On the difference between the Szeged and the Wiener index

Marthe Bonamy ${ }^{\text {a }}$, Martin Knor ${ }^{\text {b }}$, Borut Lužar ${ }^{\text {c,*, }}$, Alexandre Pinlou ${ }^{\text {d,e, }, ~}$ Riste Škrekovski ${ }^{\text {c.f,g }}$
${ }^{\text {a }}$ CNRS, LaBRI, Talence, France
${ }^{\mathrm{b}}$ Faculty of Civil Engineering, Department of Mathematics, Slovak University of Technology in Bratislava, Bratislava, Slovakia
${ }^{\text {c }}$ Faculty of Information Studies, Novo mesto, Slovenia
${ }^{\text {d }}$ CNRS, LIRMM, Université de Montpellier, Montpellier, France
${ }^{\text {e }}$ Département MIAp, Université Paul-Valéry Montpellier 3, Montpellier, France
${ }^{\mathrm{f}}$ Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
${ }^{\mathrm{g}}$ FAMNIT, University of Primorska, Koper, Slovenia

ARTICLE INFO

Keywords:

Wiener index
Szeged index
Revised Szeged index
Szeged-Wiener relation

Abstract

We prove a conjecture of Nadjafi-Arani et al. on the difference between the Szeged and the Wiener index of a graph (Nadjafi-Aranifi et al., 2012). Namely, if G is a 2-connected non-complete graph on n vertices, then $\mathrm{Sz}(G)-W(G) \geq 2 n-6$. Furthermore, the equality is obtained if and only if G is the complete graph K_{n-1} with an extra vertex attached to either 2 or $n-2$ vertices of K_{n-1}. We apply our method to strengthen some known results on the difference between the Szeged and the Wiener index of bipartite graphs, graphs of girth at least five, and the difference between the revised Szeged and the Wiener index. We also propose a stronger version of the aforementioned conjecture.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Graph theoretic invariants of molecular graphs, which predict properties of the corresponding molecules, are known as topological indices or molecular descriptors. The oldest and most studied topological index is the Wiener index introduced in 1947 by Wiener [23], who observed that this invariant can be used for predicting the boiling points of paraffins. For a simple graph $G=(V, E)$, the Wiener index is defined as

$$
W(G)=\sum_{\{a, b\} \subseteq V} d(a, b),
$$

i.e., the sum of distances between all pairs of vertices. After 1947, the same quantity has been studied and referred to by mathematicians as the gross status [8], the distance of graphs [5], and the transmission [22]. A great deal of knowledge on the Wiener index is accumulated in research papers, e.g., [1,13,16,21], and surveys, e.g., [14,24], to mention just some recent ones.

Up to now, over 200 topological indices were introduced as potential molecular descriptors. Already in [23], Wiener introduced a related invariant now called the Wiener polarity index (see e.g., [15,17]), Another molecular descriptor motivated

[^0]by the Wiener index is the Szeged index [6,9]; it was motivated by the original definition of Wiener index for trees. It is defined as
$$
\mathrm{Sz}(G)=\sum_{a b \in E} n_{a b}(a) \cdot n_{a b}(b)
$$
where $n_{a b}(a)$ is the number of vertices strictly closer to a than b, and analogously, $n_{a b}(b)$ is the number of vertices strictly closer to b. Note that $n_{a b}(a)$ and $n_{a b}(b)$ are always positive.

In this paper we consider possible values of the difference

$$
\eta(G)=\mathrm{Sz}(G)-W(G)
$$

between the Szeged and the Wiener index of a graph G. Klavžar et al. [12] proved that the inequality $\eta(G) \geq 0$ holds for every connected graph G. Moreover, Dobrynin and Gutman [4] showed that the equality is achieved if and only if G is a block graph, i.e., a graph in which every block (maximal 2-connected subgraph) induces a clique. Nadjafi-Arani et al. [18,19] further investigated the properties of $\eta(G)$ and proved that for every positive integer k, with $k \notin\{1,3\}$, there exists a graph G with $\eta(G)=k$. Additionally, they classified the graphs G for which $\eta(G) \in\{2,4,5\}$ and asked about a general classification; namely, can we characterize all graphs with a given value of $\eta(G)$? They proposed the following conjecture.

Conjecture 1. [19] Let G be a connected graph and let B_{1}, \ldots, B_{k} be all its non-complete blocks of respective orders n_{1}, \ldots, n_{k}. Then

$$
\eta(G) \geq \sum_{i=1}^{k}\left(2 n_{i}-6\right)
$$

In this paper, we prove the following statement which deals with 2-connected graphs.
Theorem 2. If G is a 2-connected non-complete graph on n vertices, then

$$
\eta(G) \geq 2 n-6
$$

As a consequence of Theorem 2 we obtain that Conjecture 1 is true.
Corollary 3. Let B_{1}, \ldots, B_{k} be all the non-complete blocks of G with respective orders n_{1}, \ldots, n_{k}. Then

$$
\eta(G) \geq \sum_{i=1}^{k}\left(2 n_{i}-6\right)
$$

In fact, we also characterize the graphs achieving equality in Theorem 2 . For $n, t \in \mathbb{N}$ with $1 \leq t \leq n-1$, let K_{n}^{t} be the graph obtained from K_{n-1} by adding one new vertex adjacent to t of the $n-1$ old vertices. Observe that K_{n}^{t} is 2 -connected and non-complete if $2 \leq t \leq n-2$. We prove the following stronger version of Theorem 2 .
Theorem 4. If G is a 2-connected non-complete graph on n vertices that is not isomorphic to K_{n}^{2} or K_{n}^{n-2}, then

$$
\eta(G) \geq 2 n-5
$$

While $\eta\left(K_{n}\right)=0$, and $\eta\left(K_{n}^{2}\right)=\eta\left(K_{n}^{n-2}\right)=2 n-6$ (see Lemma 11 for the proof), there seems to be only a finite number of graphs G with $\eta(G)<2 n$; in particular, using a computer, we found such graphs of order at most 9 , but none on 10 vertices. We therefore propose the following conjecture.

