadget for the reduction of Theorem 4.2.

Proof. The proof is similar to the previous one, with the following two changes. We use
another forcing gadget depicted in Figure 4.4. In any S0 � S1 coloring of the forcing gadget,
the vertex u must be colored 1. The clause gadget is obtained from the one in Figure 4.3(i) by
deleting the vertex forced to be colored 1 and its two 2-neighbors. If a clause is unsatis�ed,
then its clause gadget is not colorable (an alternating cycle C12 is forbidden). If a clause is
satis�ed, then its clause gadget is colorable (the coloring in Figure 4.3(iii) is acyclic).

Theorem 4.3. (P4 ∩ S4 : S21 ) ∝ (P8 ∩ S4 ∩ bip : S(2)1 )

Proof. Consider the graph depicted in Figure 4.5(i). Any S21 coloring such that the vertex u

is colored 1 and has no neighbor colored 1 contains an alternating cycle C8. So in every S(2)1

coloring, both u and one neighbor of u must get the same color. Now we use three copies
of this graph in the forcing gadget depicted in Figure 4.5(ii). Since the cycle of this forcing
gadget cannot be alternating, two types of special edges are forced: monochromatic edges and
edges whose endpoints have distinct colors and have a neighbor of the same color. Given a



50 CHAPTER 4. NP-COMPLETE COLORINGS

2

1

212

1

2
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1[2]

[1] [2]

1

u

Figure 4.5: The forcing gadget for the reduction of Theorem 4.3.
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ect..

Figure 4.6: The vertex gadget for the reduction of Theorem 4.3.

planar graph G, we construct the graph G′ as follows. We replace every vertex of G by a copy
of the vertex gadget depicted in Figure 4.6 and for every edge vw we link a big vertex ui in the
gadget of v to a small vertex ui in the gadget of w. In any S(2)1 coloring of the vertex gadget,
all ui's get the same color, say 1, and there exists no alternating path between distinct ui's.
This common color in the gadget of a vertex v corresponds to the color of v in a S21 coloring
of G. Notice that if one of the ui's, say u2, has a neighbor colored 1 not in the gadget, then
every other ui has a neighbor colored 1 in the gadget. Thus we can obtain a S(2)1 coloring of
G′ from a S21 coloring of G and vice-versa.

Theorem 4.4. (P3 ∩ S4 : S30 ) ∝ (P4 ∩ S4 ∩ bip ∩ D2 : S(3)0 )

2

1

3
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32 1

1

23

1

12 3

1

32

3 221

u2 u3 u4 u5 u6 u7

u1

etc..

Figure 4.7: The vertex gadget for the reduction of Theorem 4.4.

Proof. Given a planar graph G, we construct the graph G′ as follows. We replace every vertex
of G by a copy of the vertex gadget depicted in Figure 4.7 and for every edge vw we link a
big vertex ui in the gadget of v to a small vertex ui in the gadget of w. The given 3-acyclic
coloring of the vertex gadget is the unique one up to permutation of colors. Notice that all ui's
get the same color and there exists no alternating path between distinct ui's. This common
color in the gadget of a vertex v corresponds to the color of v in a 3-coloring of G. Thus G′

is acyclically 3-colorable if and only if G is 3-colorable.
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Theorem 4.5. (P3 ∩ S4 : S30 ) ∝ (P4 ∩ S8 ∩ bip ∩ D2 : S(4)0 )

1

2

1 134 34

2

3 4

11 4

3

3

21

⇓ ⇓

2 11

(i) (ii)

1 2

Figure 4.8: The forcing gadgets for the reduction of Theorem 4.5.
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4 2 4 2 4

Figure 4.9: The vertex gadget for the reduction of Theorem 4.5.

Proof. Consider the graph depicted in Figure 4.8(i). Any S(4)0 coloring is such that x and y get
the same color. Moreover, this gadget has a coloring such that there exists only one alternating
path between x and y (the path colored 1 and 2 in Figure 4.8(i)). In the graph depicted in
Figure 4.8(ii), the vertices x and y must have distinct colors and there is no alternating path
between x and y. Given a planar graph G, we construct the graph G′ as follows. We replace
every vertex of G by a copy of the vertex gadget depicted in Figure 4.9 and for every edge vw
we connect a vertex ui (resp. ti) in the gadget of v to a vertex ui (resp. ti) in the gadget of

w using the forcing gadget (ii) (resp. (i)). In any S(4)0 coloring of the vertex gadget, all ui's
get the same color and all ti's get a same color distinct from the color of the ui's. The color
of the ui's in the gadget of a vertex v corresponds to the color of v in a 3-coloring of G. The
color of the ti's is common to every vertex gadget in G′, assuming that G is connected. Thus
G′ is acyclically 4-colorable if and only if G is 3-colorable.

4.3 Acyclic list colorings

Theorem 4.6. It is NP-complete to decide whether a planar graph G, given with an acyclic
4-coloring and 4-list assignment L, is L-colorable.
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Figure 4.10: The forcing gadget Fa,b: 4-list assignment and acyclic 4-coloring.
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Proof. We use again a reduction from (P3 ∩ S4 : S30 ). The proof for the restriction to graphs
with maximum degree 4 [26] shows that we can assume that the input graph G is acyclically
4-colorable and that an acyclic 4-coloring can be constructed in polynomial time.

Let p1 and p2 be adjacent vertices with lists Lp1 = Lp2 = {1, 2, 3, 4}. We take three copies
of the graph Fa,b depicted in Figure 4.10: F4,1, F4,2, F4,3. We identify all the vertices v1 (resp.
v2) to the vertex p1 (resp. p2) to obtain the forcing gadget. We check that Fa,b is not colorable
if c(v1) = a and c(v2) = b. So, the forcing gadget is colorable if and only if c(v1) 6= 4. Given
an input graph G for (P3 ∩ S4 : S30 ), we assign to every vertex v in G the list {1, 2, 3, 4} and
identify v to the vertex p1 of copy of the forcing gadget. We thus obtain a graph G′ with an
assignment L of lists of size four. Notice that any 3-coloring of G extends to an L-coloring of
G′ and conversely any L-coloring of G′ induces a 3-coloring of G.

4.4 T -free arboricities

Theorem 4.7. The following problems are NP-complete:

1. Deciding whether a graph G ∈ P4 ∩ D2 ∩ bip satis�es P4-fa(G) 6 3.

2. For every n > 2, deciding whether a graph G ∈ P4 ∩ D2 ∩ bip satis�es Sn-fa(G) 6 3.

3. For every n > 3, deciding whether a graph G ∈ P6 ∩ bip satis�es Sn-fa(G) 6 2.

4. Deciding whether a graph G ∈ P8 ∩ bip satis�es S2-fa(G) 6 2.

5. For every n, deciding whether a graph G ∈ Pn ∩ S3 ∩ bip satis�es P4-fa(G) 6 2.

6. Deciding whether a graph G ∈ P3 satis�es P4-fa(G) 6 4.

Let us denote by L(G) the line graph of G and by L the class of line graphs of "planar
bipartite graphs with maximum degree three and girth at least six". Notice that graphs in
L are planar with maximum degree four and line graphs of bipartite graphs, thus perfect
[38]. Alternatively, we can say that they are planar (K1,3,K4,K

−
4 , C4,odd-hole)-free (this

implies the maximum degree four). As we already mentioned, if G is triangle-free, then P4-
fa(G) = χ′sub(G) = χsub(L(G)). Thus, edge subcolorability is NP-complete on planar
graphs. This answers an open question of Fiala and Le [23].

Corollary 4.1. Deciding whether a graph G ∈ L satis�es χsub(G) 6 2 is NP-complete.

Shermer proved that recognizing graphs with caterpillar arboricity two is NP-complete
[73], but their reduction produces non-planar graphs that contain copies of K4. Theorem
4.7.(3) shows in particular that this result still holds if the input graph is restricted to the
class G ∈ P6 ∩ bip.

Theorem 4.7.(2) implies the existence of bipartite planar graphs with caterpillar arboric-
ity four and, as we already mentioned, the track number of a triangle-free graph equals its
caterpillar arboricity (i.e. S3-fa). This answers an open question of Gyárfás and West [33].

Corollary 4.2. There exist bipartite planar graphs with track number four.
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Theorems 4.7.(1), 4.7.(2), and 4.7.(6) are each obtained by a polynomial reduction from
(P3 ∩ S4 : S30 ). Theorems 4.7.(3), 4.7.(4), and 4.7.(5) are each obtained by a polynomial
reduction from (P4 ∩ S4 : S21 ). Let us now describe the reductions for Theorems 4.7.(1) and
4.7.(2) (resp. Theorems 4.7.(3) and 4.7.(4)). Given a planar graph (resp. a triangle-free planar
graph) G, we construct a graph G′ that belongs to the class speci�ed in the theorem as follows:
we add a "vertex gadget" to every vertex v of G and replace every edge uv of G by an "edge
gadget". The vertex gadget forces the vertex v to be an inner vertex in at most one forest
Fi for any k-T -fa coloring (with k and T as mentioned in the theorem). The edge gadget is
such that G′ is k-T -fa colorable if and only if G is 3-colorable (resp. 2-subcolorable). More
precisely if G has a vertex coloring c, then G′ has k-T -fa coloring such that every original
vertex v is an inner vertex in Fc(v), and conversely, if G′ has a k-T -fa coloring such that every
original vertex v is an inner vertex of Fi, then taking c(v) = i gives a vertex coloring of G.

4.4.1 Proof of Theorem 4.7.(1)

u v
=⇒

u v
u=⇒u

Figure 4.11: The vertex gadget and the edge gadget for the reduction of Theorem 4.7.(1).

Given a planar graph G, we construct G′ by adding to every vertex of G the vertex gadget
depicted in Figure 4.11 and by subdividing every edge of G.
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Figure 4.12: 3-P4-fa coloring with conditions on x1 and x2.

