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Abstract This paper considers the problem of maintaining a compact representa-
tion (O(n) space) of permutation graphs under vertex and edge modifications (inser-
tion or deletion). That representation allows us to answer adjacency queries in O(1)

time. The approach is based on a fully dynamic modular decomposition algorithm for
permutation graphs that works in O(n) time per edge and vertex modification. We
thereby obtain a fully dynamic algorithm for the recognition of permutation graphs.

Keywords Dynamic algorithms · Permutation graphs · Modular decomposition

1 Introduction

Finding efficient graph representations is a central question of algorithmic graph the-
ory. How to store a graph to make its manipulation easier? Compact graph represen-
tations often rest on the combinatorial structures of the considered graphs (see for
example [22]). Thereby interesting graph encodings can be found when restricted to
special graph classes. This paper deals with dynamic graphs and considers the dy-
namic recognition and representation problem (see e.g. [21]), which, for a family F
of graphs, aims to maintain a characteristic representation of dynamically changing
graphs as long as the modified graph belongs to F . The input of the problem is a
graph G ∈ F with its representation and a series of modifications. Any modification
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is of the following: inserting or deleting a vertex (along with the edges incident to it),
inserting or deleting an edge. In this paper, we consider the dynamic recognition and
representation problem for the class of permutation graphs.

1.1 Related Works

As witnessed by recent results, decomposition methods are very useful for the de-
sign of dynamic graph representations. For example, in the case of planar graphs,
[10] devised a fully dynamic algorithm whose amortised cost per edge modification
is O(

√
n). Their algorithm is based on a decomposition of the graph into sparse sub-

graphs. This decomposition is not related to the planar representations of the graph
considered. On the other hand, [8] designed an incremental algorithm based on the
SPQR-tree decomposition that allows to represent in O(n) space all the embeddings
of a planar graph, whose number can be exponential. They obtain an algorithm whose
amortised cost per edge insertion is O(logn). Unfortunately, their algorithm cannot
update the representation it uses under edge deletion.

The modular decomposition (or substitution decomposition) also revealed its effi-
ciency for various graph classes. Roughly speaking the modular decomposition aims
to recursively partition a graph into subgraphs induced by subsets of vertices (called
modules). A module is a set of vertices that behaves uniformly with respect to the
adjacency with the rest of the vertices (see Sect. 2.1 for a proper definition). Some
graphs turn out to be indecomposable for the modular decomposition, they are the
prime graphs. The decomposition of any graph can be represented by a tree (the
modular decomposition tree). The inner nodes of that tree correspond to the sets of
the partitions used to recursively decompose the graph. The leaves of the tree corre-
spond to the vertices of the graph. Beside the tree, with each inner node is associated
a quotient graph, also called representative graph. Each internal node is assigned
a label depending on its representative graph: parallel if its representative graph is
empty, series if its representative graph is complete, and prime if its representative
graph is prime. Concerning the computation of the modular decomposition tree of an
arbitrary graph, a purely incremental algorithm is presented in [19]. It runs in O(n)

time per vertex insertion. Unfortunately, it is based on a partial representation of the
representative graphs (N-representation), compromising the possibility of any vertex
deletion.

The totally decomposable graphs for the modular decomposition are called
cographs. In [21], the dynamic recognition and representation problem has been con-
sidered for cographs. The algorithm is based on [4]’s incremental algorithm, where
any modification (edge or vertex) is supported in O(d) time, d being the number of
edges involved in the modification. This result has recently been generalised in two
different ways: in [6], directed cographs are considered, while [20] deals with P4-
sparse graphs. For these latter graph classes, the same complexity than for cographs
has been obtained. For all of these three graph families, the modular decomposition
tree is strongly constrained. In the case of cographs and directed cographs, none of its
internal nodes is labelled prime, and in the case of P4-sparse graphs, the prime rep-
resentative graphs are very specific (a spider, see [2]) and the corresponding prime
nodes have at most one non-leaf child.
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In [13], a fully dynamic algorithm for the family of proper interval graphs has
been designed. Each update is supported in O(d + logn) time, where d is the num-
ber of edges involved in the operation. Though the authors did not adopt the mod-
ular decomposition point of view, the representation they maintain for a proper in-
terval graph is closely related to its modular decomposition tree. Moreover, as for
the classes cited above, the modular decomposition tree of a proper interval graph
is strongly constrained: its root r is a parallel node; every non-leaf children of r is
either a prime node, or a series node with at most one non-leaf child, which has to be
a prime node; the non-leaf children of any prime node are series nodes having only
leaf children. Note that these conditions imply that the height of the tree is at most
four. In [13], the authors maintain a representation of the prime graph associated with
the node of each connected component of the graph, and, from their representation,
it is straightforward to obtain the modular decomposition tree of the graph.

Chordal graphs should also be mentioned as a class whose dynamic maintenance
has been considered. [14] devised a fully dynamic recognition algorithm for chordal
graphs which handles edge operations in O(n) time. In the same paper, the author
obtains a fully dynamic recognition algorithm for split graphs that runs in constant
time per edge modification.

1.2 Our Contribution

Permutation graphs are intersection graphs of segments between two parallel lines.
Thereby any permutation graph can be represented by assigning, to each vertex, two
integers describing the position of its segment extremities. Such a representation is
called a realiser (see Sect. 2.2 for a formal definition). A permutation graph is a
comparability graph the complement of which is also a comparability graph (see e.g.
[22]), and this is a characterisation. It follows that any permutation graph G and
its complement G can be transitively oriented. The best known permutation graph
recognition algorithm [15, 16] makes use of this property. The links between transi-
tive orientation and modules of graphs are well understood since Gallai’s work [11].
Indeed, to compute a transitive orientation of a graph, a modular decomposition pre-
liminary step is required. Let us briefly sketch the (non-dynamic) linear time permu-
tation graph recognition algorithm of [15, 16]: 1) a preprocessing step first computes
the modular decomposition of the input graph G; 2) then a transitive orientation al-
gorithm is applied to compute a first linear ordering of the vertices, which defines a
transitive orientation of G whenever G is comparability; 3) a second linear ordering
is computed, corresponding to a transitive orientation of G if it exists. It turns out
that the input graph G is a permutation graph if and only if these two linear orderings
define a realiser of G, which can be tested in linear time. As the three steps described
above also require linear time, the whole algorithm is linear. As far as we know, no
linear time (non-dynamic) recognition algorithm for permutation graphs avoiding the
computation of the modular decomposition has been designed.

It is clear from the discussion above that in context of non-dynamic graphs, the
modular decomposition of permutation graphs is pretty well understood. However
in the case of dynamic graphs very little is known on modular decomposition and
permutation graphs. A natural question is for example, how the modular decompo-
sition of a graph is affected by a vertex or an edge modification? Our fully dynamic



Algorithmica

algorithm maintains an O(n) space canonical representation of permutation graphs
including both its modular decomposition tree and a realiser. It enables us to an-
swer adjacency queries between any pair of vertices in O(1) time. Both insertion and
deletion operations of an edge or a vertex (along with the edges incident to it) are
supported. The cost of maintenance is O(n) time per operation. Note that a modifi-
cation of the input graph may lead to O(n) changes in the modular decomposition
tree (see Fig. 2). Therefore our algorithm does not present any complexity extra cost
in the maintenance of the modular decomposition tree. Furthermore, within the same
complexity, we also maintain a realiser of the graph, as long as it remains a permu-
tation graph. The O(n) space structure we use even represents all realisers of the
considered graph, whose number can be up to �(n!).

The family of permutation graphs is hereditary and closed under substitution com-
position (see Sect. 2.1). It follows that a graph is a permutation graph iff the prime
representative graphs associated with the prime nodes of its modular decomposition
tree are permutation graphs. Therefore, any modular decomposition tree is the tree
of some permutation graph. In other words, the constraint to be a permutation graph
does not apply on the modular decomposition tree itself but only on the representative
graphs. Our algorithm is the first one that fully dynamically maintains the modular
decomposition tree for a graph class for which the modular decomposition tree is
not constrained. Let us recall that [19]’s algorithm, which applies to arbitrary graphs,
only support vertex addition and does not maintain a whole representation allowing
efficient adjacency test. As the one of [19], our algorithm performs in O(n) time per
operation, and supports insertion as well as deletion of vertices and edges. Moreover,
while the approach of [19] is purely algorithmic, when a vertex x is inserted in a
graph G, we give a structural characterisation of the modular decomposition of the
augmented graph G+x which is general to arbitrary graphs (Theorem 2). In the case
of a permutation graph G, we also give necessary and sufficient conditions under
which the graph G + x remains a permutation graph (Theorem 3).

2 Preliminaries

The paper deals with undirected loop-less simple graphs. If x is a vertex of a graph
G = (V ,E), N(x) denotes the neighbourhood of x and N(x) its non-neighbourhood.
The graph G is the complement graph of G. If S is a subset of vertices of a graph
G, then G[S] is the subgraph of G induced by S. Two sets of vertices S and S′ are
adjacent iff any vertex of S is adjacent to any vertex of S′, and non-adjacent iff any
vertex of S is not adjacent to any vertex of S′. Two sets S and S′ overlap iff S ∩S′ �= ∅
and S \ S′ �= ∅ and S′ \ S �= ∅ (we note S ⊥ S′). Two vertices x and y are twins iff
N(x) = N(y) or N(x) ∪ {x} = N(y) ∪ {y}.
2.1 Modular Decomposition

Modular decomposition theory has been independently rediscovered in many fields.
Gallai [11] may be the first to deal with this concept in the context of graph theory.
For a complete survey on the topic, refer to [18]. Let us give the standard definitions
and basic results we will need.
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A subset S � V of vertices of a graph G is uniform with respect to vertex x ∈ V \S

iff S ⊆ N(x) or S ⊆ N(x) (otherwise S is mixed). A module of G is a subset of
vertices M ⊆ V which is uniform with respect to any vertex x ∈ V \ M . It follows
from definition that the whole vertex set V and the singleton sets {x}, for any x ∈ V ,
are modules of G. These modules are called the trivial modules. A graph is prime if
all its modules are trivial. A submodule of a module M of G is a subset S ⊆ V that
is a module of G[M]. Note that a submodule is necessarily a module of the graph G

itself. Let us state a very simple observation.