Conjecture 5. Let G be a 2-connected graph of order $n \geq 10$ not isomorphic to K_{n}, K_{n}^{2}, or K_{n}^{n-2}. Then

$$
\eta(G) \geq 2 n .
$$

In Section 2, we derive Corollary 3 from Theorem 2. We present the proofs of Theorems 2 and 4 in Section 4, after introducing four technical lemmas in Section 3. In Section 5, we apply our method in order to obtain stronger versions of other results related to the difference between the Szeged and the Wiener index of a graph and, as corollaries, we present alternative proofs of the existing results. Finally, in Section 6 we use our approach to prove results for the revised Szeged index.

2. Preliminaries

In the paper, we will use the following definitions and notation. The distance $d(a, b)$ between two vertices a and b is the length of a shortest path between them. We say that an edge $a b$ is horizontal to a vertex u if $d(u, a)=d(u, b)$. A cycle of length k is denoted by C_{k}. For a vertex u of G, by $N(u)$ and $N[u]$ we denote the open and the closed neighborhood of u, respectively; hence $N[u]=N(u) \cup\{u\}$. By extension, we define the open neighborhood $N(S)$ of a set S to be $\left(\cup_{a \in S} N(a)\right) \backslash S$. By $N_{i}(u)$ we denote the set of vertices that are at distance i from u. Hence $N_{0}(u)=\{u\}, N_{1}(u)=N(u)$, etc. The degree of u in G is denoted by $d(u)$ and we always denote the number of vertices of G by n, i.e., $n=|V(G)|$. A vertex is dominating if it is adjacent to all other vertices of a graph. A non-edge in a graph G is a pair of non-adjacent vertices. A block is a maximal

Fig. 1. Cycles C_{5} and C_{3} with good edges for the pair a and b depicted in bold.
subgraph without a cut-vertex. Note that a block is either a 2-connected subgraph, a single edge or an isolated vertex, and every graph has a unique decomposition into blocks. If $B \subseteq V(G)$, then $G[B]$ denotes the subgraph of G induced by B.

For an unordered pair of vertices a and b, an edge $e=u v$ is good for $\{a, b\}$ if $d(a, u)<d(a, v)$ and $d(b, v)<d(b, u)$. Let $g(a, b)$ be the number of good edges for $\{a, b\}$. Note that every edge on a shortest path between a and b is a good edge for $\{a, b\}$, which gives $g(a, b) \geq d(a, b)$ (Fig. 1).

The concept of good edges has been introduced by Simić et al. [20] and used for an alternative definition of the Szeged index. Observe that an edge $u v$ is good for exactly $n_{u v}(u) \cdot n_{u v}(v)$ pairs of vertices. Therefore,

$$
\begin{equation*}
\mathrm{Sz}(G)=\sum_{u v \in E} n_{u v}(u) \cdot n_{u v}(v)=\sum_{\{a, b\} \subseteq V} g(a, b) . \tag{1}
\end{equation*}
$$

Consequently, we obtain the following statement.
Proposition 6. Let G be a graph. Then

$$
\eta(G)=\sum_{\{a, b\} \subseteq V}(g(a, b)-d(a, b)) .
$$

To simplify the notation, we write

$$
\eta(a, b)=g(a, b)-d(a, b)
$$

Note that $g(a, a)=d(a, a)=0$. Since $g(a, b) \geq d(a, b)$ for every pair a, b, we easily obtain the known fact that $\mathrm{Sz}(G) \geq W(G)$.
Next, we define the contribution $c_{G}(a)$ of a vertex a in a graph G as

$$
\begin{equation*}
c_{G}(a)=\sum_{b \in V} \eta(a, b)=\sum_{b \in V}(g(a, b)-d(a, b)) \tag{2}
\end{equation*}
$$

When there is no ambiguity from the context, we write $c(a)$ instead of $c_{G}(a)$. Therefore,

$$
\begin{equation*}
\eta(G)=\frac{1}{2} \sum_{a \in V} c(a) \tag{3}
\end{equation*}
$$

Now we are ready to prove Corollary 3 using Theorem 2.
Proof of Corollary 3. Note first that for any a, b from B_{i} it holds $g_{B_{i}}(a, b)=g_{G}(a, b)$ and $d_{B_{i}}(a, b)=d_{G}(a, b)$. By Theorem 2, we have

$$
\eta\left(B_{i}\right)=\sum_{\{a, b\} \subseteq V\left(B_{i}\right)} \eta(a, b)=\sum_{\{a, b\} \subseteq V\left(B_{i}\right)}(g(a, b)-d(a, b)) \geq 2 n_{i}-6,
$$

for every $i, 1 \leq i \leq k$. Since $g(a, b) \geq d(a, b)$ for every $\{a, b\} \subseteq V$, we conclude that

$$
\eta(G)=\sum_{\{a, b\} \subseteq V}(g(a, b)-d(a, b)) \geq \sum_{i=1}^{k}\left(2 n_{i}-6\right) .
$$

3. Auxiliary results

In this section, we prove four technical lemmas which will be used in the next sections to prove our theorems.
We first show that some vertices allow for an inductive argument.
Lemma 7. Let G be a 2-connected graph. If G contains a vertex u such that $G-u$ is 2 -connected, not complete, and there exists a vertex v such that $N[u] \subseteq N[v]$, then $\eta(G)-\eta(G-u) \geq 2$.