Given a planar graph G, we construct G′ by adding to every vertex of G the vertex gadget
depicted in Figure 4.11 and by subdividing every edge of G. First, we comment on how to
3-P4-fa color the graph depicted in Figure 4.12. Notice that if a vertex has two incoming edges
colored 1 and 2, all its remaining incident edges have to be colored 3. In the �rst drawing,
we impose that all the edges xiyj are oriented toward yj . This implies that all the edges yizj
are oriented toward zj , and that we just used two colors for these edges. This �nally implies
that all the remaining edges incident to the zi's have the same color, which is not allowed. In
the second drawing, we impose that only one edge xiyj is oriented toward x2 and that the
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edges incident to x1 have the same color, 1. The edges x2y1 and y2x2 have to be respectively
colored 2 and 3. This implies that the edges y1zi are oriented toward zi and colored 3. This
implies that the edges y2zi are oriented toward zi and colored 2. This �nally implies that all
the remaining edges incident to the zi's have the same color, which is not allowed. In the third
drawing, we impose that just one edge xiyj is oriented toward x2, that the edges incident to
x1 have distinct colors, 1 and 2, and that the edges x1y2 and x2y1 have the same color, 1.
This implies that the edges y1zi are oriented toward zi and colored 3. This implies that the
edges y2zi are oriented toward zi and colored 1. This �nally implies that all the remaining
edges incident to the zi's have the same color, which is not allowed. In the last drawing, we
see a 3-P4-fa coloring of the graph.

This implies that there is not much �exibility for coloring the vertex gadget in Figure 4.11.
Actually, in any 3-P4-fa coloring of the vertex gadget, the two edges incident to u have to
be oriented toward u. So u is an inner vertex in at most one forest, say F1. In any 3-P4-fa
coloring of G′, an edge incident to u that belongs to an edge gadget must be colored 1 and
must be oriented toward the subdivision vertex. Thus the edge gadget forces the vertices u
and v to be inner vertices in distinct forests.

Assume that G has a 3-coloring c, then for any vertex u ∈ VG we color its vertex gadget in
G′ so that u is an inner vertex in Fc(u) and we extend this 3-P4-fa coloring to G′. Conversely,
suppose G′ has a 3-P4-fa coloring, we color the vertices of G accordingly to the forest for
which they are an inner vertex in the 3-P4-fa coloring of G′, and then we obtain a 3-coloring
of G.

4.4.2 Proof of Theorem 4.7.(2)

=⇒
uvu

2n− 1

6(n− 1)
v

u

=⇒
u

xuv

yuv

Figure 4.13: The vertex gadget and the edge gadget for the reduction of Theorem 4.7.(2).

Given a planar graph G, we construct G′ by adding to every vertex of G the vertex gadget
depicted in Figure 4.13 and by replacing every edge uv of G by a cycle (uxuvvyuv). Using
similar arguments as in the previous proof, we show that in any 3-Sn-fa coloring of the vertex
gadget, the vertex u is an inner vertex in exactly one forest, say F1. This implies that an edge
incident to u that belongs to an edge gadget must get color 1. Consider an edge uv ∈ EG.
Since in a 3-Sn-fa coloring of G′, the edges uxuv and uyuv (resp. vxuv and vyuv) have the
same color, the vertices u and v have to be inner vertices in distinct forests in order to avoid
a monochromatic 4-cycle (uxuvvyuv). Assume that G has a 3-coloring c, then for any vertex
u ∈ VG we color its vertex gadget in G′ so that u is an inner vertex in Fc(u) and then extend
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this 3-P4-fa coloring to G′. Conversely, suppose G′ has a 3-Sn-fa coloring, we color the
vertices of G according to the forest in which they are inner vertices in the 3-Sn-fa coloring
of G′. Thus we obtain a 3-coloring of G.

4.4.3 Proof of Theorem 4.7.(3)

2n− 1 n

2n− 2

C

n− 2
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D
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A B

C

D

C

A

A

Figure 4.14: The vertex gadget for the reduction for the reduction of Theorem 4.7.(3).

Given a triangle-free planar graph G, we construct G′ by adding to every vertex of G
the vertex gadget depicted in Figure 4.14 and by subdividing every edge of G. A 2-Sn-fa
coloring of the vertex gadget forces an original vertex of G to be an inner vertex in at most
one forest, say F1, and to be incident to at least n − 2 unoriented edges of F1. We consider
now 2-Sn-fa colorings of the edge gadget of an edge uv of G. If u and v are inner vertices
in distinct forests, then we can 2-Sn-fa color the edges of the edge gadget and orient them
toward the subdivision vertex. If u and v are inner vertices in the forest F1, then both edges
of the edge gadget have to be unoriented edges colored 1. Thus u and v are now incident to
n − 1 unoriented edges of F1. This shows that G has a 2-subcoloring if and only if G′ has a
2-Sn-fa coloring.

4.4.4 Proof of Theorem 4.7.(4)

BA C

B

BB C C

A

A

A

x

Figure 4.15: The vertex gadget for the reduction for the reduction of Theorem 4.7.(4).

Given a triangle-free planar graph G, we construct G′ by adding to every vertex of G a
copy of the vertex gadget depicted in Figure 4.15 and by replacing every edge uv of G by a
copy of the graph depicted in Figure 4.16, left. A 2-S2-fa coloring of the vertex gadget forces
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=⇒
vu u v 1
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Figure 4.16: The edge gadget for the reduction for the reduction of Theorem 4.7.(4).

that the original vertex of G is an inner vertex in at most one forest, say F1, but may not be
incident to an unoriented edge of F1. We consider now 2-S2-fa colorings of the edge gadget
of an edge uv of G. If u and v are inner vertices in distinct forests, then we can 2-S2-fa color
the edge gadget such that neither u nor v is incident to an unoriented edge of the edge gadget
(see Figure 4.16, middle). If u and v are inner vertices in the forest F1, then in any 2-S2-fa
coloring of the edge gadget, both u and v are incident to an unoriented edge colored 1 (see
Figure 4.16, right). This shows that G has a 2-subcoloring if and only if G′ has a 2-S2-fa
coloring.

4.4.5 Proof of Theorem 4.7.(5)
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Figure 4.17: The vertex gadget and the edge gadget for the reduction of Theorem 4.7.(5).

Given a triangle-free planar graph G, we construct G′ by replacing every vertex of G by
the vertex gadget depicted in Figure 4.17, left. For every edge uv of G, we identify two vertices
xi of the gadget of u with two vertices xi of the gadget of v as in Figure 4.17, middle. In any
2-P4-fa coloring of the vertex gadget, all edges incident to a vertex xi have the same color
and are oriented toward xi, except at most one special edge (the one incident to x2 in Figure
4.17). This common color in the vertex gadget of a vertex u corresponds to the color of u
in a 2-subcoloring of G. We consider now 2-P4-fa colorings of the edge gadget of an edge
uv of G. If the gadgets of u and v have the distinct common colors, then we can 2-P4-fa
color the edge gadget without using any special edge (see Figure 4.17, middle). If the gadgets
of u and v have the same common color 1, then in any 2-P4-fa coloring of the edge gadget
uses the special edge of both vertex gadget (see Figure 4.17, right). This shows that G has
a 2-subcoloring if and only if G′ has a 2-P4-fa coloring. We easily check that the resulting
graph G′ is planar, bipartite, with maximum degree 3, and may have arbitrary girth (see the
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dotted lines in Figure 4.17).

4.4.6 Proof of Theorem 4.7.(6)

The proof is similar to the reduction (P3 ∩ S4 : S30 ) ∝ (P4 ∩ S8 ∩ bip ∩ D2 : S(4)0 ) (Theorem
4.5).
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Figure 4.18: The forcing gadgets for the reduction of Theorem 4.7.(6).
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Figure 4.19: The vertex gadget for the reduction of Theorem 4.7.(6).

Consider the forcing gadgets depicted in Figure 4.18. For any 4-P4-fa coloring of C, the
vertex x is incident to edges of all four forests and x is a center in at least one forest. Thus
in any 4-P4-fa coloring of D, the vertex u is a center in at most one forest. The gadget
represented by a dotted edge in Figure 4.19 forces that the vertices u and v are centers in a
common forest. The vertex gadget is such that the vertex x is a center in at most two forests,
the ui's and the ti's are centers in at most one forest. The 2-path between ui and ti (resp. ti
and ui+1) implies that ui and ti (resp. ti and ui+1) must be centers in distinct forests. Now,
because of the dotted edges, all the ui's are centers in a same forest and all the ti's are centers
in a same forest distinct from that of the ui's.

Given a planar graph G, we construct the graph G′ as follows. We replace every vertex of
G by a copy of the vertex gadget and for every edge vw of G we connect a vertex ui (resp.
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ti) in the gadget of v to a vertex ui (resp. ti) in the gadget of w using a copy of the gadget
represented by a dotted edge (resp. a 2-path). In any 4-P4-fa coloring of G′, the color of
the ti's is common to every vertex gadget in G′, assuming that G is connected. Moreover if
vw ∈ E(G), then the ui's in the gadget of v and the ui's in the gadget of w cannot be centers
in the same forest. Thus G′ has a 4-P4-fa if and only if G is 3-colorable.
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Chapter 5

Conclusion

We �rst studied acyclic improper colorings, oriented colorings, and their relationship. In
particular, we tried to see when a result about acyclic improper colorings could lower the
known upper bound on the oriented chromatic number of a graph class. This situation occurs
for planar graphs, where the implication χa(P3) 6 5 =⇒ χo(P3) 6 80 provides the best known
upper bound on χo(P3). A �rst negative result is that the inequality χo(C0 � · · · � Ck−1) 6
2k−1

∑i<k
i=0 χo(Ci) is tight for k > 3. A second negative result states that if every planar graph

has an acyclic improper coloring with at most four colors, then the oriented chromatic number
of a color class distinct from S0 is at least 15.

We were able to improve the upper bound on the oriented chromatic number of two
signi�cant graph classes, but the proof do not use any acyclic improper coloring. Precisely,
we obtained that the strong oriented chromatic number of triangle-free planar graphs (resp.
triangle-free 2-outerplanar graphs) is at most 59 (resp. 27) via an homomorphism to the
Paley tournament QR59 (resp. QR27). The proofs required to formalize the notion of Sk,n
property of an oriented graph and to check these properties by computer in the case of Paley
tournaments. Notice that Marshall used a generalization of Sk,n properties in his impressive
proof of χs(P3) 6 271.