Observation 1 Let M be a module of G and S a subset of vertices. Then M ∩ S is a
module of the induced subgraph G[S].

A module M is strong if it does not overlap any module M ′. Connected compo-
nents of G and connected components of G, also called co-connected components of
G, are examples of strong modules. The strong modules of a graph can be organised
into an inclusion tree, called the modular decomposition tree TG. There is a one-to-
one mapping between nodes of TG and strong modules of G. Thereby the root of
TG represents the whole vertex set and the leaves are mapped to the singleton trivial
modules of G. For an internal node p of TG, the corresponding strong module is the
vertex set V (p) = P resulting from the union of modules mapped to its children. In
the following, Tp denotes the subtree of TG rooted at node p (i.e. the modular de-
composition tree TG[P ]). The set of children of a node p in TG will be denoted by
C(p). In all the paper, we use lowercase letters, such as p,q , to denote nodes of the
modular decomposition tree, and we use capital letters, P,Q, to denote the corre-
sponding strong modules. We may also refer to these strong modules as V (p) = P

and V (q) = Q.
A maximal strong module of a graph G = (V ,E) is a strong module of G maximal

with regard to inclusion and distinct from V . If G (resp. G) is disconnected, the con-
nected components (resp. co-connected components) of G are precisely its maximal
strong modules. If both G and G are connected, the maximal strong modules of G

are the maximal modules of G distinct from V (in other words, the maximal modules
of G distinct from V do not overlap).

Thanks to the well-known modular decomposition theorem (see [18] for refer-
ences), any non-leaf node p of the modular decomposition tree is labelled as follows:
parallel if G[P ] is not connected; series if G[P ] is not connected; and prime other-
wise (the three cases are disjoint). The label of node p is denoted by label(p). The
series and parallel nodes (and their corresponding strong modules) are also called
degenerate nodes. It should be noticed that any module is either a strong module or
the union of maximal strong submodules of a degenerate strong module.

A partition P = {M1, . . .Mk} of the vertex set is a congruence partition iff any
part Mi (1 � i � k) is a module. Congruence partitions play an important role in the
theory of modular decomposition [18] as well as in most of decomposition algorithms
(see [9] for example). Notice that it follows from the definition of a module that any
pair of distinct parts Mi and Mj of a congruence partition is either adjacent or non-
adjacent. Thereby it is possible to define the quotient graph G/P of a congruence
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partition as the graph whose vertices are the elements of P and where two vertices
are adjacent iff their corresponding modules are adjacent.1

An important property of congruence partitions and quotient graphs is the follow-
ing.

Lemma 1 Let P be a congruence partition of G. Then X ⊆ P is a non-trivial strong
module of G/P iff X = ⋃

M∈X M is a non-trivial strong module of G.

Proof Actually, it is proved in [18], that X ⊆ P is a module of G/P iff X =⋃
M∈X M is a module of G. So let X be a non-trivial module of G/P .
⇐ Assume X is not a strong module of G/P . There exists a module Y ⊆ P of

G/P such that X ⊥ Y . From above, Y = ⋃
M∈Y M is a module of G. Thereby Y ⊥ X

and X is not a strong module of G.
⇒ Assume X is not a strong module of G. Thereby it is the union of maximal

strong submodules of a degenerated strong module Z of G. For P to be a congru-
ence partition, there must exist Y ⊆ P such that Y = ⋃

M∈Y M = Z \ X. As Z is
degenerate, Y is a module of G and Y is a module of G/P . Now by assumption X is
non-trivial. Thereby there exists S � X such that S = ⋃

M∈S M is the union of some
maximal strong submodules of Z. Again as Z is degenerate, Y ∪ S is a module of
G, in other words X and Y ∪ S are also modules of G/P . It follows that X is not a
strong module of G/P as by definition of S , X ⊥ Y ∪ S . �

The set M S M(G) of maximal strong modules of G is a congruence partition and
by the way define a quotient graph. Similarly a quotient graph, denoted Gp and called
representative graph can be associated to each node p of the modular decomposition
tree. The children p1 . . . pk of p are mapped to the maximal strong modules of G[P ].
The representative graph Gp is therefore the quotient graph G[P ]/M S M(G[P ]).
Gp is a clique if p is a series node and a stable if p is a parallel node. It follows that if
together with each prime node p of the modular decomposition tree, its representative
graph Gp is stored, then adjacency queries between any pair of vertices x, y can be
answered by a search in TG and in the representative graphs. Note that the size of
the modular decomposition tree TG is O(n). If the representative graphs are added,
it yields an O(n + r) space representation with r being the sum of the size of the
encoding of representative graphs. For arbitrary graph r = n + m, but for special
graph families, like permutation graphs, it can be r = n.

If F is a family of disjoint modules but does not necessarily define a partition
of the vertex set, then we abusively use the notation G/F to design G/P with P =
F ∪ {{x} | x ∈ V \ ⋃

M∈F M}. The inverse of the quotient operation is called the
substitution composition. Given a vertex x of a graph G = (VG,EG) and a graph
H = (VH ,EH ), substituting H for x in G results in the graph Gx→H = ((VG \{x})∪
VH , (EG \ {xy | y ∈ VG}) ∪ EH ∪ {zy | z ∈ VH ,xy ∈ E}).

1The quotient graph can also be seen as the induced subgraph G[S] with S ⊆ V and ∀i, |Mi ∩ S| = 1. The
vertex of Mi ∩ S is called the representative vertex of Mi .
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Fig. 1 A permutation graph and its full modular representation

2.2 Permutation Graphs

If π is a linear order on the vertices of a graph G, π(x) denotes the rank of vertex x

in π while π−1(i) is the vertex at rank i. Permutation graphs (see [12] for a detailed
introduction) are those graphs for which there exists a pair (π1,π2) of linear orders on
the vertex set such that x and y are adjacent iff (π1(x)−π1(y))(π2(x)−π2(y)) < 0.
For a permutation graph G, such a pair R = (π1,π2) is a realiser of G. Let us denote
π the reverse order of π . It should be noticed that if R = (π1,π2) is a realiser of G,
then (π2,π1), (π1,π2) and (π2,π1) are also realisers of G. In the following, these
four realisers are considered as the same. It follows from the definition that the family
of permutation graphs is hereditary. The restriction of R to a subset S ⊆ V of vertices
is denoted R[S] and is a realiser of the induced subgraph G[S].

A graph is a comparability graph iff its edges can be transitively oriented. Permu-
tation graphs are precisely comparability graphs whose complement is also a com-
parability graph. It follows from a result of [11] on comparability graphs that the
permutation graph family is closed under the substitution composition. Actually if
G and H are permutation graphs having realisers RG = (π1,π2) and RH = (τ1, τ2),
then the permutation graph Gx→H has a realiser R where τ1 has been substituted for
x in π1 and τ2 for x in π2. Moreover from [11, 17], a graph is a permutation graph
iff the representative graphs of the prime nodes of its modular decomposition tree
are permutation graphs. And it is known [17] that any prime permutation graph has
a unique realiser. It follows that associating the modular decomposition tree TG with
the realiser of each of its prime nodes provides an O(n) space canonical representa-
tion of a permutation graph G. If p is a node of the modular decomposition tree TG,
then Rp denotes the realiser of its representative graph Gp .

Definition 1 The full modular representation of a permutation graph G is the pair
MD(G) = (TG, RG) where TG is the modular decomposition tree of G and RG is
the set of realisers Rp with p a prime node of TG (see example in Fig. 1).

The realisers of degenerate nodes do not need to be stored as they are trivial:
(π,π) for parallel nodes and (π,π) for series nodes, where π is any linear order on
their children. Note that a realiser of the whole graph G can be retrieved in O(n)
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time by composing the realisers of the nodes of the full modular representation. As
our dynamic algorithm works in O(n) time per operation, a realiser of G can be
maintained without any extra cost. That guarantees the possibility of answering at
any time adjacency queries in O(1) time.

It has recently been remarked [1, 3] that the strong modules of a permutation graph
can be retrieved from its realiser. An interval of a linear order π on V is a set of con-
secutive elements of V in π . Let (a, b) ∈ V 2, the interval {y ∈ V | a ≤ y ≤ b} of π is
denoted [a, b]. Given a pair (π1,π2) of linear orders, a common interval [23] is a set
I that is an interval of π1 and of π2. In [23], an O(n + K) algorithm computing all
common intervals of a pair of linear orders has been proposed, K being the number
of common intervals. A common interval is strong if it does not overlap any other
common interval. Clearly common intervals of a realiser R = (π1,π2) of a permuta-
tion graph G are modules of G. The converse is false in general, but true for strong
modules.

Proposition 1 ([7]) The strong modules of a permutation graph G = (V ,E) are
exactly the strong common intervals of any of its realisers.

In [1, 3], the algorithm of [23] has been revisited so that the inclusion tree of the
strong common intervals can be computed in O(n) time if the pair of linear orders is
given. By Proposition above, that inclusion tree is the modular decomposition tree of
the corresponding permutation graph.