Proof. Let $G=(V, E)$ be a graph satisfying the assumptions, and let $G^{*}=G-u$. Since G^{*} is not complete, neither is the graph G. Since $N[u] \subseteq N[v]$, we have that $d_{G^{*}}(a, b)=d_{G}(a, b)$ for any two vertices distinct from u. Hence,

$$
W(G)=W\left(G^{*}\right)+\sum_{a \in V \backslash\{u\}} d(u, a)
$$

Let q be the number of couples $(\{a, b\}, w)$ such that a, b are vertices of G^{*} and w is a neighbor of u such that the edge $u w$ is good for $\{a, b\}$. Similarly as above, one can easily verify that

$$
\mathrm{Sz}(G)=\mathrm{Sz}\left(G^{*}\right)+\sum_{a \in V \backslash\{u\}} g(u, a)+q .
$$

Therefore,

$$
\begin{equation*}
\eta(G)-\eta\left(G^{*}\right)=\sum_{a \in V \backslash\{u\}}(g(u, a)-d(u, a))+q, \tag{4}
\end{equation*}
$$

and it suffices to prove that the right-hand side of (4) is at least 2 . In order to do so, we consider the following contributions:
(C1) q is at least twice the number of non-edges in $N(u)$. Indeed, for any two non-adjacent neighbors w_{1}, w_{2} of u, the edges $u w_{1}$ and $u w_{2}$ are both good for $\left\{w_{1}, w_{2}\right\}$, and so each of the couples ($\left\{w_{1}, w_{2}\right\}, w_{1}$) and ($\left\{w_{1}, w_{2}\right\}, w_{2}$) contributes 1 to q.
(C2) For every vertex $a \notin N[u]$, we have $g(u, a)-d(u, a) \geq 2\left(p_{a}-1\right)$, where p_{a} is the number of neighbors w of a with $d(u, w)<d(u, a)$. This follows from the fact that both edges, $a w$ and $w w^{\prime}\left(w^{\prime}\right.$ being a neighbor of w with $d\left(u, w^{\prime}\right)<$ $d(u, w))$, are good for the pair $\{u, a\}$, for every w.
(C3) For every edge ab horizontal to u, and for every neighbor x of a, with $d(u, x)<d(u, a)$, such that x is not adjacent to b, the edge ax is good for $\{u, b\}$, i.e., it contributes an extra 1 to $g(u, b)-d(u, b)$.

If u is dominating, then, since G is not a complete graph, there is a missing edge in $N(u)$ and $q \geq 2$ by (C1).
Assume now that u is not dominating. We show that $\sum_{a \in V \backslash\{u\}}(g(u, a)-d(u, a)) \geq 2$. If there is exactly one vertex that does not belong to $N[u]$, then it must have at least two neighbors in $N(u)$ since G is 2-connected, and the conclusion follows from (C2).

From now on, we assume that there are at least two vertices that do not belong to $N[u]$. Since G is 2 -connected, there are at least two vertices in $N(N[u])$. If there is a vertex having at least two neighbors in $N(u)$, we have $\sum_{a \in V \backslash\{u\}}(g(u, a)-$ $d(u, a)) \geq 2$, by (C2). So we may assume that any vertex $a \in N(N[u])$ has exactly one neighbor x in $N(u)$. Since G is 2connected, the graph $G-x$ is connected. Let P be a shortest path between a and u in $G-x$. Note that P contains:

- a vertex b having two neighbors y_{1} and y_{2} with $d\left(u, y_{1}\right)=d\left(u, y_{2}\right)<d(u, b)$; or
- an edge $b_{1} b_{2}$ horizontal to u with the property that for the other neighbors, z_{1} and z_{2}, of b_{1} and b_{2} in P, respectively, it holds $d\left(u, z_{i}\right)<d\left(u, b_{i}\right), i \in\{1,2\}$, and $b_{1} z_{2}, b_{2} z_{1} \notin E$.
By (C2) and (C3), we infer that $\sum_{a \in V \backslash\{u\}}(g(u, a)-d(u, a)) \geq 2$ in either case, and so we conclude that $\eta(G)-\eta\left(G^{*}\right) \geq$ 2.

In the forthcoming lemma, we characterize the graphs G for which the difference $\eta(G)-\eta(G-u)$ attains 2 .
Lemma 8. Let G be a 2-connected graph of order n containing a vertex u such that $G-u$ is 2-connected, not complete, and there exists a vertex v such that $N[u] \subseteq N[v]$. If $\eta(G)-\eta(G-u)=2$ and $G-u$ is isomorphic to K_{n-1}^{2} or K_{n-1}^{n-3}, then G is isomorphic to K_{n}^{2} or K_{n}^{n-2}.

Proof. Note that $n \geq 5$, since $G-u$ is 2 -connected and non-complete. Let $G^{*}=G-u$ and let α be the number of ordered triples (x, y, z) such that y is adjacent to both x and z and $d(u, x)<d(u, y)$, and either
(a) $d(u, z)<d(u, y)$; or
(b) the edge $y z$ is horizontal to u and x is not adjacent to z.

From the proof of Lemma 7, we know that either u is dominating and, by ($C 1$), there is precisely one edge missing in $N(u)$, or u is not dominating and, by (C2) or (C3), $\alpha \leq 2$. In the first case we immediately obtain that G^{*} is isomorphic to K_{n-1}^{n-3}, and so G is isomorphic to K_{n}^{n-2}. Therefore, we may assume that u is not dominating, $N(u)$ induces a clique and $\alpha \leq 2$.

In what follows, we show that $|N(N[u])|=1$. Since G^{*} is isomorphic to K_{n-1}^{n-3} or K_{n-1}^{2}, it contains at least two dominating vertices. Note that every dominating vertex of G^{*} is in $N(u)$ or $N(N[u])$.

Suppose first there are two dominating vertices of G^{*} in $N(u)$, say w_{1} and w_{2}. Then, for every $a \in N(N[u])$ both (w_{1}, a, w_{2}) and (w_{2}, a, w_{1}) contribute 1 to α and hence $|N(N[u])| \leq 1$.

Suppose now there is a dominating vertex w in $N(N[u])$. Then, due to the 2-connectivity of G, w has at least two neighbors, say a_{1} and a_{2}, in $N(u)$ and consequently both $\left(a_{1}, w, a_{2}\right)$ and $\left(a_{2}, w, a_{1}\right)$ contribute 1 to α. If there is a vertex $z \neq w$ with $z \in N(N[u])$, then $w z \in E\left(G^{*}\right)$ as w is dominating in G^{*}, and either $a_{i} z \notin E\left(G^{*}\right)$ in which case (a_{i}, w, z) contributes 1 to α, or $a_{1} z, a_{2} z \in E\left(G^{*}\right)$ in which case $\left(a_{1}, z, a_{2}\right)$ contributes 1 to α. Consequently, $|N(N[u])| \leq 1$ also in this case.