There remain interesting cases where acyclic improper colorings could be useful: A proof
that P5 ⊆ S(3)0 or P5 ⊆ D(2)

1 would lower the known upper bound on χo(P5) from 19 to 12.
Similarly, a proof that P6 ⊆ S0 �D1 would lower the known upper bound on χo(P6) from 11
to 8.

A proof that P5 ⊆ S(3)0 would also have important implications in edge coloring: χa(P5) =
3 implies P4-fa(P5) = 3. Our T -free arboricities not only relate to acyclic colorings: we were
able to obtain (negative) results concerning other parameters, namely the track number and
the subchromatic number, via NP-completeness proofs for some T -fa colorings.

We also studied the list version of acyclic colorings and obtained somewhat surprising
results. There exist graphs G with acyclic chromatic number and list chromatic number at
most 3, and arbitrarily large acyclic list chromatic number. For planar graphs, on the other
hand, χa(P3) = χl(P3) = 5 and χla(P3) = 5 is conjectured by Borodin et al. [9].
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Second part

Combinatorics on words



Chapter 6

Preliminaries

6.1 Repetitions, patterns, and letter frequencies

In this part, we consider words over a �nite alphabet.

Let Σi denote the i-letter alphabet {0, 1, . . . , i− 1} and let ε denote the empty word.

A morphism is an application h : Σ∗s −→ Σ∗e such that h(xy) = h(x)h(y). So a morphism
h : Σ∗s −→ Σ∗e satis�es h(ε) = ε and is completely de�ned by the couples (a, h(a)) for a ∈ Σs.
For q > 2, a morphism h : Σ∗s −→ Σ∗e is said q-uniform if |h(a)| = q for every a ∈ Σs. We
say that a word w ∈ Σ∗s avoids a set F ⊂ Σ∗s of words if w does not contain a word in F as a
factor, i.e. w cannot be written as w = lsr with l, r ∈ Σ∗s, s ∈ F

A square is a repetition of the form xx, where x is a nonempty word; an example in English
is hotshots. It is easy to see that every word of length at least 4 over Σ2 must contain a square,
so squares cannot be avoided in in�nite binary words. However, Thue showed [6, 75, 76] that
there exist in�nite words over Σ3 that avoid squares.

Squares can be seen as repetitions of exponent 2. For α > 1 a rational number, we say
that y is an α-repetition if we can write y = xnx′ with x′ a pre�x of x and |y| = α|x|. For
example, the French word entente is a 7

3 -repetition and the English word tormentor is a
3
2 -repetition. An α+-repetition is a α′-repetition for some α′ > α. Brandenburg [12] and
(implicitly) Dejean [19] considered the problem of determining the repetition threshold; that
is, the smallest exponent Rk such that there exist an in�nite word over Σk that avoids R+

k -
repetitions. Dejean proved that R3 = 7

4 . She also conjectured that R4 = 7
5 and Rk = k

k−1 for
k > 5. In its full generality, this conjecture is still open, although Pansiot [61] proved that
R4 = 7

5 and Moulin-Ollagnier [52] proved that Dejean's conjecture holds for 5 6 k 6 11. For
more information, see [14].

Instead of avoiding all squares, one interesting variation is to avoid all su�ciently large
squares. Let us de�ne the length of a square x2 as |x|. Entringer, Jackson, and Schatz [21]
showed that there exist in�nite binary words avoiding all squares of length at least three. For
some other papers about avoiding su�ciently large squares, see [20, 24, 62, 63, 68].

In Chapter 7, we study a generalization of the repetition threshold of Dejean which handles
avoidance of all su�ciently large repetitions. Pansiot suggested such a generalization at the
end of his paper [61].
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Let α > 1 be a rational number, and let ` > 1 be an integer. A word w is a (α, `)-repetition
if we can write it as w = xnx′ where x′ is a pre�x of x, |x| = `, and |w| = α|x|. Notice that
an α-repetition is an (α, `)-repetition for some `. We say a word is (α, `)-free if it contains no
factor that is a (α′, `′)-repetition for α′ > α and `′ > `. We say a word is (α+, `)-free if it is
(α′, `)-free for all α′ > α.

For integers k > 2 and ` > 1, we de�ne the generalized repetition threshold R(k, `) as the
real number α such that, over Σk, there exists

(a) either an (α+, `)-free in�nite word, but all (α, `)-free words are �nite;

(b) or an (α, `)-free in�nite word, but for all ε > 0, all (α− ε, `)-free words are �nite.

Notice that R(k, 1) = Rk corresponds to the repetition threshold.

Theorem 6.1. The generalized repetition threshold R(k, `) exists and is �nite for all integers
k > 2 and ` > 1. Furthermore, 1 + `/k` 6 R(k, `) 6 2.

Proof. De�ne S to be the set of all real numbers α > 1 such that there exists an (α, `)-free
in�nite word over Σk. Since Thue proved that there exists an in�nite word over a two-letter
alphabet (and hence over larger alphabets) avoiding (2+)-repetitions, we have that β = inf S
exists and β 6 2. If β ∈ S, we are in case (b) above, and if β 6∈ S, we are in case (a). Thus
R(k, `) = β.

For the lower bound, note that any word of length at least k` + ` contains at least k` + 1
factors of length `. Since there are only k` distinct factors of length `, such a word contains
at least two occurrences of some word of length `, and hence is not (1 + `

k`
, `)-free.

It may be worth noting that we do not know any instance where case (b) of the de�nition
of generalized repetition threshold above actually occurs, but we have not been able to rule it
out.

Squares can be seen as occurrences of the pattern AA. A pattern P is a �nite word over
the alphabet {A,B, . . . }. An occurrence of P is the image of P by a non-erasing morphism
φ : {A,B, . . . }∗ −→ Σ∗e. Non-erasing means that for all a ∈ {A,B, . . . } , φ(a) 6= ε. A word
w ∈ Σ∗e avoids a pattern P if avoids the set of occurrences of P . A pattern P is k-avoidable if
there exists an in�nite word w ∈ Σ∗k that avoids P . The avoidability index µ(P ) of a pattern
P is the smallest integer k such that P is k-avoidable.

The avoidability index of some ternary patterns (i.e. patterns over {A,B,C}) was left
open in Cassaigne's thesis. In particular, ABCBABC was the only avoidable ternary pattern
not known to be 3-avoidable. We obtain that µ(ABCBABC) = 2, which gives the following
result.

Theorem 6.2. Every ternary pattern is either unavoidable or 3-avoidable.

In Chapter 8, we complete the determination of the avoidability index of all ternary pat-
terns, i.e. patterns over {A,B,C}.
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Given a factorial language L de�ned by an alphabet size and a set of forbidden repetitions,
we denote by fmin (resp. fmax) the minimal (resp. maximal) letter frequency in an in�nite
word that belong to L. Letter frequencies have been studied for binary repetition-free words
[40] and ternary square-free words [65, 72]. We consider here the frequency of the letter 0.
Let |w|0 denote the number of occurrences of 0 in the �nite word w. So the letter frequency
in w is |w|0|w| . In Chapter 9, we improve the estimation of the minimal letter frequencies given
in [40, 72]. We also provide new conjectures and results about extremal letter frequencies for
other languages.

6.2 A method to produce morphisms

This section is devoted to the method [58] we used to �nd all the positive results in this part.

A q-uniform morphism h : Σ∗s → Σ∗e is synchronizing if for any a, b, c ∈ Σs and v, w ∈ Σ∗e,
if h(ab) = vh(c)w, then either v = ε and a = c or w = ε and b = c.

Lemma 6.1. Let α, β ∈ Q, 1 < α < β < 2 and n ∈ N∗. Let h : Σ∗s → Σ∗e be a synchronizing
q-uniform morphism (with q > 1). If h(w) is (β+, n)-free for every α+-free word w such that

|w| < max
(

2β
β−α ,

2(q−1)(2β−1)
q(β−1)

)
, then h(t) is (β+, n)-free for every (�nite or in�nite) α+-free

word t.

Proof. Suppose w is an α+-free word such that h(w) is not (β+, n)-free and w is of minimum
length with this property. Thus h(w) contains a β+-repetition, that is, a factor uvu such that
|uvu|
|uv| > β. Denote x = |u| and y = |v|. Since |uvu||uv| = 2x+y

x+y > β, we have y < 2−β
β−1x. If

x > 2q − 1, then each occurrence of u contains at least one full h-image of a letter. As h is
synchronizing, the two occurrences of u in uvu contain the same h-images and in the same
positions. Let U be the factor of w that contains all letters whose h-images are contained in
u, and let V be the factor of w that contains all letters whose h-images intersect v. Denoting
X = |U | and Y = |V |, we have Y q < y + 2q and Xq > x− 2q, or equivalently x < (X + 2)q.
Since UV U is a factor of w and w is α+-free, then 2X+Y

X+Y 6 α, which gives X 6 α−1
2−αY . Now

we have

Y q < y + 2q <
2− β
β − 1

x+ 2q <
2− β
β − 1

(X + 2)q + 2q 6
2− β
β − 1

(
α− 1

2− αY + 2

)
q + 2q,

implying that Y < 2(2−α)
β−α . By the minimality of w we get

|w| 6 2 + Y + 2X 6 2 + Y

(
1 + 2

α− 1

2− α

)
< 2 +

2(2− α)

β − α
α

2− α =
2β

β − α.

If x 6 2q − 2, then y < 2−β
β−1(2q − 2) and thus 2x + y < 2β

β−1(q − 1). The minimality of w

implies that (|w| − 2)q 6 |uvu| − 2 = 2x+ y− 2. By the above we get that |w| < 2(q−1)(2β−1)
q(β−1) ,

which completes the proof.