It is worth to notice that the full modular representation is a representation of all
the realisers of a permutation graph G. Indeed, any realiser can be obtained from
MD(G) by choosing a realiser of the representative graph of each node of the tree
and composing them together. For that purpose, all the four different realisers of a
prime node, that we usually consider as a single one, since they are equivalent, are
useful. The realisers (π1,π2) of a degenerate node p are obtained by choosing an
arbitrary order on its children for π1 and the same order for π2 if p is parallel, the
reverse order if p is series. It follows that a degenerate node with k children admits k!
different realisers. It is easy to see that composing together the realisers we chose for
all the nodes of the tree results in a realiser of G. Conversely, if R is a realiser of G,
from Proposition 1, the maximal strong modules of G are strong common intervals
of R. Contracting, in R, these strong common intervals into single vertices gives
a realiser of the representative graph of the root. Recursively applying the process
on R[M], where M ∈ M S M(G), we obtain realisers of the representative graphs
of the children of the root, and finally of all nodes of the tree. By construction, the
substitution composition of all these realisers results in R.

2.3 Dynamic Arc Operations

Unfortunately an edge modification may imply O(n) changes in the modular decom-
position tree (Fig. 2). As we propose an O(n) time algorithm for the vertex insertion
and for the vertex deletion operations, inserting or deleting an edge e incident to ver-
tex x will be handled by first removing x and then inserting x again with the updated
neighbourhood.
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Fig. 2 An edge insertion/deletion implying O(n) changes in the full modular representation. When the
edge bu is inserted in the cograph whose decomposition tree is given on the left, it becomes prime and
remains a permutation graph. The number of nodes in its modular decomposition tree switches from 2n−1
to 1. Conversely, when the edge bu is deleted in the prime permutation graph represented on the right, it
becomes a cograph

3 Vertex Deletion

Let G′ = G − x be the graph resulting from the deletion of a vertex x in the permu-
tation graph G. The family of permutation graphs is hereditary, that is every induced
subgraph of a graph in the family belongs to the family. Consequently, removing x

reduces to update the full modular representation of G′ from the one of G. We shall
distinguish the case where the parent node p of x in TG (if it exists) is a prime node
from the case where p is a degenerate node.

Degenerate Case An algorithm was proposed in [21] to handle vertex deletion in
dynamic cographs. Under a slight modification (case 4(b) below), it also applies in the
case of permutation graphs when a vertex x child of a degenerate node is removed.
Let us generalise [21]’s algorithm.

1. If TG contains leaf lx only, then TG′ is empty.
2. If p has at least three children, then TG′ is obtained by deleting from TG the leaf

lx .
3. If p has only two children, namely lx and l, where l is a leaf of TG, then TG′ is

obtained from TG by deleting lx and replacing p with l.
4. If p has only two children, namely lx and q1, where q1 is an internal node of TG:

(a) If p is the root of TG, then TG′ is the subtree of TG rooted at q1.
(b) Assume p is not the root of TG. Let q2 be the parent node of p.

• If q1 and q2 are both series nodes or both parallel nodes, then TG′ is ob-
tained by deleting from TG the leaf lx and the nodes p and q2, and connect-
ing the children of q2 to q1.

• Otherwise, TG′ is obtained by deleting from TG the leaf lx and replacing p

with q1.

Replacing a node p with a node q in the modular decomposition tree only consists
in two operations: p’s parent becomes q’s parent and p is deleted. Node q saves all
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of its original children. It can clearly be done in O(1) time. Notice that any case but
case 4(b), can be handled in constant time. The number of operations in case 4(b) is
clearly bounded by O(n).

Finally to obtain MD(G′), it remains to update (if needed) the set RG of realisers
of MD(G). The only case to manage occurs when p’s parent is a prime node. Then
q replaces p in the representative realiser Rp . To prove the correctness of the algo-
rithm, it is easy to check that the adjacency between any pair of vertices of V \ {x} is
preserved by the operations.

Prime Case If p is a prime node, then deleting x may generate modules in the
representative graph of p. It follows that the algorithm has to deal with only two
cases:

1. If Gp − x is a prime graph, then TG′ is simply obtained by deleting from TG the
leaf lx . Similarly, removing x from the realiser Rp gives the representative realiser
of the updated prime node.

2. Otherwise, let MD(Gp − x) be full modular representation of Gp − x. MD(G′)
is obtained by first replacing in TG the node p with the root of TGp−x and then
replacing any leaf of TGp−x with the corresponding child of p. RG′ is the union
of RG \ {Rp} and of the set of realisers of MD(Gp − x).

As for the degenerated case, it can easily be argued that adjacencies between non-
deleted vertices are preserved by these operations. Thereby we reduce the problem
to the computation of MD(G′), where G′ = G − x and G is a prime graph. As
already mentioned, using algorithms of [1, 3], the modular decomposition tree of a
permutation graph can be computed in O(n) time if a realiser is given. Moreover
removing x from the realiser of G provides a realiser of G′. Therefore algorithms of
[1, 3] can be used for our purposes. Notice that in O(n) time, the realisers of all the
prime nodes can be recursively extracted by a bottom-up process along the tree. We
therefore obtain the following theorem.

Theorem 1 Updating the full modular representation of a permutation graph under
vertex deletion costs O(n) time.

Let us continue the study of the vertex deletion operation. The following property
indicates that a somehow simpler algorithm than ones of [1, 3] can be designed as
the modules of G − x, if G is prime, have a very restricted structure. Moreover this
property will be useful for latter proofs.

Lemma 2 Let G = (V ,E) be a prime permutation graph and x be a vertex. The non
trivial strong modules of G′ = G − x can be partitioned in two families (possibly
empty) totally ordered by inclusion.

Proof Let us denote R = (π1,π2) a realiser of G and R′ the realiser of G′ obtained by
deleting x in R. From Proposition 1, it is equivalent to show that the strong common
intervals of R′ can be divided in two families (possibly empty) totally ordered by
inclusion. Still from Proposition 1, any common interval of R is non-trivial. Let I
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be a non-trivial common interval of R′. Since I is not a common interval of R, x

is between two vertices of I in at least one of the two orders π1, π2 of R. In other
words, I ∪{x} is an interval of π1 (or π2) and x is not a bound of this interval. We say
that I surrounds x in π1 (or π2). Since the strong common intervals of a realiser do
not overlap, those of R′ which surround x in π1 of R (resp. in π2) are totally ordered
by inclusion. �

As there are at most two non-trivial maximal strong modules, the root of TG′ has
at most two non-leaf children, and each internal node of TG′ have at most one non-
leaf child. Moreover, it can be shown that any degenerated node of TG′ has at most
two leaf children. Therefore the number of modules (not necessarily strong) of G′ is
O(n), and there are also O(n) common intervals of the realiser of G′.

4 Vertex Insertion

Given a graph G = (V ,E), a vertex x �∈ V and a subset N(x) ⊆ V , we define G′ =
G + x as the graph on vertex set V ∪ {x} with edge set E ∪ {xy | y ∈ N(x)}). In
order to maintain the full modular representation of a permutation graph under vertex
insertion, we will: 1) update the modular decomposition tree TG to get TG′ ; 2) test
whether G′ = G+x is a permutation graph; and 3) in the positive, compute the set of
realisers RG′ from RG and TG. The algorithm we propose has an O(n) complexity
per vertex insertion. The presentation of this section follows these three steps.

4.1 Modular Decomposition Tree of G + x

[19] proposed an incremental algorithm that updates the modular decomposition tree
under the insertion of a vertex x. While the approach of [19] is algorithmic, in this
subsection, we give a mathematical description of the modular decomposition tree of
the augmented graph, independently from its computational aspects. The results we
obtain in this section applies to arbitrary graphs and are not restricted to permutation
graphs. The main interest of our approach is to separate the problem of maintaining
the modular decomposition tree from the problem of maintaining the representation
chosen for the representative graphs of the prime nodes. To perform the maintain of
the tree in O(n) time under vertex insertion, it is sufficient that this representation
allows to determine whether x has a twin in the representative graph of a prime node
p in O(|C(p)|) time. This is true for the N-representation of [19]. Nevertheless, in
[19], as the structure associated with a prime node (N-representation) is only a partial
representation, it does not allow to maintain the tree under vertex deletion. Indeed,
not all edges of a prime graph can be retrieved from its N-representation. In our
case, the fact that we consider permutation graphs family will give us a complete
representation of the representative graphs that allows both to determine whether x

has a twin in the quotient of a prime node p in O(|C(p)|) time and to maintain the
tree under vertex deletion (as we showed in the previous section). Whatever may be
the representation chosen for the quotients of the prime nodes, the results we give on
the structure of the modular decomposition tree of the augmented graph remain valid
and entirely determine this tree.
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Each node p of TG is assigned a type with respect to x : linked (resp. notlinked) if
P = V (p) is uniform with respect to x and P ⊆ N(x) (resp. P ⊆ N(x)), and mixed
otherwise. The types we assign to nodes correspond to the marks 1, −1 and 0 given
in the algorithm of [19]. Cl (p) (resp. Cnl(p)) stands for the set of children of p which
are typed linked (resp. notlinked) and Cm(p) for the set of children of p which are
typed mixed. For t ∈ {m, l, nl}, we denote Ft(p) = ⋃

f ∈Ct (p) V (f ).

Insertion Node We show that inserting x in G reduces to update a certain subtree
of the modular decomposition tree. Let us first identify the root of that subtree.