So, in both cases we have $|N(N[u])| \leq 1$ and since u is not dominating in G, we conclude $|N(N[u])|=1$. Denote by z the unique vertex of $N(N[u])$. Since G is 2-connected and $\alpha \leq 2, z$ has exactly two neighbors in $N(u)$, which forms a clique. Consequently, G^{*} is isomorphic to K_{n-1}^{2} and G is isomorphic to K_{n}^{2}.

In the next lemma we also assume existence of two vertices, one of which dominates the other.
Lemma 9. Let G be a 2-connected non-complete graph distinct from K_{4}^{2}. Suppose that for every pair of vertices u, v with $N[u] \subseteq$ $N[v], G-u$ is complete or not 2-connected, and at least one such a pair exists. Then for every two vertices u, v, where $N[u] \subseteq$ $N[v]$, it holds that $G-u$ is not 2-connected and no block of $G-u$ is isomorphic to K_{t}, K_{t}^{2} or K_{t}^{t-2} for any t.

Proof. Suppose there is a pair u, v with $N[u] \subseteq N[v]$ and $G-u$ is complete. Then u is not dominating in G and $V=\{u\} \cup$ $N(u) \cup N(N[u])$. If $N(N[u])$ contains at least two vertices w_{1}, w_{2}, then these vertices satisfy $N\left[w_{1}\right]=N\left[w_{2}\right]$, and $G-w_{1}$ is 2 -connected but not complete, which contradicts assumptions of the lemma. So, let w be the unique vertex in $N(N[u])$. Let v_{1}, v_{2} be two vertices in $N(u)$ (such vertices exist since G is 2 -connected). We have $N\left[v_{1}\right]=N\left[v_{2}\right]$. If $N(u)$ is of size at least three, then $G-v_{1}$ is 2 -connected but not complete, a contradiction. If $N(u)$ is of size two, then G is isomorphic to K_{4}^{2}, a contradiction.

By the above paragraph, we may assume that for every pair u, v where $N[u] \subseteq N[v]$, the graph $G-u$ is not 2-connected. Note that v is contained in every block of $G-u$ and is the only cut-vertex in $G-u$.

Next, suppose for a contradiction that there is a pair u, v with $N[u] \subseteq N[v]$ such that a block C of $G-u$ is isomorphic to K_{t}, K_{t}^{2} or K_{t}^{t-2} for some t. Observe that each of K_{t}, K_{t}^{2} and K_{t}^{t-2} has at least two dominating vertices since $t \geq 2$. Moreover, since G is 2 -connected, there is a vertex $x \in N(u)$ distinct from v in C. We distinguish two cases:

Case 1. The vertex v dominates C. Then, every vertex $w \in V(C) \backslash\{v\}$ satisfies $N[w] \subseteq N[v]$, and so $G-w$ is not 2-connected. If $|V(C)|=2$, i.e., if C is a trivial block consisting of a single edge, then x is the only vertex of C distinct from v and $d(x)=2$ since $x v, x u \in E$. Since $G-x$ is not 2 -connected, while G is, $G-x$ must be a single edge. Consequently G is isomorphic to K_{3}, a contradiction. Hence $|V(C)| \geq 3$.

Let $z \in V(C) \backslash\{v, x\}$. If C contains a dominating vertex w such that $w \notin\{v, z\}$, then $G-z$ is 2 -connected, a contradiction. However since C is isomorphic to K_{t}, K_{t}^{2} or K_{t}^{t-2}, it contains at least one dominating vertex w other than v. This means that C contains at most three vertices, and hence $|V(C)|=3$. Since C has two dominating vertices, C is isomorphic to K_{3}, and consequently $G-z$ is 2 -connected, a contradiction.

Case 2. The vertex v does not dominate C. Then C is not K_{t}. As mentioned above, there are at least two dominating vertices in C, and if C is distinct from K_{t}^{2}, then there are at least three dominating vertices in C since $C \neq K_{4}^{2}$.

First suppose that C has at least three dominating vertices w_{1}, w_{2}, w_{3}. If $w_{1} u \notin E$, then $N\left[w_{1}\right] \subseteq N\left[w_{2}\right]$ and $G-w_{1}$ is 2 -connected, a contradiction. On the other hand if $w_{1} u \in E$, then $N\left[w_{2}\right] \subseteq N\left[w_{1}\right]$ and $G-w_{2}$ is 2 -connected, a contradiction.

Thus, C has exactly two dominating vertices, say w_{1} and w_{2}. Then C is isomorphic to K_{t}^{2}. Observe that $|V(C)| \geq 4$. If $w_{1} u \in$ E, then for every vertex z of $C, z \notin\left\{v, w_{1}, w_{2}\right\}$, we have $N[z] \subseteq N\left[w_{1}\right]$ and $G-z$ is 2-connected, a contradiction. Therefore $w_{1} u, w_{2} u \notin E$. Let z be the vertex of degree 2 in C. Then $z \notin\left\{w_{1}, w_{2}\right\}$, and since $N[u] \subseteq N[v]$, also $z \neq v$. If $z u \notin E$, then $N[z] \subseteq$ $N\left[w_{1}\right]$ and $G-z$ is 2 -connected, a contradiction. On the other hand if $z u \in E$, then $N\left[w_{1}\right] \subseteq N\left[w_{2}\right]$ and $G-w_{1}$ is 2 -connected, a contradiction.

This completes the proof of the lemma.
We now describe how to deal with the case when there are no two vertices u, v with $N[u] \subseteq N[v]$.
Lemma 10. Let G be a 2-connected non-complete graph distinct from C_{5} with no two vertices u, v satisfying $N[u] \subseteq N[v]$. Then $c(u) \geq 4$ for every vertex u, and hence $\eta(G) \geq 2 n$.

Proof. Let G be a graph satisfying the assumptions of the lemma. Assume for a contradiction that there is a vertex a such that $c(a) \leq 3$. Consider a breadth-first-search tree of G rooted at a, with the levels N_{0}, \ldots, N_{p}, where p is the eccentricity of a. Then $N_{i}=N_{i}(a)$.