For convenience, let us denote the maximum in Lemma 6.1 by maxα,β,q. Using Lemma
6.1 with Rs < α) allows us to check that the h-image of any (in�nite) α+-free s-ary word is
(β+, n)-free with a �nite amount of computation.
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We want to �nd a q-uniform morphism h : Σ∗s → Σ∗e such that for every α+-free word
t ∈ Σ∗s, h(t) satis�es a property P, where P consists in some (β+, n)-freeness properties and
the avoidance of a �nite set S of words. We �x α, β ∈ R, 1 < α < β < 2 and e, n, q ∈ N.
We use depth-�rst search to �nd an e-ary word w of size s× q which de�nes the morphism h
by posing w = h(0)h(1) . . . h(s− 1). Obviously, we can restrict the search to words satisfying
h(s− 1) ≺ · · · ≺ h(1) ≺ h(0), where ≺ is the lexicographic order of Σq

e. We prune the search
tree by checking property P on the pre�xes of a potential w. If no morphism is found, we
increase the value of q and try again.

6.3 Exponential growth

Let t(n) be the number of words of length n satisfying a property P. We say that there exist
polynomially (resp. exponentially) many words satisfying P if there exists a constant c > 1
such that t(n) 6 nc + c (resp. t(n) > cn) for every n.

The repetition threshold for binary words is 2, and this result is tight in the following
senses:

1. There are only polynomially many 2+-free binary words.

2. There exist arbitrarily large squares in any large enough 2+-free binary word.

In this section we show that no similar situation occurs for ternary and 4-ary words. We use
the following easy lemma, which is already implicitely used in [39].

Lemma 6.2. There are at least 2dnk e R+
k -free words of length n over Σk+1.

Proof. Consider an R+
k -free word w in Σn

k . At least one letter in Σk, say 0, occurs at least
⌈
n
k

⌉
times in w. The letter k belongs to Σk+1 but does not belong to Σk. Notice that replacing
zero or more occurrences of 0 by an occurrence of k in w produces an R+

k -free word of length

n over Σk+1, and that we can obtain at least 2dnk e such words.

Theorem 6.3.

1. There exist exponentially many 7
4

+
-free ternary words with no large 7

4 -repetition.

2. There exist exponentially many 7
5

+
-free 4-ary words with no large 7

5 -repetition.

Proof. By Lemma 6.2, there exist exponentially many 7
5

+
-free words over Σ5 and exponentially

many 5
4

+
-free words over Σ6.

The following 59-uniform morphism h is such that for any 7
5

+
-free word t ∈ Σ∗5, h(t) ∈ Σ∗3

is 7
4

+
-free and

(
3
2

+
, 10
)
-free.

0 7→ 01020121021201210120102101202102012102120210120102101210212
1 7→ 01020120210201210212012101201021202102012021201210201021012
2 7→ 01020120210201210120102101202120121021202102012021201021012
3 7→ 01020120210201021201210201202101201021012102120210201021012
4 7→ 01020120210121020102120121012021020120212012102010212021012
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The following 132-uniform morphism h is such that for any 5
4

+
-free word t ∈ Σ∗6, h(t) ∈ Σ∗4

is 7
5

+
-free and

(
61
44

+
, 11
)
-free.

0 7→ 0120310213201230210320130231203213012310213203123013210312013021
03201231021301203210231201321031230132031021301231032013023120321023
1 7→ 0120310213201230210320130231032130123102132031230132102312013021
03201230213203102301203210231201321031230213201231032130231201321023
2 7→ 0120310213201230210320130231032130120310230132103120130231032012
30213203102301203210231201321031230132031021301231032130231201321023
3 7→ 0120310213201230210312013210231203213023103201230213203102301321
03120130210320123102132031230132102312032130231032013021031201321023
4 7→ 0120310213201230210312013023103213012310213203123013210312013021
03201230213203102301203213023120132103123021320123103213023120321023
5 7→ 0120310213201230210312013023103213012031023013210312013021032012
30213203102301203210231201302103123013203102130123103213023120321023

We have not been able to extend Theorem 6.3 to Σ5. However, we believe that the following
strong form of Dejean's conjecture holds.

Conjecture 6.1. For every k > 5, there exist exponentially many k
k−1

+
-free words over Σk.

The C sources of the programs and the morphisms discussed in this part are available at:
http://dept-info.labri.fr/~ochem/morphisms/.
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Chapter 7

Generalized repetition thresholds

In this chapter, we provide new values and conjectured values of some generalized repetition
thresholds R(k, `).

7.1 Lower bounds

Figure 7.1 gives the established and conjectured values of R(k, `). Entries in bold have been
proved; the others (with question marks) are merely conjectured. However, in either case, if
the entry for (k, `) is α, then we have proved, using the usual tree-traversal technique discussed
below, that there is no in�nite (α, `)-free word over Σk.

The proved results are as follows:

• R(2, 1) = R(2, 2) = 2 follows from Thue's proof of the existence of in�nite overlap-free
binary words, together with the observation of Entringer, Jackson and Schatz [21] that
squares of size at least two are unavoidable over Σ2;

• The values of R(k, 1) = Rk, 3 6 k 6 11 correspond to the proven cases of Dejean's
conjecture.

• R(2, 3) = 8
5 , R(2, 4) = 3

2 , R(2, 5) = 7
5 , R(2, 6) = 4

3 , R(3, 2) = 3
2 and R(3, 3) = 4

3 are new
and are proved in Section 7.2.

We now explain how the conjectured results were obtained. We used the usual tree-
traversal technique, as follows: suppose we want to determine if there are only �nitely many
words over the alphabet Σk that avoid a certain set of words S. We construct a certain tree
T and traverse it using breadth-�rst or depth-�rst search. The tree T is de�ned as follows:
the root is labelled ε (the empty word). If a node w has a factor contained in S, then it is a
leaf. Otherwise, it has children labelled wa for all a ∈ Σk. It is easy to see that T is �nite if
and only if there are �nitely many words avoiding S.

We can take advantage of various symmetries in S to speed traversal. For example, if S is
closed under renaming of the letters (as is the case in the examples we study), we can label
the root with an arbitrary single letter (instead of ε) and deduce the number of leaves in the
full tree by multiplying by k.
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R(k, `) `

k

1 2 3 4 5 6 7 8

2 2 2 8
5

3
2

7
5

4
3

31
24? 24

19?

3 7
4

3
2

4
3

5
4? 6

5? 7
6? 8

7? 9
8?

4 7
5

5
4? 6

5? 7
6? 8

7? 9
8? 10

9 ? 11
10?

5 5
4

6
5? 8

7? 9
8? 10

9 ?

6 6
5

36
31?

7 7
6

9
8?

8 8
7

9 9
8

10 10
9

11 11
10

12 12
11?

13 13
12?

Figure 7.1: Known and conjectured values of R(k, `).

Furthermore, if we use depth-�rst search, we can in some cases dramatically shorten the
search using the following observation: if at any point some su�x of the current string strictly
precedes the pre�x of the same length of the same string in lexicographic order, then this
su�x must have already been examined. Hence we can immediately abandon consideration
of this node.

If the tree is �nite, then certain parameters about the tree give useful information about
the set of �nite words avoiding S:

• If h is the height of the tree, then any word of length at least h over Σk contains a factor
in S.

• If M is the length of a longest word avoiding S, then M = h− 1.

• If I is the number of internal nodes, then there are exactly I �nite words avoiding S.
Furthermore, if L is the number of leaves, then (as usual), L = 1 + (k − 1)I.

• If I ′ is the number of internal nodes at depth h−1, then there are I ′ words of maximum
length avoiding S.

Figure 2 gives the value of some of these parameters. Here α is the established or conjec-
tured value of R(k, `) from Figure 1. �NR� indicates that the value was not recorded by our
program.
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k ` α L I h M=h−1 I′

2 1 2 8 7 4 3 2
2 2 2 478 477 19 18 2
2 3 8/5 5196 5195 34 33 12
2 4 3/2 13680 13679 54 53 4
2 5 7/5 40642 40641 60 59 4
2 6 4/3 21476 21475 40 39 4
2 8 24/19 3480734274 3480734273 452 451 NR

3 1 7/4 6393 3196 39 38 18
3 2 3/2 11655 5827 31 30 6
3 3 4/3 4037361 2018680 228 227 6
3 4 5/4 188247 94123 63 62 24
3 5 6/5 493653 246826 63 62 12
3 6 7/6 782931 391465 60 59 24
3 7 8/7 2881125 1440562 68 67 24
3 8 9/8 6987903 3493951 62 61 24

4 1 7/5 709036 236345 122 121 48
4 2 5/4 10324 3441 17 16 24
4 3 6/5 153724 51241 24 23 96
4 4 7/6 2501620 833873 35 34 24
4 5 8/7 30669148 10223049 40 39 864
4 6 9/8 340760884 113586961 50 49 NR

5 1 5/4 1785 446 7 6 120
5 2 6/5 453965 113491 23 22 240
5 3 8/7 7497345 1874336 34 33 720
5 4 9/8 1521535445 380383861 52 51 NR

6 1 6/5 13386 2677 8 7 720
6 2 36/31 17372138466 3474427693 751 750 NR

7 1 7/6 112441 18740 9 8 5040
7 2 9/8 345508219 57584703 32 31 NR

8 1 8/7 1049448 149921 10 9 40320

Figure 7.2: Tree statistics for various values of k and l

We have seen how to prove computationally that only �nitely many (α, `)-free words exist.
But what is the evidence that suggests we have determined the smallest possible α? For this,
we explore the tree corresponding to avoiding (α+, `)-repetitions using depth-�rst search. If we
are able to construct a �very long� word avoiding (α+, `)-repetitions, then we suspect we have
found the optimal value of α. For each unproven α given in Figure 1, we were able to construct
a word of length at least 20000 avoiding the corresponding repetitions. This constitutes weak
evidence of the correctness of our conjectures, but it is evidently not conclusive.

Based on the data in Figure 1, we propose the following conjectures.

Conjecture 7.1.

1. R(3, `) = 1 + 1
` for ` > 2.

2. R(4, `) = 1 + 1
`+2 for ` > 2.

These conjectures are weakly supported by the numerical evidence above.

7.2 New results

In this section, we prove six results of the form R(k, `) = α. From the numerical results
reported in Figure 2, we know in each case that there exist no in�nite (α, `)-free words over
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Σk. It therefore su�ces to exhibit an in�nite (α+, `)-free word over Σk.

Theorem 7.1. R(2, 3) = 8
5 .