Definition 2 A node p of TG is a proper node iff either p is uniform with respect to
x, or p is a mixed node with a unique mixed child f such that F ∪ {x} is a module
of G′[P ∪ {x}], with F = V (f ) and P = V (p). Otherwise p is a non-proper node.

Lemma 3 Let G = (V ,E) be a graph and x a vertex to be inserted in G. If all the
nodes of TG are proper, then V is uniform with respect to x.

Proof We prove it by contrapositive. If V is mixed, then the root of TG is mixed.
Any mixed node of TG always enjoys a mixed descendant p having only uniform
children. By Definition 2, a node like p is non-proper. �

As a consequence of Lemma 3, in the case where there are no mixed nodes in T , x

is either a universal vertex or an isolated vertex. Therefore the modular decomposition
tree is easy to update in constant time. That case will not be considered anymore in
the following. From now on, we assume that there is at least one non-proper node
in T .

Observation 2 The least common ancestor (lca for short) q of non-proper nodes of
T is a non-proper node.

Proof Let p1 and p2 be two non-proper nodes. If lca(p1,p2) ∈ {p1,p2}, then the
property holds. Otherwise, since any ancestor of a mixed node is mixed, lca(p1,p2)

has at least two mixed children. Thereby lca(p1,p2) is non-proper. �

Lemma 4 If q is the least common ancestor of non-proper nodes of T , then Q′ =
Q ∪ {x} is a strong module of G′ = G + x.

Proof Q′ is a module of G′. We state by induction that for any ancestor p1 of q , Q′
is a module of G[P ′

1], with P ′
1 = P1 ∪ {x}. Indeed, Q′ is a module of G′[Q′]. Let

p1 be an ancestor of q such that Q′ is a module of G′[P ′
1]. If p1 �= r then let p2 be

the parent of p1. Since q is mixed and p2 is an ancestor of q , p2 is a mixed proper
node (by definition of q). It follows that p1 is the unique mixed child of p2 and P ′

1 is
a module of G′[P ′

2]. Since Q′ is a module of G′[P ′
1] and P ′

1 is a module of G′[P ′
2],

thus, by definition of a module, Q′ is a module of G′[P ′
2]. This ends the induction

and shows that Q′ is a module of G′.
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Q′ does not overlap any other module M ′ of G′. Let M ′ be a module of G′.
Assume M ′ overlaps Q′. If x /∈ M ′, then M ′ is a module of G. Since Q is a strong
module of G, M ′ and Q do not overlap. Thereby, since M ′ overlaps Q′, then Q � M ′.
Q is not uniform with respect to x, so neither M ′ is. This is a contradiction with the
fact that M ′ is a module of G′ which does not contain x. If x ∈ M ′, then M = M ′ \ {x}
is a module of G (see Observation 1). Since Q is a strong module of G, it does not
overlap M . Assume M ∩ Q = ∅. Since M ′ overlaps Q′, Q′ \ M ′ = Q is a module
of G′. Which is a contradiction since x �∈ Q and Q is not uniform with respect to x.
It follows that M ∩Q �= ∅, and since Q does not overlap M , then Q ⊆ M or M ⊆ Q.
In both cases, Q′ does not overlap M ′, which is the final contradiction. �

In the following, the node of MD(G′) corresponding to the strong module Q′ of
G′ is denoted by q ′.

Lemma 5 Let G′ = G + x and let q be the least common ancestor of non-proper
nodes of TG. TG′ is obtained from TG by replacing the subtree Tq of TG with
TG′[Q′] = TG[Q]+x .

Proof Since Q is a strong module of G and since, from Lemma 4, Q′ = Q ∪ {x} is
a strong module of G′ = G + x, then G/{Q} and G′/{Q′} are well defined. These
two quotients are equal since choosing the representative vertex of Q′ in Q leads
to the same set of representative vertices for the two quotients. Note that TG/{Q} is
obtained from TG by replacing node q with a leaf corresponding to its representative
vertex. That is TG/{Q} is exactly the complement part of Tq in TG. Similarly, TG′/{Q′}
is the complement part of Tq ′ in TG′ . Since G/{Q} = G′/{Q′}, it follows that TG′ is
obtained from TG by replacing the subtree Tq with TG′[Q′]. �

Definition 3 The insertion node q is the least common ancestor of non-proper nodes
of T .

In the following, q will always denote the insertion node. From Lemma 5, we
conclude that updating TG under the insertion of x reduces to insert x in TG[Q].

Modular Decomposition Tree of G′[Q′] Let us distinguish the different situations
for the insertion node q .

Definition 4 The insertion node q of TG is cut iff q is either

1. a degenerate node with no mixed child but with uniform children of both types
(i.e. linked and notlinked), or

2. q is a prime node with no mixed child but one being a twin of x in Gq .

Otherwise, q is uncut. Namely, q is a degenerate node with at least one mixed child,
or q is a prime node with no child being a twin of x in Gq .

The case where the insertion node is a cut degenerate node is similar to the case,
considered by [4], of maintaining the modular decomposition tree of a cograph under
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vertex insertion. If q is a series (resp. parallel) node, the root q ′ of Tq ′ is a series
(resp. parallel) node. The children of q ′ are those children of q typed linked (resp.
notlinked) and a new parallel (resp. series) node q ′

1. The children of q ′
1 are {x} and

the remaining children of q , i.e. those typed notlinked (resp. linked).
The case where the insertion node is a cut prime node is quite easy to deal with.

In the children of q , the twin f of x is replaced by a new degenerate node q1 (i.e. q1

takes the place of f in the realiser of q). The label of q1 is series if f is typed linked,
and parallel if f is typed notlinked. {x} and f are made children of q1.

Let us now consider the case where the insertion node q is uncut.

Notation 1 Let us define the vertex set Qs as the set Q if q is a prime node and as
the set Fm(q) ∪ Fnl(q) (resp. Fm(q) ∪ Fl(q)) if q a series node (resp. parallel node).
As usual, Q′

s will denote Qs ∪ {x}.

Determining the modular decomposition of G′[Q′
s] (see Theorem 2 below) is cru-

cial to obtain the modular decomposition tree of G′[Q′]. From now on, we denote
M U M(G) the set of maximal uniform (with respect to x) modules of a graph G.
It should be noticed that M U M(G) is by definition a congruence partition of G.
The two following lemmas are useful for the proof of Theorem 2.

Lemma 6 Let M be a module of G and M ′ a module of G′ = G + x, such that
x ∈ M ′ and M ∩ M ′ �= ∅. Then M ∪ M ′ is a module of G′.

Proof Let G = (V ,E) and G′ = G + x = (V ′,E′). Let y ∈ V ′ \ (M ∪ M ′) and z ∈
M ∩ M ′. Since M is a module of G, {y, z} ∈ E′ iff ∀u ∈ M, {y,u} ∈ E′. And since
M ′ is a module of G′, {y, z} ∈ E′ iff ∀v ∈ M, {y, v} ∈ E′. �

Lemma 7 If G′ = G + x is connected and co-connected and if {x} is a maximal
strong module of G′, then the set of maximal strong modules of G′ different from {x}
is exactly the set of maximal uniform (with respect to x) module of G. M S M(G′) \
{x} = M U M(G).

Proof Since G′ is connected and co-connected, its maximal strong modules are its
maximal modules. Since x is one of them, the others do not contain x. Thus, the
maximal modules of G′ different from {x} are the maximal elements (for inclusion)
of the set of modules of G′ which do not contain x. Let us show that these maximal
elements are exactly M U M(G). If M is a uniform module of G, M is a module
of G′. Conversely, if M ′ is a module of G′ which does not contain x, M ′ is a uniform
module of G. The set of uniform modules of G is exactly the set of modules of G′
which do not contain x, and then the maximal elements of these two sets are the
same. �

Theorem 2 Let x be a vertex to be inserted in a graph G. If the insertion node q

of the modular decomposition tree T of G is uncut, then G′[Q′
s] is connected and

co-connected and M S M(G′[Q′
s]) = M U M(G[Qs]) ∪ {{x}}.
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Fig. 3 Updating the modular decomposition tree when the insertion node is a series node. The modules
M1 . . .Mk are the maximal uniform modules of G[Qs ]

Proof Thanks to Lemma 7, we just have to show that G′[Q′
s] is connected and co-

connected, and {x} is a maximal strong module of G′[Q′
s].

If q is a prime node, by definition, Q′
s = Q′. G[Q] is connected and co-connected,

and since Q is mixed, then G′[Q′] is connected and co-connected. If q is a series
node, by definition of Qs = ⋃

f ∈Cnl(q)∪Cm(q) V (f ), G[Qs] is connected. In addition,
since q is uncut, then Cm(q) �= ∅. It follows that there exists y ∈ Qs such that {x, y}
is an edge. Thus G′[Q′

s] is connected. Since q is a series node, any child f of q is
parallel or prime. Therefore, G[F ] is co-connected. Moreover, for each f ∈ Cnl(q) ∪
Cm(q), by definition, there exists y ∈ F such that {x, y} is not an edge. It follows that
G′[Q′

s] is co-connected. If q is a parallel node, considering the complement of G

leads to the same conclusion than in the series case. Thus G′[Q′
s] is connected and

co-connected. We now show that {x} is a maximal strong module of G′[Q′
s].

Claim If the insertion node q is an uncut prime node having no mixed child, then
{x} is a maximal strong module of G′[Q′

s].