Observe first that $p \geq 2$. Indeed, if $p=1$, then for every $x \in V \backslash\{a\}$, we have $N[x] \subseteq N[a]$. Therefore, G would contain only one vertex, namely the vertex a, which contradicts the 2 -connectivity of G.

Note also that for every $i, 1 \leq i \leq p-1$, we have $\left|E\left(N_{i}, N_{i+1}\right)\right| \geq\left|N_{i+1}\right|$, and since G is 2 -connected, we have also $\left|N_{i}\right| \geq 2$. In what follows, for every $x \in V \backslash\{a\}$, we denote by $f(x)$ the number such that $x \in N_{f(x)}$. When the vertex x is clear from the context, we sometimes refer to the level $N_{f(x)-1}$ as the previous level.

We say that a vertex x has the property P_{1} if it is adjacent to two vertices in the level $N_{f(x)-1}$. Moreover, if there is a pair of adjacent vertices x_{1}, x_{2} in a same level each having precisely one neighbor y_{1}, y_{2}, respectively, in the previous level, and $y_{1} \neq y_{2}$, then both these vertices have the property P_{2}.

In what follows we prove several claims about G.
Claim 1. There is at most one vertex x with the property P_{1}. In the case when such a vertex x exists, it has exactly two neighbors in $N_{f(x)-1}$.

Proof. Let x be a vertex distinct from a, and let y_{1}, \ldots, y_{ℓ} be the neighbors of x in $N_{f(x)-1}$. Suppose that $\ell \geq 2$ (this implies that $f(x) \geq 2$). For each $i \in\{1, \ldots, \ell\}$, let z_{i} be a neighbor of y_{i} in $N_{f(x)-2}$. Obviously, z_{i} 's need not be distinct. Anyway,
similarly as (C2) in the proof of Lemma 7,

$$
\eta(a, x)=g(a, x)-d(a, x) \geq 2 \cdot(\ell-1)
$$

since all the edges $x y_{i}, y_{i} z_{i}$ are good for the pair $\{a, x\}$ and there is a shortest path between a and x containing at most two of these edges. Since $c(a) \leq 3$, no vertex of G has three neighbors in the previous level, and at most one has two neighbors in the previous level. This establishes the claim.

Claim 2. There is at most one pair of vertices $\{x, y\}$ with the property P_{2}. If such a pair exists, then there is no vertex $z \in V \backslash\{x$, $y\}$ with the property P_{1}.

Proof. Let x and y be a pair of adjacent vertices with the property P_{2}. Then, there exist two distinct vertices w, z in $N_{f(x)-1}$ such that x is adjacent to w and y is adjacent to z. We make no assumption about whether x is adjacent to z, but by Claim 1 , we may assume that y is not adjacent to w. Therefore the edge $w x$ is good for $\{a, y\}$. If x is not adjacent to z, then the edge $y z$ is good for $\{a, x\}$, and if x is adjacent to z, then analogously as in Claim 1, there are two edges around z, which are good for $\{a, x\}$. Anyway, $g(a, x)-d(a, x) \geq 1$ and $g(a, y)-d(a, y) \geq 1$.

Now assume that we have two such pairs $\left\{x_{1}, y_{1}\right\}$ and $\left\{x_{2}, y_{2}\right\}$. If the two pairs are disjoint, then we have $\eta(a, u) \geq 1$ for each $u \in\left\{x_{1}, x_{2}, y_{1}, y_{2}\right\}$, which contradicts $c(a) \leq 3$. If they are not disjoint, then without loss of generality we may assume $x_{1}=x_{2}$, in which case $y_{1} \neq y_{2}$. From the previous analysis, we have $\eta\left(a, y_{1}\right) \geq 1$ and $\eta\left(a, y_{2}\right) \geq 1$. We claim that $g\left(a, x_{1}\right)-d\left(a, x_{1}\right) \geq 2$. Indeed, either x_{1} has two neighbors in the previous level, or x_{1} has exactly one neighbor in the previous level and for z_{1} and z_{2} being respective neighbors of y_{1} and y_{2} in the previous level, both $y_{1} z_{1}$ and $y_{2} z_{2}$ are good for $\left\{a, x_{1}\right\}$. Hence the first conclusion holds.

Finally, if there is a vertex $z \in V \backslash\{x, y\}$ with two neighbors in the previous level, then the conclusion follows as $\eta(a, z) \geq$ 2 , and hence $c(a) \geq 4$. This establishes the claim.

Claim 3. In every connected component of $G\left[N_{p}\right]$ there is either a vertex with the property P_{1} or a pair of adjacent vertices which have the property P_{2}.

Proof. Let C be a connected component of $G\left[N_{p}\right]$. Suppose first that no vertex in C has P_{1}. Then, since G is 2-connected, every vertex of C has a neighbor in N_{p}. If there exists an edge $e=u v$ such that u, v are not both adjacent to the same unique neighbor of N_{p-1}, then u and v have property P_{2} and we are done. Hence, the endvertices of each edge e of C are both adjacent to a unique vertex $x_{e} \in N_{p-1}$. But, since C is connected, all the x_{e} 's coincide and thus a unique vertex $x \in N_{p-1}$ is adjacent to all the vertices in C. Since $p \geq 2, x$ is a cut-vertex of G and so G is not 2 -connected, a contradiction.