Proof. Consider the 992-uniform morphism h : Σ∗4 −→ Σ∗2 de�ned by

0 7→ 0000101011110000111010100011110000101011110100001111000101011100001111010000101111
0000111010100011110000101111010100001111000101011100001111010100001011110000111010100011
1100001010111101000011110001010111000011110100001010111100001110101000111100001011110101
0000111100010101110000111101000010111100001110101000111100001011110100001111000101011100
0011110101000010111100001110101000111100001010111101000011110001010111000011110100001011
1100001110101000111100001011110101000011110001010111000011110100001010111100001110101000
1111000010111101000011110001010111000011110100001011110000111010100011110000101011110100
0011110001010111000011110101000010111100001110101000111100001011110100001111000101011100
0011110100001010111100001110101000111100001011110101000011110001010111000011110101000010
1111000011101010001111000010101111010000111100010101110000111101000010101111000011101010
0011110000101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101,

1 7→ 0000101011110000111010100011110000101011110100001111000101011100001111010000101111
0000111010100011110000101111010100001111000101011100001111010100001011110000111010100011
1100001010111101000011110001010111000011110100001010111100001110101000111100001011110101
0000111100010101110000111101000010111100001110101000111100001011110100001111000101011100
0011110100001010111100001110101000111100001010111101000011110001010111000011110101000010
1111000011101010001111000010111101010000111100010101110000111101000010101111000011101010
0011110000101111010000111100010101110000111101000010111100001110101000111100001010111101
0000111100010101110000111101010000101111000011101010001111000010111101000011110001010111
0000111101000010101111000011101010001111000010111101010000111100010101110000111101000010
1111000011101010001111000010101111010000111100010101110000111101000010101111000011101010
0011110000101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101,

2 7→ 0000101011110000111010100011110000101011110100001111000101011100001111010000101111
0000111010100011110000101111010000111100010101110000111101010000101111000011101010001111
0000101011110100001111000101011100001111010000101011110000111010100011110000101111010100
0011110001010111000011110101000010111100001110101000111100001011110100001111000101011100
0011110100001010111100001110101000111100001010111101000011110001010111000011110101000010
1111000011101010001111000010111101010000111100010101110000111101000010111100001110101000
1111000010101111010000111100010101110000111101000010101111000011101010001111000010111101
0000111100010101110000111101010000101111000011101010001111000010101111010000111100010101
1100001111010000101111000011101010001111000010111101010000111100010101110000111101000010
1011110000111010100011110000101111010000111100010101110000111101000010111100001110101000
1111000010101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101,

3 7→ 0000101011110000111010100011110000101011110100001111000101011100001111010000101111
0000111010100011110000101111010000111100010101110000111101010000101111000011101010001111
0000101011110100001111000101011100001111010000101011110000111010100011110000101111010100
0011110001010111000011110100001011110000111010100011110000101111010000111100010101110000
1111010000101011110000111010100011110000101011110100001111000101011100001111010100001011
1100001110101000111100001011110101000011110001010111000011110100001011110000111010100011
1100001010111101000011110001010111000011110100001010111100001110101000111100001011110101
0000111100010101110000111101010000101111000011101010001111000010101111010000111100010101
1100001111010000101111000011101010001111000010111101010000111100010101110000111101000010
1011110000111010100011110000101111010000111100010101110000111101000010111100001110101000
1111000010101111010000111100010101110000111101010000101111000011101010001111000010111101

010000111100010101110000111101.
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By a result of Pansiot [61], there exist 7
5

+
-free in�nite words over Σ4. Consider one such

word x. A computer check shows that h is synchronizing and that for every 7
5

+
-free word

t ∈ Σ∗4 such that |t| < max 7
5
, 8
5
,992 = 16, h(t) is

(
8
5

+
, 3
)
-free. By Lemma 6.1, this proves that

h(x) is an in�nite binary
(
8
5

+
, 3
)
-free word.

Theorem 7.2. R(2, 4) = 3
2 .

Proof. Consider the 19-uniform morphism h : Σ∗4 −→ Σ∗2 de�ned by

0 7→ 0000110100100111110, 1 7→ 0000011011001010111,
2 7→ 0000011010100111111, 3 7→ 0000010110111110010.

We again consider an in�nite 7
5

+
-free word x over Σ4. A computer check shows that h is

synchronizing and that for every 7
5

+
-free word t ∈ Σ∗4 such that |t| < max 7

5
, 3
2
,19 = 30, h(t) is(

3
2

+
, 4
)
-free. By Lemma 6.1, this proves that h(x) is an in�nite binary

(
3
2

+
, 4
)
-free word.

Theorem 7.3. R(2, 5) = 7
5 .

Proof. Consider the 45-uniform morphism h : Σ∗5 −→ Σ∗2 de�ned by

0 7→ 000000101011111001000000011010101001111111011,
1 7→ 000000101010111100010011011101000001111111011,
2 7→ 000000010101011111100100101101100010001110111,
3 7→ 000000010101011001100111111010001000101110111,
4 7→ 000000010011110101010000001100111111101010011.

By a result of Moulin-Ollagnier [52], there exist 5
4

+
-free in�nite words over Σ5. Consider one

such word x. A computer check shows that h is synchronizing and that for every 5
4

+
-free word

t ∈ Σ∗5 such that |t| < max 5
4
, 7
5
,45 = 56

3 < 19, h(t) is
(
7
5

+
, 5
)
-free. By Lemma 6.1, this proves

that h(x) is an in�nite binary
(
7
5

+
, 5
)
-free word.

Theorem 7.4. R(2, 6) = 4
3 .

Proof. Consider the 71-uniform morphism h : Σ∗5 −→ Σ∗2 de�ned by

0 7→ 00000001010101111111100001000101110111101000000001101101010010011110111,
1 7→ 00000000101011111110001100101001011110110000100011111111010101001100111,
2 7→ 00000000101011011111111000110011010101000000111111100100010110101100111,
3 7→ 00000000101010111111000110010100101110111100001000110110101001001110111,
4 7→ 00000000100101011011111111001100101000000001111110101101000010011110111.

We again consider an in�nite 5
4

+
-free word x over Σ5. A computer check shows that h is

synchronizing and that for every 5
4

+
-free word t ∈ Σ∗5 such that |t| < max 5

4
, 4
3
,71 = 32, h(t) is(

4
3

+
, 6
)
-free. By Lemma 6.1, this proves that h(x) is an in�nite binary

(
4
3

+
, 6
)
-free word.

Theorem 7.5. R(3, 2) = 3
2 .
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Proof. Consider the 3-uniform morphism h : Σ∗4 −→ Σ∗3 de�ned by

0 7→ 021, 1 7→ 100, 2 7→ 122, 3 7→ 201.

We again consider an in�nite 7
5

+
-free word x over Σ4. A computer check shows that h is

synchronizing and that for every 7
5

+
-free word t ∈ Σ∗4 such that |t| < max 7

5
, 3
2
,3 = 30, h(t) is(

3
2

+
, 2
)
-free. By Lemma 6.1, this proves that h(x) is an in�nite ternary

(
3
2

+
, 2
)
-free word.

Theorem 7.6. R(3, 3) = 4
3 .

Proof. Consider the 14-uniform morphism h : Σ∗5 −→ Σ∗3 de�ned by

0 7→ 00011112122220, 1 7→ 00101112202021, 2 7→ 01012111102120,
3 7→ 10002212102020, 4 7→ 10100222112020.

We again consider an in�nite 5
4

+
-free word x over Σ5. A computer check shows that h is

synchronizing and that for every 5
4

+
-free word t ∈ Σ∗5 such that |t| < max 5

4
, 4
3
,14 = 32, h(t) is(

4
3

+
, 3
)
-free. By Lemma 6.1, this proves that h(x) is an in�nite ternary

(
4
3

+
, 3
)
-free word.



Chapter 8

Avoiding patterns and large squares

In this chapter, we show how the method in Section 6.2 can be used to construct in�nite words
avoiding some pattern. We also provide simpler proofs of known results about some in�nite
binary words avoiding large squares.

8.1 Pattern avoidance

We consider here the ternary patterns whose 2-avoidability was left open in Cassaigne's thesis
[13]. We add to that list the binary pattern AABBA (resp. ABAAB) which was already
known to be 2-avoidable, and is here 2-avoided together with its reverse ABBAA (resp.
ABBAB). In particular, the 2-avoidability of ABCACB was one of Currie's open problems
[18], which was mentioned mainly because ABCACB and its reverse are not simultaneously
2-avoidable.

Lemma 8.1. Any factor uvu of a (β+, n)-free word w, with β < 2, is such that

|u| 6 max

(
n− 1− |v|,

⌊
β − 1

2− β |v|
⌋)

.

Proof. If |uv| < n then |u| 6 n − 1 − |v| and we are done, so suppose |uv| > n. Since w is
(β+, n)-free, we have |uvu||uv| 6 β =⇒ |u| 6 β−1

2−β |v|.

Theorem 8.1. For every ternary pattern P listed in Table 8.1, there exist exponentially many
binary words avoiding P .

Proof. Suppose that we are given a synchronizing morphism h : Σ∗s → Σ∗e and a pattern P
over the alphabet {A,B, . . .}. We can try to prove that h(t) avoids P for every α+-free word
t ∈ Σ∗s in three steps:

1. Check useful (β+, n)-freeness properties of h(t) thanks to Lemma 6.1.

2. Consider a potential occurrence φ(P ) of P and obtain upper bounds on the quantities
a = |φ(A)|, b = |φ(B)|, . . . using Lemma 8.1 and the results of step (1).