Proof Let M ′ be the maximal strong module of G′[Q′] containing x. Since G′[Q′]
is connected and co-connected, M ′ is actually the maximal module of G′[Q′] con-
taining x. We denote M = M ′ \ {x}. Assume M �= ∅, then, from Property 1, M

is a module of G[Q]. Let QM be the maximal module of G[Q] containing M .
QM and M ′ fulfils assumptions of Lemma 6 in G[Q], and thus QM ∪ M ′ is a mod-
ule of G′[Q′]. As M ′ is maximal, QM ∪ M ′ = M ′. Since, by definition of M and
QM , QM ∪ M ′ = QM ∪ {x}, then QM ∪ {x} = M ′ and M = QM . Since QM ∪ {x}
is a module of G′[Q′], qM is a twin of x in the representative graph of q .
This is impossible since q is uncut. Thus, M = ∅ and {x} is a maximal strong module
of G′[Q′]. �

Claim If the insertion node q is an uncut prime node having at least one mixed child,
then {x} is a maximal strong module of G′[Q′

s].

Proof Let M ′ be the maximal strong module of G′[Q′] containing x. We denote
M = M ′ \ {x}. Assume M �= ∅. As in the case where q has no mixed child, we denote
QM the maximal module of G[Q] containing M and we obtain that M = QM , since
the proof made in that previous case is still valid. If q has a unique mixed child qt ,
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since q is a non proper node and QM ∪ {x} is a module of G′[Q′], then qM is not this
unique mixed child of q , by definition of a non-proper node, qM �= qt . If q has at least
two mixed children, at least one of them qt is different from qM . In both cases, there
exists a mixed child qt of q such that qt �= qM . Let u ∈ Qt such that {x,u} ∈ E′ and
v ∈ Qt such that {x, v} �∈ E′. Let z ∈ QM , since QM ∪ {x} is a module of G′[Q′] and
{x,u} ∈ E′, then {z,u} ∈ E′. Since QM ∪ {x} is a module of G′[Q′] and {x, v} �∈ E′,
then {z, v} �∈ E′. It is a contradiction with the fact that Qt is a module of G[Q]. Thus,
M = ∅ and {x} is a maximal strong module of G′[Q′]. �

Claim If the insertion node q is an uncut series node, then {x} is a maximal strong
module of G′[Q′

s].
Proof Let M ′ be the maximal strong module of G′[Q′

s] containing x. Since G′[Q′
s]

is connected and co-connected, M ′ is also the maximal module of G′[Q′
s] containing

x. We denote M = M ′ \ {x}. Note that, by definition, M ′ �= Q′
s and M �= Qs . Assume

M �= ∅, then, from Property 1, M is a module of G[Q]. Since M �= Qs , it is possible
to find fj ∈ Cnl(q) ∪ Cm(q) such that Fj ∩ M = ∅. Since Fj is mixed or notlinked,
there exists y ∈ Fj such that {x, y} is not an edge. Let z ∈ M . Since fj is a child of
q which is a series node and M is a module of G[Q] such that Fj ∩ M = ∅, {y, z}
is an edge. On the other hand, since M ′ is a module of G′[Q′], y �∈ M ′, {x, z} ⊆ M ′
and {x, y} is not an edge, then {y, z} is not an edge. And we get a contradiction. Thus
M = ∅ and {x} is a maximal strong module of G′[Q′

s]. �

Claim If the insertion node q is an uncut parallel node, then {x} is a maximal strong
module of G′[Q′

s].
The proof is quite similar to the proof in the case where q is an uncut series node

(consider the complement of G′[Q′]). �

The modular decomposition tree Tq ′ of G′[Q′] is organised as follows. If q is
a prime node, then, from Theorem 2, G′[Q′] is connected and co-connected. Con-
sequently, q ′ is a prime node and its children correspond to the maximal uniform
modules of G[Q] (Theorem 2). If q is degenerate, then q ′ is degenerate and has the
same label than q . If q is a series (resp. parallel) node, the set of children of q ′ is
{q ′

s} ∪ Cl (q) (resp. {q ′
s} ∪ Cnl(q)) where q ′

s is a new node representing vertices of
Q′

s . From Theorem 2, q ′
s is a prime node and its children correspond to the maximal

uniform modules of G[Q] (Theorem 2). Note that when q is series (resp. parallel),
it may happen that Cl (q) (resp. Cnl(q)) is empty. In that case, Q′ = Q′

s and we do
not need to create a new node q ′

s . Given a maximal uniform module M of G[Qs],
the modular decomposition tree of G′[M] is the part of TG restricted to M . We de-
termined the whole modular decomposition tree TG′ . But we still do not know if G′
is a permutation graph, and, in the positive, how to build the realisers of RG′ . That is
the purpose of next section.

4.2 Dynamic Characterisation of Permutation Graphs

In the case where x is an isolated or universal vertex, G′ is a permutation graph and
the full modular representation is easy to update in constant time. We do not consider
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this case and focus on the case where TG contains at least one non-proper node,
see Lemma 3. As usual, we denote q the insertion node. In the previous section, we
showed that the insertion of x in TG reduces to the insertion of x in TG[Q]. Lemma 8
shows that, similarly, inserting x in MD(G) reduces to insert x in MD(G[Q]).

Lemma 8 Let G′ = G+x and let q be the insertion node. G′ is a permutation graph
iff G′[Q′] is a permutation graph. Moreover, if G′ is a permutation graph, MD(G′)
is obtained from MD(G) by replacing the subtree Tq of TG with TG′[Q′]=G[Q]+x , and
replacing, in RG, the realisers of the representative graphs of the prime nodes of Tq

with the ones of the prime nodes of TG′[Q′].

Proof Since the permutation graphs family is hereditary, if G′ is a permutation graph
then G′[Q′] is. Conversely, since the permutation graphs family is closed under sub-
stitution composition (the invert operation of quotient) and since G/{Q} = G′/{Q′}
(see the proof of Lemma 5), if G′[Q′] is a permutation graph then G′ is. In the proof
of Lemma 5, we already showed that TG′ is obtained from TG by replacing the sub-
tree Tq of TG with TG′[Q′]=G[Q]+x . For every node of the complement part of TG′
which is not in Tq ′ , we can find a set of representative vertices of the quotient that
avoid x. Thus, the representative graphs of these nodes are the same as the ones of
the corresponding nodes in TG. Thus, we obtain MD(G′) by replacing, in RG, the
realisers of the representative graphs of the prime nodes of Tq with the ones of the
prime nodes of TG′[Q′]. �

We now propose a characterisation, based on MD(G′[Q′]), of the cases where
G′ is a permutation graph (Theorem 3). As we ask G′ to be a permutation graph,
the mixed nodes of Tq cannot be spread anywhere in the tree. Lemma 9 claims that
there are at most two branches of mixed nodes in Tq rooted at q . These two branches
correspond to the two families of Lemma 2.

Lemma 9 If G′ is a permutation graph then the insertion node q has at most two
mixed children and any node p �= q of Tq has at most one mixed child.

Proof If q is cut, then q has no mixed descendants and the statement holds.
So assume q is uncut. Let Tqs be the modular decomposition tree of G[Qs]. By

definition of Qs , Tqs is obtained from Tq by removing some uniform children of q .
Then, we can equivalently show the statement on Tqs rather than on Tq . From Theo-
rem 2, H ′ = G′[Q′

s]/M S M(G′[Q′
s]) is a prime permutation graph. Still from The-

orem 2, we have H = G[Qs]/M U M(G[Qs]) = H ′ − x. From Theorem 2, the non-
trivial strong modules of H can be divided in at most two families totally ordered by
inclusion. Therefore the root of TH has at most two children which are not leaves and
any node of TH distinct from its root has at most one child which is not a leaf.

By definition, any mixed strong module of G[Qs] is not a singleton and is the
union of some modules of M U M(G[Qs]). Thereby, Lemma 1 applies and M ⊆
M U M(G[Qs]) is a non-trivial strong module of H iff P = ⋃

M∈M M is a non-
trivial strong module of G[Qs]. It follows that there is a bijection between the set of
mixed strong modules of G[Qs] and non-singleton strong modules of H . To achieve
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the proof, we need to prove that this bijection respects the parent/child relationship
between the nodes of G[Qs]. Formally, we show that if p1 and p2 are two mixed
nodes of Tqs such that p1 is the parent of p2, then their corresponding non-leaf nodes
p̃1 and p̃2 in TH are such that p̃1 is the parent of p̃2. Let M1 ⊆ M U M(G[Qs]) such
that P1 = ⋃

M∈M1
M . M2 is defined similarly. Note that M1 = P̃1 and M2 = P̃2.

Since P2 ⊆ P1, necessarily, M2 ⊆ M1. Assume for contradiction that there exists
some M3 ⊆ M U M(G[Qs]) such that M3 is a strong module of H and M2 �

M3 � M1. Then, from Lemma 1, P3 = ⋃
M∈M3

M is a strong module of G[Qs].
Moreover, P2 � P3 � P1, which is a contradiction with the fact that p1 is the parent
of p2. Thus, p̃1 is the parent of p̃2. �

Unfortunately, Lemma 9 is not a sufficient condition for G′ being a permuta-
tion graph. Theorem 3 gives necessary and sufficient conditions. Given a graph
G = (V ,E), S � V and y ∈ V \S, we denote G−yS = (V , E \{{y, z} | z ∈ S}). If p

is a node of Tq , then set P ′ = P ∪{x}. Since the maximal strong modules of G[P ] are
uniform with respect to x in G′[P ′]−xFm(p), they are modules of G′[P ′]−xFm(p).
We denote

H ′
p = (G′[P ′] − xFm(p))/(M S M(G[P ]) ∪ {{x}}).

Conditions of Theorem 3 precisely apply on the graphs H ′
p where p is a node

of Tq .