Now, suppose that there is a vertex x^{*} with P_{1} and a pair of adjacent vertices x_{1}, x_{2} with P_{2} in C. By Claim $2, x^{*} \in\left\{x_{1}\right.$, $\left.x_{2}\right\}$. Without loss of generality we may assume that $x^{*}=x_{1}$. Denote by y_{1} and y_{2} the two distinct neighbors of x_{1} in N_{p-1}, and denote by y_{3} the unique neighbor of x_{2} in N_{p-1}. If $y_{3} \notin\left\{y_{1}, y_{2}\right\}$, then $x_{1} y_{1}, x_{1} y_{2}$ are good for $\left\{a, x_{2}\right\}$ and $x_{1} y_{1}, x_{1} y_{2}, x_{2} y_{3}$ are good for $\left\{a, x_{1}\right\}$, which gives $g\left(a, x_{2}\right)-d\left(a, x_{2}\right) \geq 2$ and $g\left(a, x_{1}\right)-d\left(a, x_{1}\right) \geq 2$ and consequently $c(a) \geq 4$, a contradiction. Hence, $y_{3} \in\left\{y_{1}, y_{2}\right\}$. By Claim 1, every neighbor of x_{2} in N_{p}, other than x_{1}, is adjacent to a unique vertex of N_{p-1}. By Claim 2, this vertex must be y_{3}, meaning that $N\left[x_{2}\right] \subseteq N\left[y_{3}\right]$, which contradicts the assumption.

By the previous claims, the vertices with the properties P_{1} or P_{2} are only in N_{p}. Moreover, there is either one vertex with P_{1} or a pair of adjacent vertices with P_{2} and N_{p} has only one component. Next claim deals with vertices which have neither P_{1} nor P_{2}.

Claim 4. Let u be a vertex which has neither P_{1} nor P_{2}. Then u has a neighbor in $N_{f(u)+1}$.
Proof. By way of contradiction, assume that u has no neighbors in $N_{f(u)+1}$. Then $u \neq a$. Since u does not have P_{1}, it has a unique neighbor, say v, in $N_{f(u)-1}$. Since G is 2-connected, u must have a neighbor in $N_{f(u)}$. Let w be a neighbor of u in $N_{f(u)}$. If $v w \notin E$, then u and w have P_{2}, a contradiction. Hence, $v w \in E$. Consequently, $N[u] \subseteq N[v]$ contradicting the assumption. \square

By Claims 3 and 4 , every vertex in N_{p} has either P_{1} or P_{2}. We consider the two cases separately.
Case 1. There is $x \in N_{p}$ with the property P_{1}. By Claims 1 and $2, x$ is the only vertex in G with the properties P_{1} or P_{2}. Hence, by Claims 3 and 4 , we have $N_{p}=\{x\}$. Denote by y_{1} and y_{2} the two neighbors of x in N_{p-1}. If there is $y^{*} \in N_{p-1} \backslash$ $\left\{y_{1}, y_{2}\right\}$, then it has neither P_{1} nor P_{2} by Claims 1 and 2 , and so by Claim $4, y^{*}$ has a neighbor in $N_{p}=\{x\}$, a contradiction. Thus, $N_{p-1}=\left\{y_{1}, y_{2}\right\}$. Let z_{i} be a neighbor of y_{i} in $N_{p-2}, 1 \leq i \leq 2$.

First, suppose that $z_{1} \neq z_{2}$. Then $p \geq 3$. Let b_{i} be the unique neighbor of z_{i} in N_{p-3}, where $1 \leq i \leq 2$. Then all the edges $b_{1} z_{1}, z_{1} y_{1}, y_{1} x, b_{2} z_{2}, z_{2} y_{2}, y_{2} x$ are good for $\{a, x\}$ which gives $\eta(a, x) \geq 3$. If $y_{1} y_{2} \in E$, then we have $N[x] \subseteq N\left[y_{1}\right]$, which contradicts the assumption; thus we have $y_{1} y_{2} \notin E$, which means that $y_{1} x$ is good for $\left\{a, y_{2}\right\}$. Hence $g\left(a, y_{2}\right)-d\left(a, y_{2}\right) \geq 1$ and consequently $c(a) \geq 4$, a contradiction.

Thus, suppose that $z_{1}=z_{2}$. If $|V|>4$, then z_{1} is a cut-vertex which contradicts the 2-connectivity of G. Hence, $|V|=4$. Then G is either C_{4} or C_{4} with a chord, depending on whether $y_{1} y_{2}$ is or is not in E. However, if $y_{1} y_{2} \in E$ then $N\left[y_{1}\right] \subseteq N\left[y_{2}\right]$, while if G is C_{4} then $c(a)=4$ for every $a \in V\left(C_{4}\right)$; both these cases contradicting the assumptions.

Case 2. There is a pair of adjacent vertices $x_{1}, x_{2} \in N_{p}$ with the property P_{2}. Similarly as above, $N_{p}=\left\{x_{1}, x_{2}\right\}$. By Claim 3, both x_{1} and x_{2} have a unique neighbor in N_{p-1}. Let y_{i} be the neighbor of x_{i} in N_{p-1}, where $1 \leq i \leq 2$. If $y_{1}=y_{2}$, then y_{1} is a cut-vertex which contradicts the 2 -connectivity of G. Hence $y_{1} \neq y_{2}$. By Claim 2, each y_{i} has a unique neighbor z_{i} in N_{p-2}. Analogously as in Case 1, we have $N_{p-1}=\left\{y_{1}, y_{2}\right\}$.

Suppose that $z_{1} \neq z_{2}$. Then the edges $z_{1} y_{1}, y_{1} x_{1}$ are good for $\left\{a, x_{2}\right\}$ and $z_{2} y_{2}, y_{2} x_{2}$ are good for $\left\{a, x_{1}\right\}$ which gives $\eta(a$, $\left.x_{2}\right) \geq 2$ and $\eta\left(a, x_{1}\right) \geq 2$ and consequently $c(a) \geq 4$, a contradiction.

Thus, suppose that $z_{1}=z_{2}$. If $|V|>5$ then z_{1} is a cut-vertex which contradicts the 2-connectivity of G. Hence, $|V|=5$. Then G is either C_{5} or C_{5} with a chord, depending on whether $y_{1} y_{2}$ is or is not in E. Since in the case $y_{1} y_{2} \in E$ we have $N\left[z_{1}\right] \subseteq N\left[y_{1}\right], G$ is C_{5}.