75
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Pattern s α q Comments
AABAACBAAB 3 7/4 8 self-reverse
AABACCB 3 7/4 24 avoided with its reverse
AABBA 3 7/4 21 avoided with its reverse
AABBCABBA 3 7/4 102 unavoidable with its reverse
AABBCAC 3 7/4 86 avoided with its reverse
AABBCBC 3 7/4 34 avoided with its reverse
AABBCC 3 7/4 52 self-reverse
AABCBC 3 7/4 46 avoided with its reverse
AABCCAB 3 7/4 34 avoided with its reverse
AABCCBA 3 7/4 56 avoided with its reverse
ABAAB 3 7/4 10 avoided with its reverse
ABAACBC 4 7/5 17 avoided with its reverse
ABAACCB 3 7/4 74 avoided with its reverse
ABACACB 3 7/4 12 avoided with its reverse
ABACBC 4 7/5 29 self-reverse
ABACCAB 3 7/4 19 avoided with its reverse
ABACCBA 3 7/4 14 avoided with its reverse
ABBACCA 3 7/4 12 self-reverse
ABBACCB 3 7/4 42 avoided with its reverse
ABBCACB 4 7/5 16 avoided with its reverse
ABBCBAC 4 7/5 14 avoided with its reverse
ABBCBCA 3 7/4 22 avoided with its reverse
ABBCCCAB 3 7/4 20 avoided with its reverse
ABCAACB 3 7/4 24 avoided with its reverse
ABCACAB 3 7/4 10 avoided with its reverse
ABCACB 6 5/4 810 unavoidable with its reverse
ABCBABC 4 7/5 19 self-reverse
ABCBBAC 4 7/5 18 avoided with its reverse

Figure 8.1: Table of 2-avoidable ternary patterns.

3. Use the bounds of step (2) to exhaustively check by computer that no occurrence of P
appears in h(t).

Let PR denote the reverse of the pattern P . We have µ(PR) = µ(P ) since a word w avoids
P if and only the reverse of w avoids PR. Notice that the bounds obtained in step (2) using
Lemma 8.1 that hold for potential occurrences of a pattern P also hold for those of PR. Thus
we try, when possible, to avoid simultaneously P and PR. The method discussed in Section
6.2 is thus used so that the set S contains the small occurrences of P (and maybe PR). Each
line of Table 8.1 contains one of these pattern P and informations about the morphism h we
used to show that µ(P ) = 2: the q-uniform morphism h : Σ∗s → Σ∗2 is such that for every
α+-free word t ∈ Σ∗s, h(t) avoids P . We also precise whether such a word h(t) also avoids PR.
Binary words avoiding ABCACB are constructed from 5

4

+
-free words over Σ5, and there are

exponentially many such words by Lemma 6.2. For every other pattern P listed in Table 8.1,
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binary words avoiding P are constructed from either 7
4

+
-free words over Σ3, or 7

5

+
-free words

over Σ4. In both cases, there are exponentially many such words by Theorem 6.3. Now, for
each pattern, we give the bounds obtained in step (2) of the proof and the morphism found
with the method in Section 6.2.

The following 8-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABAACBAAB.

The word h(t) is
(
24
13

+
, 3
)
-free. It contains no square of length at least three, and since the

square AA occurs in the pattern, we have that a 6 2. By Lemma 8.1, the factor BAAB
implies b 6 11a. For each occurrence of BAAB appearing in h(t), we have checked that
the corresponding occurrence of AABAA does not appear. For instance, the occurrence
φ(BAAB) = 0110 (where φ(A) = 1, φ(B) = 0) appears in h(t), but the factor φ(AABAA) =
11011 does not.

0 7→ 01101011
1 7→ 00111010
2 7→ 00101110

The following 24-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABACCB and its reverse.

The word h(t) is
(
31
16

+
, 3
)
-free, so a 6 2 and c 6 2. The factor BACCB implies b 6 15(a+2c).

0 7→ 000101001101011001010111
1 7→ 000101000111010111001011
2 7→ 000101000110100111001011

The following 21-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABBA and its reverse.

The word h(t) is
(
33
17

+
, 4
)
-free, so a 6 3 and b 6 3.

0 7→ 001001011100011101101
1 7→ 001000111000101101101
2 7→ 000111000100101101101

The following 102-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABBCABBA.

The word h(t) is
(
31
16

+
, 27
)
-free, so a 6 26 and b 6 26. For each occurrence of AABB we

have checked that the corresponding occurrence of ABBA does not appear. Notice that the k-
avoidability of AABBCABBA implies the k-avoidability of AABBA. A simple backtracting
algorithm shows that AABBCABBA and ABBAA (i.e. the reverse of AABBA) are not
simultaneously 2-avoidable, so that the two previous results are tight, in a way.

0 7→ 0001000101101110111000101100010001011011101100010110111000101101
11011100010110111011000101101110001011

1 7→ 0001000101101110110001011011101110001011000100010110111000101101
11011100010110111011000101101110001011

2 7→ 0001000101101110001011011101110001011000100010110111011000101101
11011100010110111011000101101110001011
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The following 86-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABBCAC and its reverse.

The word h(t) is
(
43
22

+
, 3
)
-free, so a 6 2 and b 6 2.

The factor CAC implies c 6 max (2− a, 21a) = 21a.

0 7→ 00010101100101001101010110010101001101011001010011010
100010111010100110101100101011101

1 7→ 00010101100101001101010001011101010011010110010101001
101010110010100110101100101011101

2 7→ 00010101100101001101010001011101010011010110010100110
101011001010100110101100101011101

The following 34-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABBCBC and its reverse.

The word h(t) is
(
33
17

+
, 3
)
-free, so a 6 2 and b = c = 1.

0 7→ 1110101110001010001110001010100011
1 7→ 1110101110001010100011100010100011
2 7→ 1110101110001110101000111000101000

The following 52-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABBCC.

The word h(t) is
(
59
30

+
, 3
)
-free, so a 6 2, b 6 2, and c 6 2.

0 7→ 1101001110001101000101100011010011100101100011100101
1 7→ 1101001110001101000101100011100101100011010011100101
2 7→ 1101001110001101000101100011100101110100111001011000

The following 46-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABCBC and its reverse.

The word h(t) is
(
367
184

+
, 3
)
-free, so a 6 2 and b = c = 1. Notice that the only occurrences of

AABB in h(t) are 0011 and 1100.

0 7→ 0011010011100011001011000110100110001110010110
1 7→ 0011010011100011001011000110100111001011000111
2 7→ 0011010011100011001011000111001101001110010110

The following 34-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABCCAB and its reverse.

The word h(t) is
(
257
136

+
, 4
)
-free, so a 6 3 and c 6 3. The factor ABCCAB implies a + b 6⌊

242
15 c
⌋
, thus b 6

⌊
242
15 c
⌋
− a.

0 7→ 0000101111101000011111101000101111
1 7→ 0000101110100001111010001011111100
2 7→ 0000101110100000011110100010111111
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The following 56-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern AABCCBA and its reverse.

The word h(t) is
(
36
19

+
, 3
)
-free, so a 6 2 and c 6 2. The factor BCCB implies b 6 17c.

0 7→ 00010110001110010111010011100011010001011000111001011101
1 7→ 00010110001101001110010110001101000101110100111001011101
2 7→ 00010110001101000101110100111001011000110100111001011101

The following 10-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABAAB and its reverse.

The word h(t) is
(
39
20

+
, 3
)
-free, so a 6 2. The factor BAAB implies b 6 38a.

0 7→ 0001110101
1 7→ 0000111101
2 7→ 0000101111

The following 17-uniform morphism h is such that for any 7
5

+
-free word t ∈ Σ∗4, h(t) ∈ Σ∗2

avoids the pattern ABAACBC and its reverse.

The word h(t) is
(
13
7

+
, 7
)
-free, so a 6 6. The word h(t) is

(
23
16

+
, 20
)
-free. Suppose b+c > 20,

then the factor CBC implies c 6
⌊
7
9b
⌋
and the factor BAACB implies b 6

⌊
7
9(2a+ c)

⌋
. From

these relations we can deduce b 6 22 and c 6 17. Thus we have b 6 22 and c 6 18.

0 7→ 01110000110000111
1 7→ 01011100110011101
2 7→ 01000110011000101
3 7→ 00011110011110001

The following 74-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABAACCB and its reverse.

The word h(t) is
(
193
104

+
, 3
)
-free, so a 6 2 and c 6 2. The factor BAACCB implies

b 6
⌊
89
15(a+ c)

⌋
.

0 7→ 000001011001110100110101100101110011010000011111010011000
10100011001011111

1 7→ 000001011001010100110001011001010011010000011111010011000
10100011001011111

2 7→ 000001011001010011010001100101010011010000011111010011000
10100011001011111

The following 12-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABACACB and its reverse.

The word h(t) is
(
15
8

+
, 3
)
-free, so a = c = 1. The factor BACACB implies b 6 14(a+c) = 28.

0 7→ 001010011111 1 7→ 000110100111 2 7→ 000001101011
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The following 29-uniform morphism h is such that for any 7
5

+
-free word t ∈ Σ∗4, h(t) ∈ Σ∗2

avoids the pattern ABACBC.

The word h(t) is
(
41
29

+
, 291

)
-free. Suppose a + b > 291 and b + c > 291. The factors

ABA, CBC, and BACB respectively imply that 17a 6 12b (i), 17c 6 12b (ii), and 17b 6
12(a+c) (iii). The combination 17× (i)+17× (ii)+24× (iii) gives a+c 6 0, a contradiction.
So we can suppose without loss of generality that b+ c 6 290 (iv). If 291 6 a+ b (v) then (i)
and (iii) still hold and the combination 2324× (i) + 1649× (iii) + 19788× (iv) + 19720× (v)
gives 213b 6 0. This contradiction shows that a+ b 6 290 and b+ c 6 290.

0 7→ 00011010110000111100101001110
1 7→ 00011010110000011100101001111
2 7→ 00001101011000111101110011110
3 7→ 00001101011000011110011101111

The following 19-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABACCAB and its reverse.

The word h(t) is
(
35
19

+
, 5
)
-free, so c 6 4. The factor ACCA implies a 6 max

(
4− 2c,

⌊
32
3 c
⌋)

=⌊
32
3 c
⌋
. The factor ABACCAB implies a+ b 6

⌊
16
3 (a+ 2c)

⌋
, thus b 6

⌊
13a+32c

3

⌋
.