Theorem 3 Let x be a vertex to be inserted in a permutation graph G. Then
G′ = G + x is a permutation graph iff either the insertion node q of the modular
decomposition tree T of G is cut; or if q is uncut then the nodes of Tq satisfy condi-
tions 1 and 2 below.

1. q satisfies one of the two following conditions:
(a) q has two mixed children f1 and f2, and H ′

q is a permutation graph admitting
a realiser RH ′

q
= (π1,π2) such that x and f1 are consecutive in π1, and x and

f2 are consecutive in π2.
(b) q has a unique mixed child f1, and H ′

q is a permutation graph admitting a
realiser RH ′

q
= (π1,π2) such that x and f1 are consecutive in π1.

(c) q has no mixed child and H ′
q = G′[Q′]/(M S M(G[Q]) ∪ {{x}}) is a permu-

tation graph.
2. and any node p �= q of Tq satisfies one of the two following conditions:

(a) p has a unique mixed child f1, and H ′
p is a permutation graph admitting a

realiser RH ′
p

= (π1,π2) such that x and f1 are consecutive in π1, and x is the
first element of π2.

(b) p has no mixed child, and H ′
p is a permutation graph admitting a realiser

RH ′
p

= (π1,π2) such that x is the first element of π2.

Proof ⇒ If q is cut, no new prime nodes are introduced in T ′ (see Sect. 4.1),
then G′ is a permutation graph.

So let us assume that q is uncut. We show that the nodes of Tq satisfy the condi-
tions of Theorem 3. The three claims below deal with the cases where the node of Tq
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considered has at least one mixed child. The cases where it has no mixed child follow
as particular cases of the cases treated in the claims.

Let f be a mixed child of q and F the corresponding strong module of G. Let
R′ = (π ′

1,π
′
2) be a realiser of the representative graph G′

q ′
s
. As M S M(G′[Q′

s]) =
M U M(G[Qs]) ∪ {{x}} (see Theorem 2), removing x from R′ results in a realiser R

of G[Qs]/M U M(G[Qs]). As F is a mixed strong module of G[Qs], F is not a sin-
gleton and Lemma 1 applies. That is the set A = {f ′ ∈ C(q ′

s) | F ′ ∈ M U M(G[F ])}
is a strong module of G[Qs]/M U M(G[Qs]) and by Proposition 1, A is a common
interval of the realiser R. Moreover as F is mixed, the set A surrounds x in π ′

1 or π ′
2.

Claim If G′ is a permutation graph and if the insertion node q of T is uncut and
has two mixed children f1 and f2, then H ′

q is a permutation graph admitting a re-
aliser RH ′

q
= (π1,π2) such that x and f1 are consecutive in π1, and x and f2 are

consecutive in π2.

Proof From the discussion above, the sets A1 = {f ∈ C(q ′
s) | F ∈ M U M(G[F1])}

and A2 = {f ∈ C(q ′
s) | F ∈ M U M(G[F2])} are common intervals of the realiser R.

As F1 and F2 are both mixed, A1 and A2 surround x in necessarily different linear
order of R′. Without loss of generality, assume that A1 surrounds x in π ′

1 and A2
in π ′

2 and that elements of A1 are smaller than elements of A2 in π ′
1 (otherwise,

interchange and/or reverse the two orders of the realiser). Let us assume that F1 does
not neighbour F2 (the other case is similar). Then the elements of A1 are smaller than
the elements of A2 in π ′

2. It also follows that q is either a parallel node, or a prime
node and f1 does not neighbour f2 in Gq .

– Assume q is a prime node. Then Q = Qs and M U M(G[Qs]) = M U M(G[F1])∪
M U M(G[F2]) ∪ (M S M(G[Q]) \ {F1,F2}). The realiser RH ′

q
= (π1,π2) of H ′

q

is obtained as follows. Remove x from π ′
1 and π ′

2. Merge the elements of A1 into
a unique element f1 and those of A2 into f2. Finally, reinsert x right after f1 in π1
and right before f2 in π2.

– Assume q is a parallel node. Then by definition Q �= Qs and M U M(G[Qs]) =
M U M(G[F1])∪ M U M(G[F2])∪{Fl}. To obtain the realiser RH ′

q
= (π1,π2) of

H ′
q , first proceed as in the prime case. Then replace the element fl representing

Fl by the set Cl (q) in the same relative order in π1 and π2. Finally, add in π1 and
π2, the elements of Cnl(q) at the end of π1 and π2 so that they appear in the same
relative order. �

Claim If G′ is a permutation graph and if the insertion node q of T is uncut and
has a unique mixed child f1, then H ′

q is a permutation graph admitting a realiser
RH ′

q
= (π1,π2) such that x and f1 are consecutive in π1.

Proof From the discussion above, the set A1 = {f ∈ C(q ′
s) | F ∈ M U M(G[F1])} is

a common interval of the realiser R and A1 surrounds x in some linear order of R′,
say π ′

1. Without loss of generality, assume that x is smaller than the elements of A2 in
π ′

2 (otherwise, reverse the two orders). Let us consider the different cases depending
on the label of q .



Algorithmica

– Assume q is a prime node. Then Q = Qs and M U M(G[Qs]) = M U M(G[F1])∪
(M S M(G[Q]) \ {F1}). The realiser RH ′

q
= (π1,π2) of H ′

q is obtained as follows.
Remove x from π ′

1 and π ′
2. Merge the elements of A1 into a unique element f1.

Finally, reinsert x right before f1 in π1 and at its original place in π2.
– Assume q is parallel (the case q is a series node is similar). Then by definition Q �=

Qs and M U M(G[Qs]) = M U M(G[F1]) ∪ {Fl}. To obtain the realiser RH ′
q

=
(π1,π2) of H ′

q , first proceed as in the prime case. Then replace the element fl

representing Fl by the set Cl (q) in the same relative order in π1 and π2. Finally,
add in π1 and π2, the elements of Cnl(q) at the end of π1 and π2 so that they appear
in the same relative order. �

Claim If G′ is a permutation graph, if the insertion node q of T is uncut and if
p �= q is a node of Tq having a unique mixed child f1, then H ′

p is a permutation
graph admitting a realiser RH ′

p
= (π1,π2) such that x and f1 are consecutive in π1,

and x is the first element of π2.

Proof Let R′ = (π ′
1,π

′
2) be a realiser of G′[Q′]. Removing x from R′ results in a

realiser R of G[Q]. Let q1 be the child of q which is an ancestor of p. As Q1, P

and F1 are strong modules of G[Q], Q1, P and F1 are common intervals of R (see
Proposition 1). As F1 is mixed, F1 (and therefore P and Q1) surrounds x in some
linear order of R′, say π ′

1 without loss of generality. Assume for contradiction that
P ∪ {x} is an interval of π ′

2. Then Q1 ∪ {x} is an interval of π ′
2 and is therefore a

module of G′[Q′]. Thereby q cannot have any mixed child different from q1 and q

cannot be non-proper, which is a contradiction. P ∪ {x} is not an interval of π ′
2.

Let pu be a child of p different from f1. As P does not surround x in π ′
2, Pu does

not surround x in π ′
2. Therefore, since Pu is uniform with respect to x, Pu cannot

surround x in π ′
1. Moreover, since Pu is a strong module of G[Q], Pu is a common

interval of R = R′[V \ x]. It follows, as Pu does not surround x in both π ′
1 and π ′

2,
that Pu is a common interval of R′.

Let us now describe how to obtain RH ′
p

= (π1,π2). First, restricting R′ to the
vertices of P ∪ {x} results in a realiser R′

p of G′[P ∪ {x}] such that x is the first or
the last element of the restriction of π ′

2, without loss of generality say the first; and
such that F1 ∪ {x} is an interval of the restriction of π ′

1. Move x in the restriction
of π ′

1 and place it right before F1 (F1 becomes a common interval). Then merging
the common interval F1 into a unique element f1, and merging, for any child pu of
p different from f1, the common interval Pu into a unique element pu, yields the
realiser RH ′

p
= (π1,π2). �

⇐ By Lemma 5, to conclude that G′ is a permutation graph, we need to prove
that G′[Q′] is a permutation graph. If q is cut, then the representative graph of any
prime node is unchanged (see discussion following Definition 4) and thus G′ is a
permutation graph. Therefore let us assume that q is uncut.