4. Proof of Theorem 4

We start with a lemma about $\eta\left(K_{n}^{2}\right)$ and $\eta\left(K_{n}^{n-2}\right)$.
Lemma 11. We have $\eta\left(K_{n}^{2}\right)=\eta\left(K_{n}^{n-2}\right)=2 n-6$.
Proof. Let $G \in\left\{K_{n}^{2}, K_{n}^{n-2}\right\}$. Denote by u a vertex of smallest degree in G. Since the eccentricity of u is 2 , we have $V(G)=$ $N_{0}(u) \cup N_{1}(u) \cup N_{2}(u)$. Since both $G\left[N_{0}(u) \cup N_{1}(u)\right]$ and $G\left[N_{1}(u) \cup N_{2}(u)\right]$ are cliques, $\eta\left(x_{1}, x_{2}\right)>0$ for $x_{1}, x_{2} \in V(G)$ only if $u \in$ $\left\{x_{1}, x_{2}\right\}$, say $u=x_{1}$, and the other vertex x_{2} is in $N_{2}(u)$. In the case $G=K_{n}^{2}$, there are $n-3$ vertices x_{2} in $N_{2}(u)$ and for each of them $\eta\left(u, x_{2}\right)=2$. On the other hand if $G=K_{n}^{n-2}$, there is a unique vertex x_{2} in $N_{2}(u)$ and $\eta\left(u, x_{2}\right)=2(n-3)$.

Now we prove Theorem 4. By Lemma 11, $\eta\left(K_{n}^{2}\right)=\eta\left(K_{n}^{n-2}\right)=2 n-6$, and so Theorem 2 is a consequence of Theorem 4.
Proof of Theorem 4. Let G be a minimal counter-example to Theorem 4. Then G is a 2-connected non-complete graph on n vertices, $n \geq 4$, that is not isomorphic to K_{n}^{2} or K_{n}^{n-2}, and Theorem 4 holds for any smaller graph satisfying the assumptions of the theorem. We note that $\eta\left(C_{5}\right)=5$, thus G is not isomorphic to C_{5}.

By combining Lemmas 7 and 8, we infer that for any two vertices u, v in G such that $N[u] \subseteq N[v]$, the graph $G-u$ is not 2 -connected or is complete. From Lemma 10, we have that there is a pair of vertices u, v in G such that $N[u] \subseteq N[v]$. Lemma 9 guarantees that $G-u$ is not 2-connected (v being the only cut-vertex in $G-u$) and no block of $G-u$ is complete or isomorphic to K_{t}^{2} or K_{t}^{t-2} for any $t \in \mathbb{N}$. Let C_{1}, \ldots, C_{k} be the blocks of $G-u$. Note that $k \geq 2$ and recall that v belongs to each of the blocks as $N[u] \subseteq N[v]$ and G is 2-connected. Let $G_{i}=G\left[V\left(C_{i}\right) \cup\{u\}\right]$ for every $i, 1 \leq i \leq k$. Note that each G_{i} is a proper subgraph of G, it is 2 -connected, and neither complete nor isomorphic to K_{t}^{2} or K_{t}^{t-2} for any t (otherwise C_{i} is complete, or isomorphic to K_{t-1}^{t-3} or K_{t-1}^{2}, a contradiction). By minimality of G, we have $\eta\left(G_{i}\right) \geq 2\left|V\left(C_{i}\right)\right|-5$ for every i.

We claim that

$$
\eta(G) \geq \sum_{i=1}^{k} \eta\left(G_{i}\right)+\sum_{\{a, b\}}(g(a, b)-d(a, b)),
$$

where the second sum runs over vertices a, b from distinct blocks of $G-u$. This follows from the fact that distances for vertices in G_{i} are left unchanged in G. Note that since u and v are counted in each G_{i}, it holds that

$$
\sum_{i=1}^{k} \eta\left(G_{i}\right) \geq \sum_{i=1}^{k}\left(2\left|V\left(G_{i}\right)\right|-5\right)=2 n+2 \cdot 2 \cdot(k-1)-5 k=2 n-k-4
$$

Since G is 2-connected, the vertex u has a neighbor w_{i} (distinct from v) in each block C_{i}. Since $N[u] \subseteq N[v]$, we have $g\left(w_{i}, w_{j}\right)-d\left(w_{i}, w_{j}\right)=2$ for every $i \neq j$. Therefore

$$
\sum_{\{a, b\}}(g(a, b)-d(a, b)) \geq 2\binom{k}{2}
$$

where again the sum runs over vertices a, b from distinct blocks. In total, to obtain $\eta(G) \geq 2 n-5$, all we need is $2\binom{k}{2}-k-$ $4 \geq-5$, i.e., $\binom{k}{2} \geq \frac{k-1}{2}$. This is always true as $k \geq 2$.

5. Additional results

In this section, we continue our analysis in order to prove several additional results regarding the difference between the Szeged and the Wiener index. Recall that $c_{G}(a)$ is a contribution of a to $\eta(G)$, see (2) and (3).
Lemma 12. Let G be a connected graph with the blocks B_{1}, \ldots, B_{k}. Let p_{1}, \ldots, p_{k} be integers such that for every i, with $1 \leq i \leq$ k, it holds that $c_{G\left[B_{i}\right]}(u) \geq p_{i}$ for every vertex $u \in V\left(B_{i}\right)$. Then $c_{G}(u) \geq \Sigma_{1 \leq i \leq k} p_{i}$ for every vertex $u \in V$. In particular,

$$
\eta(G) \geq \frac{n}{2} \sum_{i=1}^{k} p_{i}
$$

Proof. Let u be a vertex of G. Without loss of generality, assume that $u \in V\left(B_{1}\right)$. Then $\sum_{v \in V\left(B_{1}\right) \backslash\{u\}} \eta(u, v)=$ $\sum_{v \in V\left(B_{1}\right) \backslash\{u\}}(g(u, v)-d(u, v)) \geq p_{1}$. Now choose a block $B_{i}, 2 \leq i \leq k$. Let $v \in V\left(B_{i}\right)$ and let w be a vertex of B_{i} which is at the shortest distance from u. Then w is a cut-vertex of G. Therefore, every edge $x y$ being good for $\{w, v\}$ is also good for $\{u, v\}$, which implies $\sum_{v \in V\left(B_{i}\right) \backslash\{w\}} \eta(u, v) \geq \sum_{v \in V\left(B_{i}\right) \backslash\{w\}} \eta(w, v) \geq p_{i}$. Consequently, we infer $c_{G}(u) \geq \Sigma_{1 \leq i \leq k} p_{i}$.