0 7→ 0101110010100000111
1 7→ 0101100000010011100
2 7→ 0100010111010100011

The following 14-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABACCBA and its reverse.
If w is an occurrence of ABACCBA such that a > 1, then the su�x of w of size |w|−a+ 1 is
a smaller occurrence of ABACCBA such that a = 1. So we assume without loss of generality

that a = 1. The word h(t) is
(
23
12

+
, 3
)
-free, so c 6 2. The factor BACCBA implies a+b 6 22c,

thus b 6 22c− 1.
0 7→ 10101100001110
1 7→ 01010111100011
2 7→ 01010000111110

The following 12-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABBACCA.

The word h(t) is
(
31
16

+
, 4
)
-free, so b 6 3 and c 6 3. The factor ABBA implies a 6

max (3− 2b, 30b) = 30b.
0 7→ 000111001011
1 7→ 000101111010
2 7→ 000100111011

The following 42-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABBACCB and its reverse.



8.1. PATTERN AVOIDANCE 81

The word h(t) is
(
53
28

+
, 3
)
-free, so b 6 2 and c 6 2. The factor ABBA implies a 6

⌊
50
3 b
⌋
.

0 7→ 000010111100010111010001111010000111010111
1 7→ 000010111100010101100101001101011001010111
2 7→ 000010111100010100011110100001110100010111

The following 16-uniform morphism h is such that for any 7
5

+
-free word t ∈ Σ∗4, h(t) ∈ Σ∗2

avoids the pattern ABBCACB and its reverse.

The word h(t) is
(
9
5

+
, 4
)
-free, so b 6 3. The word h(t) is

(
233
160

+
, 49
)
-free. Suppose a+c > 49.

The factors ABBCA and CAC respectively imply that a 6
⌊
73
87(2b+ c)

⌋
and c 6

⌊
73
87a
⌋
. From

these relations we can deduce a 6 15 and c 6 12. This contradiction shows that a+ c 6 48.

0 7→ 0010000001101111
1 7→ 0000111010001111
2 7→ 0000100111111011
3 7→ 0000001001101011

The following 14-uniform morphism h is such that for any 7
5

+
-free word t ∈ Σ∗4, h(t) ∈ Σ∗2

avoids the pattern ABBCBAC and its reverse.

The word h(t) is
(
18
11

+
, 7
)
-free, so b 6 6. The word h(t) is

(
29
20

+
, 43
)
-free. Suppose a + b +

c > 43. The factors ABBCBA and CBAC respectively imply that a 6
⌊

9
11(3b+ c)

⌋
and

c 6
⌊

9
11(a+ b)

⌋
. From these relations we can deduce a 6 54 and c 6 49.

0 7→ 00101010101011
1 7→ 00010001110111
2 7→ 00000101011111
3 7→ 00000010111111

The following 22-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABBCBCA and its reverse.

The word h(t) is
(
173
88

+
, 3
)
-free, so b = c = 1. The factor ABBCBCA implies a 6⌊

85
3 (3b+ 2c)

⌋
= 141.

0 7→ 0001101011001010100111
1 7→ 0001101010110010100111
2 7→ 0001101010011100101011

The following 20-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABBCCAB and its reverse.

The word h(t) is
(
15
8

+
, 4
)
-free, so b 6 3 and c 6 3. The factor ABBCCAB implies a + b 6

7(b+ 2c), thus a 6 6b+ 14c.

0 7→ 00010100100101011111
1 7→ 00010010001110110111
2 7→ 00000101011011010111
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The following 24-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABCAACB and its reverse.

The word h(t) is
(
187
96

+
, 4
)
-free, so a 6 3. The word h(t) is

(
355
192

+
, 97
)
-free. The factor

CAAC implies c 6 max
(
96− 2a,

⌊
326a
29

⌋)
= 96 − 2a. The factor BCAACB implies b 6

max
(

96− 2a− 2c,
⌊
326(a+c)

29

⌋)
.

0 7→ 000001011111001000110111
1 7→ 000001011111000100111011
2 7→ 000001010111110010011011

The following 10-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

avoids the pattern ABCACAB and its reverse.

The word h(t) is
(
79
40

+
, 3
)
-free, so a = c = 1. The word h(t) is

(
149
80

+
, 41
)
-free. The factor

ABCACAB implies a+ b 6 max
(
40− a− 2c,

⌊
69
11(a+ 2c)

⌋)
, thus b 6 40− 2a− 2c = 36.

0 7→ 0001110101 1 7→ 0001011101 2 7→ 0001010111

The 810-uniform morphism h = m4,2 ◦ m6,4 is such that for any 5
4

+
-free word t ∈ Σ∗6,

h(t) ∈ Σ∗2 avoids the pattern ABCACB.

The word h(t) is
(
1073
810

+
, 3241

)
-free. Suppose a + c > 3241. The factors ABCA, BCACB,

and CAC respectively imply that 547a 6 263(b+ c) (i), 547b 6 263(a+ 2c) (ii), and 547c 6
263a (iii). The combination 2 × (i) + (ii) + 2 × (iii) gives 305a + 568b + 42c 6 0. This

contradiction shows that a+c 6 3240 (iv). The word h(t) is
(
29
14

+
, 4
)
-free, so the factor CAC

implies c 6 14a (v). Suppose now 3238 6 b (vi), so that a+ b+ 2c > 3241 and (ii) still holds.
The combination 15× (ii) + 7627× (iv) + 263× (v) + 7632× (vi) gives 573b+ 936 6 0. This
contradiction shows that b 6 3237.

The 135-uniform morphism m4,2 is given by:

0 7→ 00000100111101100010111100000101101000011111011000010011110000010
1101000011111010010111100001001111101100000100111010000111110100101111
1 7→ 00000100111101100010111100000101101000011111011000010011110000010
1101000011110110000010011111011000101111000001011010000111110100101111
2 7→ 00000100111101100001111101001011110000100111110110000010011101000
0111110100101111000001011010000111110110000100111010000111110100101111
3 7→ 00000100111101100001111101001011110000010110100001111011000001001
1111011000101111000001011010000111110110000100111010000111110100101111

The 6-uniform morphism m6,4 is given by:

0 7→ 032131 1 7→ 031232 2 7→ 023121
3 7→ 021323 4 7→ 013212 5 7→ 012313

An occurrence of ABCBABC is a
(
3
2

+
, 4
)
-repetition since |φ(ABCB)| > 4 and

|φ(ABCBABC)|
|φ(ABCB)| = 2a+3b+2c

a+2b+c = 3
2 + a+c

2(a+2b+c) >
3
2 . So ABCBABC is avoided by all the in-

�nite
(
3
2

+
, 4
)
-free binary words, in particular those constructed in the proof of Theorem 7.2.
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The following 18-uniform morphism h is such that for any 7
5

+
-free word t ∈ Σ∗4, h(t) ∈ Σ∗2

avoids the pattern ABCBBAC and its reverse.

The word h(t) is
(
8
5

+
, 7
)
-free, so b 6 6. The word h(t) is

(
527
378

+
, 181

)
-free. Suppose a+2b+c >

181. The factors CBBAC and ABCBBA respectively imply that c 6
⌊
149
229(a+ 2b)

⌋
and

a 6
⌊
149
229(3b+ c)

⌋
. From these relations we can deduce a 6 28 and c 6 26. This contradiction

shows that a+ 2b+ c 6 180.

0 7→ 010000011011011011
1 7→ 001001001001111101
2 7→ 001000000111111011
3 7→ 000000101010111111

8.2 Binary words avoiding large squares

Fraenkel and Simpson [24] constructed an in�nite binary word containing only three squares.
Another construction using uniform morphisms is given in [63]. Shallit [68] also gives uniform
morphisms for binary words avoiding:

• squares of length at least 3 and 3+-repetitions (10-uniform),

• squares of length at least 4 and 5
2

+
-repetitions (1560-uniform),

• squares of length at least 7 and 7
3

+
-repetitions (252-uniform).

In this section we give small Σ∗3 → Σ∗2 uniform morphisms producing words having these
properties.

The following 50-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

contains only the squares in {02, 12, (01)2} and is
(
37
19

+
, 3
)
-free.

0 7→ 00011001011000111001011001110001011100101100010111
1 7→ 00011001011000101110010110011100010110001110010111
2 7→ 00011001011000101110010110001110010111000101100111

The following 8-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

is 3+-free,
(
5
2

+
, 2
)
-free, and

(
59
32

+
, 3
)
-free.

0 7→ 01101011 1 7→ 00111010 2 7→ 00101110

The following 103-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2
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is 5
2

+
-free,

(
7
3

+
, 3
)
-free, and

(
823
412

+
, 4
)
-free.

0 7→ 0010011010010110010011011001010011010110010011011001011010011011
001001101011001010011011001011010011011

1 7→ 0010011010010110010011011001010011010110010011011001011010011011
001001101001011001001101011001010011011

2 7→ 0010011010010110010011011001010011010110010011010010110010011011
001011010011011001001101011001010011011

The following 30-uniform morphism h is such that for any 7
4

+
-free word t ∈ Σ∗3, h(t) ∈ Σ∗2

is 7
3

+
-free and

(
79
40

+
, 7
)
-free.

0 7→ 001011001011010011011001001101
1 7→ 001011001011010011001011001101
2 7→ 001011001001101100101101001101



Chapter 9

Letter frequencies

In this chapter, we consider the extremal frequency of a letter in in�nite words over a �nite
alphabet avoiding some repetitions. The main motivation for this kind of problem is best
explain with an example. We know that squares are avoidable over Σ3 but are not over Σ2.
A natural question is thus whether this third letter is essential or just barely needed to avoid
squares. We can formalize this question and ask for the minimal letter frequency in an in�nite
ternary square-free word.

9.1 Statement of main results

For ternary square-free words, Tarannikov [72] showed that fmin ∈
[
1780
6481 ,

64
233

]
=

[0.27464897 . . . , 0.27467811 . . . ]. According to [65], he also proved that fmax 6 469
1201 =

0.39050791 · · · . Our next result provides better estimations of these constants:

Theorem 9.1. For ternary square-free words, we have

1. fmin ∈
[
1000
3641 ,

883
3215

]
= [0.27464982 . . . , 0.27465007 . . . ].

2. fmax = 255
653 = 0.39050535 · · · .