We first show by induction that for any node p �= q of Tq , G′[P ′] is a permutation
graph admitting a realiser RG′[P ′] = (π ′

1,π
′
2) such that x is the first element of π ′

2,
where P ′ = P ∪ {x}. If P is uniform with respect to x, the property holds. Thereby
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leaves trivially satisfy the inductive hypothesis. Let p be a mixed node whose chil-
dren satisfy the inductive hypothesis. To obtain the realiser Rp′ , proceed as follows.
In RH ′

p
= (π1,π2), substitute the realiser RG[F ] for any f ∈ C(p) such that f is not

mixed. If p has no mixed child, then Theorem 3 (2) guarantees that the resulting
realiser has the wished property. So assume p has a unique mixed child f1. By the
inductive hypothesis, G′[F ′

1] has a realiser Rf ′
1
= (τ1, τ2) such that x is the first ele-

ment of τ2. Therefore substituting, in π1, τ1 for the interval {x,f1} and substituting,
in π2, τ2[F1] for the element f1, results in Rp′ . Indeed by Theorem 3 (2), x is the
first element of π2 and remains by the above operations the first element of π ′

2.
Let us now consider the insertion node q . If q has zero or one mixed child, then

the discussion above on descendant nodes p of q applies and shows that a realiser
of G′[Q′] can be built. G′[Q′] is therefore a permutation graph. Assume q has two
mixed children f1 and f2. We proved that G′[F ′

1] and G′[F ′
2] respectively have re-

alisers R1 = (τ1, τ2) and R2 = (σ1, σ2) such that x is the first element of τ2 and σ2.
By assumption, q satisfies Theorem 3 (1). Assume without loss of generality that in
RH ′

q
= (π1,π2), f1 is smaller than f2 in π1. If f1 does not neighbour f2 in H ′

q , then
f1 is before f2 in π2, and after f2 otherwise. We consider only the case where f1
and f2 do not neighbour, the other one is similar. A realiser RG′[Q′] is obtained as
follows. In RH ′

q
, substitute the realiser RG[F ] for any f ∈ C(p) such that f is not

mixed. Then substitute, in π1, τ1 for the interval {x,f1}, and σ2[F2] for f2; and, in
π2, σ1 for the interval {x,f2}, and τ2[F1] for f1. �

4.3 Algorithm and Complexity

4.3.1 Data-Structure

To encode the full modular representation MD(G) = (TG, RG) of a permutation
graph G, we shall first represent the modular decomposition tree. Each node main-
tains a pointer toward its parent and a list of pointers toward its children. Each node is
given a label (prime, parallel or series) and each prime node p is associated with the
realiser Rp of its representative graph Gp . The realiser Rp = (π1,π2) will be stored
in two doubly linked lists representing the two linear orders π1 and π2. Each cell of a
list represents a child c of p and is doubly linked to c. Moreover each cell contains its
rank in the list (namely π1(c) or π2(c)), which allows to answer adjacency queries in
constant time. Finally R also contains a realiser RG of the whole graph G such that
the cells of its two lists are doubly linked to the leaves of TG.

4.3.2 Routine InsPrime

As a prime permutation graph G has a unique realiser R = (π1,π2), G + x is a
permutation graph iff x can be inserted in R. Routine InsPrime performs, if possible,
that insertion. The insertion positions in a linear order on n vertices are denoted i +
0.5, where i ∈ [[0, n]].

Lemma 10 Let R = (π1,π2) be the realiser of a prime permutation graph G =
(V ,E), with |V | = n, and x /∈ V a vertex to be inserted. G + x is a permutation
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graph iff there exists a couple (i, j) ∈ [[0, n]]2 such that

∀u ∈ N(x), π1(u) ≤ i iff π2(u) > j and

∀v ∈ N(x), π1(v) ≤ i iff π2(v) ≤ j. (1)

A realiser of G+x is obtained by inserting x at position i +0.5 in π1 and at position
j + 0.5 in π2.

Proof Assume G′ = G + x is a permutation graph and let R′ = (π ′
1,π

′
2) be a realiser

of G′. The restriction R′[V ] is a realiser of G which, by definition of a realiser,
satisfies (1). Conversely, if for a realiser R of G, there exists i and j satisfying (1),
then it can clearly be extended to a realiser of G′ as described above. �

Formally, in the following, we call insertion position a couple (i + 0.5, j + 0.5)

such that (i, j) satisfies the conditions of Lemma 10.

Definition 5 An initial common interval of a realiser R = (π1,π2) is a common
interval of R containing both π−1

1 (1) and π−1
2 (1). For convenience, the empty set is

considered as an initial common interval.

Note that the number of initial common intervals of a realiser is O(n). They will
play an important role in the detection of the insertion positions for x.

Remark Let (i, j) ∈ [[0, n]]2. The sets N1(x) = {v ∈ N(x) | π1(v) ≤ i} and N1(x) =
{u ∈ N(x) | π1(u) ≤ i} are initial common intervals of, respectively, R[N(x)] and
R[N(x)] iff i and j satisfies (1) of Lemma 10.

Notation 2 Let R = (π1,π2) be a realiser of a prime permutation graph. Let I be
an initial common interval of R[N(x)] = (π1[N(x)],π2[N(x)]). We denote ā1 the
right bound of I in π1[N(x)] and b̄1 the successor of ā1 in π1[N(x)]. ā2 denotes the
right bound of I in π2[N(x)] and b̄2 the successor of ā2 in π2[N(x)]. Let J be an
initial common interval of R[N(x)] = (π1[N(x)],π2[N(x)]). We denote a1 the right
bound of J in π1[N(x)] and b1 the successor of a1 in π1[N(x)]. b2 denotes the right
bound of J in π2[N(x)] and a2 the successor of b2 in π2[N(x)].

If I = ∅, ā1 is undefined, and if I = N(x), b̄1 is undefined. Similarly, ā2 and b̄2
may be undefined. These particular cases can be avoided by adding fictive vertices y0
and yn+1 respectively at positions 0 and n + 1 in R, which are considered as being
both in N(x) and N(x). An initial common interval I of R[N(x)] becomes I ∪ {y0}.
When I is empty, ā1 = y0, and when I = N(x), b̄1 = yn+1. And similarly for the
common intervals J of R[N(x)].

In the following, we do not consider anymore the cases where I = ∅ or I = N(x),
as well as the cases where J = ∅ or J = N(x).

Remark By definition, different intervals [āi
1, b̄

i
1] corresponding to different initial

common intervals Ii of R[N(x)] can intersect only on their bounds. The same is also



Algorithmica

true for different intervals [āi
2, b̄

i
2], as well as different intervals [aj

1 , b
j

1] and different

[aj

2 , b
j

2 ] corresponding to different initial common intervals Jj of R[N(x)].

Lemma 11 Let R = (π1,π2) be a realiser of a prime permutation graph. Let I and J

be initial common intervals of R[N(x)] and R[N(x)] respectively. If, in π1, [ā1, b̄1]
and [a1, b1] intersect, then |[ā1, b̄1] ∩ [a1, b1]| = 2. If, in π2, [ā2, b̄2] and [a2, b2]
intersect, then |[ā2, b̄2] ∩ [a2, b2]| = 2.

Proof We give the proof for π1, the proof for π2 is similar. Since {ā1, b̄1} ⊆ N(x) and
{a1, b1} ⊆ N(x), [ā1, b̄1] and [a1, b1] cannot share a bound. It follows that |[ā1, b̄1]∩
[a1, b1]| ≥ 2. Without loss of generality, assume that a1 <π1 ā1. Since [ā1, b̄1] and
[a1, b1] intersect, then ā1 <π1 b1. If the successor of ā1 in π1 is a non-neighbour of
x, then, by definition, it is b̄1. Thus |[ā1, b̄1]| = 2 and the proof is over. Otherwise, if
the successor s of ā1 in π1 is a neighbour of x, then, since ā1 <π1 b1 it follows that
s ≤π1 b1. Since b1 is the successor of a1 in π1 restricted to the neighbours of x, then
s = b1. Thus, |[ā1, b̄1] ∩ [a1, b1]| = 2. �

Corollary 1 rephrases Lemma 10 according to the discussion above.

Corollary 1 Let G be a prime permutation graph and R = (π1,π2) its realiser. G+x

is a permutation graph iff there exist I and J initial common intervals of respectively
R[N(x)] and R[N(x)], such that [ā1, b̄1] and [a1, b1] intersect in π1 and [ā2, b̄2]
and [a2, b2] intersect in π2. And if such I, J exist, we obtain a realiser of G + x by
inserting x between the two elements of [ā1, b̄1] ∩ [a1, b1] in π1, and between the two
elements of [ā2, b̄2] ∩ [a2, b2] in π2.

Proof If G + x is a permutation graph, there exist i, j satisfying (1) of Lemma 10.
Then, I = N1(x) = {v ∈ N(x) | π1(v) ≤ i} and J = N1(x) = {u ∈ N(x) | π1(u) ≤ i}
are initial common intervals of, respectively, R[N(x)] and R[N(x)]. From Notation 2
and definition of N1(x) and N1(x), it follows that both [ā1, b̄1] and [a1, b1] contain
{π−1

1 (i),π−1
1 (i + 1)}, and therefore intersect. Similarly, [ā2, b̄2] and [a2, b2] inter-

sect.
Conversely, if there exist I, J satisfying condition of the corollary, then from

Lemma 11, |[ā1, b̄1] ∩ [a1, b1]| = 2 and |[ā2, b̄2] ∩ [a2, b2]| = 2. It is not difficult
to see that inserting x between the two vertices of [ā1, b̄1] ∩ [a1, b1] in π1, and be-
tween the two vertices of [ā2, b̄2] ∩ [a2, b2] in π2, we obtain the correct adjacencies
both between x and its neighbourhood and between x and its non-neighbourhood. �

Remark It is worth to notice that there is a bijection between the set of couples (I, J )

of initial common intervals of respectively R[N(x)] and R[N(x)] and the set of in-
sertion positions for x in R.

Lemma 10 states that, for x a new vertex to be inserted in a prime permutation
graph G, G + x is a permutation graph iff there exists at least one insertion position
for x in the realiser of G. The following theorem proves that there cannot be many of
them.
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Theorem 4 Let G = (V ,E) be a prime permutation graph and R = (π1,π2) its
realiser. Let x be a vertex to be inserted in G such that V is not uniform with respect
to x. There are at most two insertion positions for x in R (possibly none). Moreover,
there are two different insertion positions iff x has a twin in G + x.