Theorem 9.2. For (53 , 3)-free binary words, we have fmin = 1
2 .

Theorem 9.2 implies that in�nite (β, 3)-free binary words have equal letter frequency for

β ∈
[
8
5

+
, 53

]
. A similar result in [40] says that in�nite (β, 1)-free binary words have equal letter

frequency for β ∈
[
2+, 73

]
, i.e. ρ(2+) = ρ

(
7
3

)
= 1

2 . It is noticeable that these two cases of equal
letter frequency have di�erent kind of growth function. Karhumäki and Shallit have shown
there exist polynomially many 7

3 -free binary words [39], whereas there exist exponentially many

(85
+
, 3)-free binary words. To see this, notice that the 992-uniform morphism h : Σ∗4 → Σ∗2

given in the proof of Theorem 7.1 produces a
(
8
5

+
, 3
)
-free binary word h(w) for every 7

5

+
-free

word w ∈ Σ∗4, and that there exist exponentially many 7
5

+
-free words over Σ4 by Theorem

6.3.(2).

Kolpakov et al. [40] proved that the function ρ is discontinuous at 7
3 , more precisely they

obtained that ρ
(
7
3

)
= 1

2 and ρ
(
7
3

+
)
6 10

21 = 0.47619047 · · · .

85
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The next result provides new points of discontinuity for ρ in the range
[
7
3

+
, 3
]
, namely 17

7 ,
5
2 ,

23
9 ,

41
16 ,

18
7 , and

8
3 .

Theorem 9.3.

1. ρ
(
7
3

+
)
6 47

101 = 0.46534653 · · · .

2. ρ
(
17
7

)
> 467

1004 = 0.46513944 · · · .

3. ρ
(
17
7

+
)
6 81

175 = 0.46285714 · · · .

4. ρ
(
5
2

)
> 54286

117293 = 0.46282386 · · · .

5. ρ
(
5
2

+
)
6 23

52 = 0.44230769 · · · .

6. ρ
(
23
9

)
> 205

464 = 0.44181034 · · · .

7. ρ
(
23
9

+
)
6 91

206 = 0.44174757 · · · .

8. ρ
(
41
16

)
> 322

729 = 0.44170096 · · · .

9. ρ
(
41
16

+
)
6 143

324 = 0.44135802 · · · .

10. ρ
(
18
7

)
> 79

179 = 0.44134078 · · · .

11. ρ
(
18
7

+
)
6 41

93 = 0.44086021 · · · .

12. ρ
(
8
3

)
> 339

769 = 0.44083224 · · · .

13. ρ
(
8
3

+
)
6 24

59 = 0.40677966 · · · .

14. ρ (3) > 115
283 = 0.40636042 · · · .

9.2 Method for negative results

Let L be a factorial language. A word w is said to be k-biprolongable in L if there exists
a word lwr ∈ L such that |l| = |r| = k. A su�x cover of L is a set S of �nite words in L
such that every �nite word that is k-biprolongable in L and of length at least maxu∈S |u| has
a su�x that belongs to S, for some �nite number k. Taking k = 20 is su�cient for every
negative result in this paper. For a word u ∈ S, let

Au(q) =

{
w ∈ L | uw ∈ L and for every pre�x w′ of w,

|w′|0
|w′| < q

}
.

Lemma 9.1. Let L be a factorial language and S one of its su�x covers. Let q ∈ Q. If Au(q)
is �nite for every word u ∈ S, then fmin > q.



9.3. METHOD FOR POSITIVE RESULTS 87

Proof. Assume Au(q) is �nite for every word u ∈ S. Then any in�nite word w ∈ L has a
decomposition into �nite factors w0w1w2 . . . such that |w0| = k + maxu∈S |u| and |wi|0

|wi| > q
for every i > 1.

Lemma 9.1 enables us to obtain bounds of the form fmin > q by choosing an explicit su�x
cover and checking by computer that every set Au(q) is �nite. It is easy to see that Lemma 9.1
and the de�nition of Au(q) can be modi�ed to provide bounds of the form fmin > q, fmax 6 q,
or fmax < q. This method is a natural generalization of the one in [72], where the su�x cover
consists of the empty word, and of the one in [45], where the su�x cover consists of all binary
words of length three. Since we study here the frequency of the letter 0 in repetition-free
words, every letter other than 0 play the same role. Let us say that two words u and u′ in
Σs are equivalent if and only if u can be obtained from u′ by a permutation of the letters in
Σs \ {0}. Notice that for two equivalent words u and u′, Au′(q) is �nite if and only if Au(q)
is �nite. We de�ne the reduced su�x cover of a su�x cover S as the quotient of S by this
equivalence relation. To prove the negative part of Theorem 9.1.1 we used the reduced su�x
cover {1, 01210, 0210, 2010}, the computation took about 20 days on a XEON 2.2Gh. For
Theorem 9.1.2 we used the reduced su�x cover {0, 01, 021, 0121}. For Theorem 9.2 we used
the su�x cover {01, 111, 000, 1110, 1010, 0001111000010, 0111101000010, 1110101000010,
0111100010}. We omit the computer proof that this is indeed a su�x cover for (53 , 3)-free
binary words. The negative statements of Theorem 9.3 (even items) were obtained using the
su�x cover {1, 10, 100}.

9.3 Method for positive results

Let L be a factorial language over Σ∗s. To construct an in�nite word w ∈ L with a given letter
frequency q ∈ Q, we use again the method described in Section 6.2. We write q = a

b with a
coprime to b. For increasing values of k, we look for a (k× b)-uniform morphism h : Σ∗e → Σ∗s
producing (in�nite) words in L such that |h(i)|0 = k × a for every i ∈ Σe.

Consider the 8-uniform morphism m : Σ∗3 −→ Σ∗4 de�ned by

m(0) = 01232103,
m(1) = 01230323,
m(2) = 01210321.

To get the bound fmin 6 883
3215 in Theorem 9.1, we found a square-free morphism h+ : Σ∗3 −→ Σ∗3

such that h+ = m+ ◦m where m+ : Σ∗4 −→ Σ∗3 is a 3215-uniform morphism. To get the bound
fmax > 255

653 in Theorem 9.1, we found a square-free morphism h− : Σ∗3 −→ Σ∗3 such that
h− = m− ◦m where m− : Σ∗4 −→ Σ∗3 is a 9142-uniform morphism (9142 = 14×653). We need
a result of Crochemore [17] saying that a uniform morphism is square-free if the image of every
square-free word of length 3 is square-free. The software mreps [46] written by Kucherov et
al. can test if a word is square-free in linear time. We used it to prove that h− and h+ are
square-free by checking that h−(w) and h+(w) are square-free, where w = 010201210120212
is square-free and contains every ternary square-free words of length 3 as factors. Checking
the image of w is faster than checking the images of the 12 ternary square-free words of length
3 because mreps runs in linear time. Since the morphisms h− (resp. h+) are square-free, we
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obtain an exponential lower bound for ternary square-free words with letter frequency 883
3215

(resp. 255
653).

For each positive statement in Theorem 9.3 (odd items), we found a uniform morphism

h : Σ∗3 −→ Σ∗2 such that for every
(
7
4

+
)
-free ternary word w, h(w) has the corresponding

properties of repetition-freeness and letter frequency.

9.4 Dejean's conjecture and letter frequencies

Based on numerical evidences, we propose another strong form of Dejean's conjecture involving
letter frequencies:

Conjecture 9.1.

1. For every k > 5, there exists an in�nite
(

k
k−1

+
)
-free word over Σk with letter frequency

1
k+1 .

2. For every k > 6, there exists an in�nite
(

k
k−1

+
)
-free word over Σk with letter frequency

1
k−1 .

It is easy to see that the values 1
k+1 and 1

k−1 in Conjecture 9.1 would be best possible. For(
5
4

+
)
-free words over Σ5, we obtain fmax <

103
440 = 0.23409090 · · · < 1

4 using the reduced su�x

cover {0, 01, 012, 0123, 012341, 401234, 4301234}. That is why Conjecture 9.1.(2) is stated with
k > 6.



Chapter 10

Conclusion

In this part, we mainly presented positive results in combinatorics on words. More precisely,
we construct in�nite words on small alphabets with properties such as avoiding di�erent kind
of repetitions and/or patterns. We also consider the problem of minimizing and maximizing
the frequency of one letter in an in�nite repetition-free word.

The general idea is to obtain an in�nite word with the desired property as the image of
an in�nite repetition-free word by a uniform morphism. We wrote a computer program that
�nds these morphisms.

The most natural application of this method is to �nd upper bounds on generalized repe-
tition thresholds. We obtained the exact value of six generalized repetition threshold R(k, `)
with small alphabet size k and pre�x size `. Proving lower bounds on R(k, `) is rather easy
using backtracking, and we can be quite con�dent that our lower bounds are tight. Our upper
bounds always follow from results about the (classical) repetition threshold Rk = R(k, 1).
This sounds like a limitation to the method, since Dejean's conjecture is settled for k 6 11
only. Actually the main problem is the computing power needed to �nd a morphism, which
grows very fast with k and/or l.

Then we used this method in pattern avoidance, and completed the determination of the
avoidability index of all ternary patterns. A major open problem in pattern avoidance is
whether the avoidability index of a pattern is computable. Unfortunately our method does
not solve this problem, since it must deal with repetitions. For example, it cannot prove that
µ(ABWACXBAY BCZCA) = 4. It would be interesting to know if this method can decide
the 2-avoidability of a given pattern, assuming Dejean's conjecture is true.

Concerning the extremal letter frequencies in repetition-free words, we obtained some
precise precise bounds and two exact values: The maximal letter frequency in in�nite ternary
square-free words is 255

653 and in�nite (85
+
, 3)-free binary words have equal letter frequencies.

We also found six new values x such that the minimal letter frequencies in x-free and x+-free
binary words are distinct. We did not have enough time to program a more automated way
of detecting such values.

To conclude, every result in this part is due to some progress in algorithmic devoted to
combinatorics on words. Once we had an e�cient enough algorithm and an implementation,
we ran it on a maximum of instances. This gave us ideas about when and why the method
fails or becomes impracticable.
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