Proof Consider two different insertion positions for x in R. Perform simultaneously
the two corresponding insertions of x1 and x2 in R (x1 and x2 represent x in the
two different possible insertions). Let Rins = (π ins

1 ,π ins
2 ) be the resulting realiser. Let

a ∈ V be a vertex which is between x1 and x2 in one of the two orders of Rins. Then,
a is between x1 and x2 in the other order of Rins. Otherwise, a would not be linked
in the same way to x1 and x2 which is a contradiction since x1 and x2 both represent
possible insertion positions for x in R. Consequently, the set B of vertices between x1

and x2 in π ins
1 are the same than the ones between x1 and x2 in π ins

2 . B is a common
interval of R, then B is a module of G which is prime. The fact that V is mixed
implies that B �= V . It follows that |B| = 1. This shows that two insertion positions
cannot be separated by more than one vertex in any of the two orders of the realiser.
It follows that there are at most two insertion positions for x in R.

We denote by a the unique element of B . For any of the two possible insertion
positions for x, {a, x} is an interval of the resulting realiser R′ of G′ = G + x. Thus,
{a, x} is a module of G + x and a is a twin of x in G + x. Conversely, if x has a twin
a in G′, then {a, x} is a strong module of G′. In any realiser of G′, {a, x} is a common
interval. Actually, since G is prime, {a, x} is the unique module of G′. It follows that
G′ admits exactly two realisers, any one being obtained from the other by interchang-
ing a and x in the two orders. The restriction of any of the two realisers of G′ results
in the unique realiser of G. Thereby x has two different insertion positions in R. �

It is easy to design an algorithm providing all common initial intervals of a realiser
in O(l) time, where l is the number of elements of the realiser. Let us now sketch
Routine InsPrime.

1. First extract from R = (π1,π2), the realisers R[N(x)] and R[N(x)] and compute
their initial common intervals.

2. For each initial common interval I of R[N(x)], mark on π1 the corresponding
insertion interval among the non-neighbours of x, i.e. associate with ā1 (resp. b̄1),
an identifying label for I , the pointers to ā2 and b̄2 and a pointer to b̄1 (resp. ā1).
Proceed similarly for the initial common intervals J of R[N(x)].

3. Scan π1 looking for the intersections of some [āi
1, b̄

i
1] with some [aj

1 , b
j

1 ]. When
such an intersection is found, check whether the corresponding [āi

2, b̄
i
2] and

[aj

2 , b
j

2] intersect in π2. If so, by Corollary 1, output the insertion position for
x in R and continue scanning π1. Otherwise, continue scanning π1.

Note that marking the insertion intervals in step 2 can be done in constant time
for each initial common interval. Each intersection test in step 3 costs O(1). Since
the insertion intervals among the non-neighbours of x do not intersect except on their
bounds, as well as the insertion intervals among the neighbours of x, the scan of π1

described above takes O(n) time.
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From Theorem 4, Routine InsPrime finds at most two possible insertion positions
for x in R. From Corollary 1, if no insertion position is found, then G + x is not a
permutation graph. If exactly one insertion position is found, then G + x is a permu-
tation graph and there is a unique way of inserting x in R. If two insertion positions
are found, then, G + x is a permutation graph, and from Theorem 4 x has a twin a in
G + x, which is the only vertex between the two possible insertion positions in any
of the two orders of the realiser R. Therefore, a can be found in constant time.

To summarise, if G + x is a permutation graph, then in O(n) time, Routine
InsPrime returns a pair of doubly linked lists, the realiser of G + x, and outputs
the twin of x if it exists.

4.3.3 The Typing Routine

This routine is exactly the marking process of [19], where the marks 1, −1 and 0 have
been replaced by the types linked, notlinked and mixed. Each node receives its type
in a bottom-up process. A leaf Ly of TG is typed linked if y ∈ N(x) and notlinked
otherwise. Each node forwards its type to its parent node. If a node p receives the
same type from all its children, p is given this type. Otherwise, p is given the type
mixed. The process ends when the root is given a type. It is lightfull that the nodes
typed mixed are exactly the mixed nodes, the nodes typed linked are the uniform
nodes linked to x and the nodes typed notlinked are the uniform nodes not linked to
x. Since the number of nodes in TG is O(n) and since each edge of TG is crossed
once, the typing routine runs in O(n) time.

4.3.4 Finding the Insertion Node q

The purpose of this step is to find the insertion node q , in the case where the root r of
TG is typed mixed. By definition, q is the least common ancestor of the non-proper
nodes of TG. Any node p of the unique path between r and q is mixed and proper
if p �= q . Since, by Definition 2, any proper mixed node has a unique mixed child,
finding the insertion node can be done by a top-down search of TG following the path
from r to q . The search stops when the current node p is non-proper, which can be
tested as follows. If p is a series node (resp. parallel node), then p is proper iff all its
children but one are typed linked (resp. notlinked) and the remaining child is mixed.
If p is a prime node, p is proper iff x has a twin in the representative graph of p,
which can be checked by Routine InsPrime. In both cases, testing whether p is a
proper node can be done in O(|C(p)|). As TG contains O(n) nodes, the search finds
the insertion node q in O(n) time.

4.3.5 Maintaining the Full Modular Representation

Let us finally explain how it can be checked whether G′[Q′] is a permutation graph
or not, and in the positive how the full modular representation can be updated. We
first consider two simple cases.

• If the insertion node q has more than two mixed children, from Lemma 9, G′[Q′]
is not a permutation graph, then the algorithm stops. The test can clearly be done
in O(|C(q)|) time.
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• If q is cut, then G + x is a permutation graph (see Theorem 3) and the realisers of
the representative graphs of prime nodes remain unchanged. From Definition 4, q

is either a degenerate node with no mixed child but uniform children of both types,
or a prime node with no mixed child but a child being a twin of x in Gq . Both
cases can be tested in O(|C(q)|) time. This is clear for the former one. The latter
one can be checked by a call to routine InsPrime. In both cases, updating TG into
TG′ can be done, as described in Sect. 4.1, in O(|C(q)|) time.

Let us assume now that the insertion node q is uncut. First of all, note that
from Lemma 4, the changes in T resulting from the insertion of x are located in
the subtree Tq . Discussion below focuses on the computation of MD(G′[Q′]) =
(TG′[Q′], RG′[Q′]). To simplify the notations, let us set T ′ = TG′[Q′] and R′ =
RG′[Q′].

For seek of simplicity, we present the algorithm as a three-step process (note that,
in practise, these three steps can be merged into a single one): 1) first, compute the
modular decomposition tree T ′; 2) determine if G′[Q′] is a permutation graph; and
3) in the positive, compute the realisers of R′.

Computation of T ′ Discussion following the proof of Theorem 2 explains how T ′
can be obtained once the modular decomposition tree has been marked by the typing
routine. The main task is to determine the new strong modules that appears with
the insertion of x. From Theorem 2 these strong modules are the maximal uniform
modules. They can be found in O(n) time by a search in Tqs since M is a maximal
uniform module iff there exists a mixed node p descendant of qs such that either p is
degenerate and M = Fl(p) or M = Fnl(p); or p is prime and M is the vertex set of
some uniform child of p.

Permutation Graph Test Let us consider the set Q′
s defined in Notation 1.

Since for any maximal uniform module M of G′[Q′
s], the modular decom-

position tree of G′[M] is inherited from T without adding any prime node,
then G′[Q′

s] is a permutation graph iff the representative graph G′
q ′
s

is. Notice

that G′
q ′
s
= G[Qs]/M U M(Qs) + x and that the full modular representation

MD(G[Qs]/M U M(Qs)) = (T̃ , R̃) can be extracted from MD(G) in O(n) time.
We need to check whether each node p of T̃ fulfils the condition of Theorem 3.

Since q is uncut, the root of T̃ is also uncut. If p is a degenerate node having
the right number of mixed children (0, 1 or 2 depending on p being the root), then
H ′

p always enjoys a realiser satisfying Theorem 3 (see Fig. 4). If p is prime, using
Routine InsPrime (which runs in O(|C(p)|) time), we insert x in R̃p by making x

adjacent to Cl (p) and non-adjacent to Cm(p) ∪ Cnl(p). There may be two different
positions to insert x (only if x has a twin vertex). We then test if at least one of the
possible positions fulfils the conditions of Theorem 3 which simply consists in testing
the position of x in the realiser returned by InsPrime (extremity in an order and/or
consecutiveness with the mixed child). That can be done in O(1). Since we only
handle the representative graphs of prime nodes of T̃ , each of which being processed
in O(|C(p)|) time, the time complexity of this second step is O(n).
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Fig. 4 The unique realiser of H ′
p (if p is a series node) that fulfils condition 2a of Theorem 3. For a

parallel node p, Cnl(p) and Cl (p) has to be exchanged in π2

Computation of R′ = RG′[Q′] We now assume that G′ = G + x is a permutation
graph. Remind that the representative graph G′

q ′
s

is the graph G[Qs]/M U M(Qs) + x

(see Theorem 2). Then, as for the testing step, the algorithm makes use of
MD(G[Qs]/M U M(Qs)) = (T̃ , R̃). Notice that, for complexity issues, the ranks
of the cells in the lists of the intermediate realisers computed along the process are
not maintained.

To compute R′ = RG′[Q′], we apply the bottom-up process, described in the proof
of Theorem 3, on MD(G[Qs]/M U M(Qs)). For a prime mixed node p of T̃ , the
realiser of H ′

p is given by Routine InsPrime. For a degenerate node p of T̃ , the
realiser of H ′

p is the one depicted in Fig. 4. As the realisers are encoded by pairs of
doubly linked lists, the substitution operation used in the proof of Theorem 3 can be
done in O(1) time. Thus, during the bottom-up process, each node p is handled in
O(|C(p)|) time. It follows that the realiser Rs is computed in O(n) time. Finally to
maintain the whole data-structure, a scan of the lists of Rs allows to get the ranks of
the cells.

Theorem 5 Updating the full modular representation of a permutation graph under
vertex insertion costs O(n) time.
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