Fig. 2. Example of two graphs for which the difference between their Szeged and Wiener index attains $2 n-5$.

Lemmas 10 and 12 together imply the following theorem.
Theorem 13. Let G be a connected graph with at least two blocks, neither of which is isomorphic to C_{5} or a complete graph. Moreover, let G do not contain two vertices u, v with $N[u] \subseteq N[v]$. Then

$$
\eta(G) \geq 4 n .
$$

The following two theorems have been conjectured by the AutoGraphiX computer program [7], and confirmed in [2] and [3], respectively.

Theorem 14. [2] Let G be a connected graph with $n \geq 5$ vertices, at least one odd cycle, and girth at least 5 . Then

$$
\eta(G) \geq 2 n-5
$$

Moreover, the equality holds if and only if the graph is composed of C_{5} and a tree rooted at a vertex of C_{5} or two trees rooted at two adjacent vertices of C_{5} (Fig. 2).

Theorem 15. [3,2] Let G be a connected bipartite graph with $n \geq 4$ vertices and $m \geq n$ edges. Then

$$
\eta(G) \geq 4 n-8
$$

Moreover, the equality holds if and only if the graph is composed of C_{4} and a tree rooted at a vertex of C_{4}.
Additionally, Klavžar and Nadjafi-Arani [10] extended Theorems 14 and 15 in terms of the girth and the longest isometric cycle, respectively.

Using our approach, we are able to prove stronger versions of Theorems 14 and 15. First, we strengthen Theorem 14. Notice that the next statement requires girth 4 instead of 5 .

Theorem 16. Let G be a connected graph which has a triangle-free 2-connected block distinct from C_{5}, or at least two blocks isomorphic to C_{5}. Then

$$
\eta(G) \geq 2 n .
$$

Proof. Let B be a 2 -connected block other than C_{5} with girth at least 4 . Then B is non-complete and it does not contain two vertices u, v with $N[u] \subseteq N[v]$. By Lemma 10 , we have $c_{B}(u) \geq 4$ for every vertex $u \in V(B)$. On the other hand, $c_{C_{5}}(u) \geq 2$ for every vertex u of C_{5}. Consequently by Lemma $12, c_{G}(u) \geq 4$ for every vertex u in a graph G satisfying the assumptions of theorem, which means that $\eta(G) \geq 2 n$.

As a corollary, we obtain an alternative proof Theorem 14.
Alternative proof of Theorem 14. By Theorem 16, we have

$$
\eta(G) \geq 2 n>2 n-5
$$

for every connected graph G with girth at least 4 and at least one 2 -connected block distinct from C_{5}, or at least two blocks isomorphic to C_{5}. So, we may assume that G is a connected (unicyclic) graph with precisely one 2-connected block isomorphic to C_{5}.

Let $C=a b c d e$ be the C_{5} in G, and let $T_{x}, x \in\{a, b, c, d, e\}$, be the component of $G \backslash E(C)$ containing x. Denote also $t_{x}=$ $\left|V\left(T_{x}\right)\right|$. Obviously, $g(u, v)-d(u, v)=0$ for every pair $u, v \in V\left(T_{x}\right)$. Observe also that for any pair of adjacent vertices $x, y \in$ $V(C)$, it holds $g(u, v)-d(u, v)=0$ for every $u \in V\left(T_{x}\right)$ and $v \in V\left(T_{y}\right)$. On the other hand, if $d(x, y)=2$, then $g(u, v)-d(u, v)=$ 1 for every $u \in V\left(T_{x}\right)$ and $v \in V\left(T_{y}\right)$. Since $t_{a}+t_{b}+t_{c}+t_{d}+t_{e}=n$, we have

$$
\begin{align*}
\eta(G) & =\operatorname{Sz}(G)-W(G)=t_{a} t_{c}+t_{b} t_{d}+t_{c} t_{e}+t_{d} t_{a}+t_{e} t_{b} \\
& =n^{2}-\frac{\left(t_{a}+t_{b}\right)^{2}}{2}-\frac{\left(t_{b}+t_{c}\right)^{2}}{2}-\frac{\left(t_{c}+t_{d}\right)^{2}}{2}-\frac{\left(t_{d}+t_{e}\right)^{2}}{2}-\frac{\left(t_{e}+t_{a}\right)^{2}}{2} . \tag{5}
\end{align*}
$$

We leave to the reader to verify that the minimum value of (5) is achieved in the case when at most two trees T_{x} and T_{y}, $x, y \in\{a, b, c, d, e\}$, have more than one vertex and x is adjacent to y. This completes the proof.

Now we consider bipartite graphs.

Theorem 17. If G is a 2-connected bipartite graph, then either G is isomorphic to C_{4} or $c(u) \geq 8$ for every vertex $u \in V$. In particular, if G is not isomorphic to C_{4}, then

$$
\eta(G) \geq 4 n
$$

Proof. To prove the theorem, we will use analogous approach as in the proof of Lemma 10 . Suppose, to the contrary, that a is a vertex of G with $c(a) \leq 7$. Consider a breadth-first-search tree of G rooted at a, with the levels N_{0}, \ldots, N_{p}.

Observe first that since G is bipartite, there are no two vertices u, v with $N[u] \subseteq N[v]$, no two vertices in a common level N_{i} are adjacent, and $p \geq 2$. Let $x \in N_{p}$. Then x has no neighbor in N_{p}. Let y_{1}, \ldots, y_{ℓ} be the neighbors of x in the previous level. Since G is 2 -connected, $\ell \geq 2$. Let z_{i} be a neighbor of y_{i} in the level $f(x)-2$. Note that z_{i} might be equal to z_{j} for some $i \neq j$. Anyway, the edges $z_{i} y_{i}$ and $y_{i} x$ are good for $\{a, x\}$, which gives $g(a, x)-d(a, x) \geq 2(\ell-1) \geq 2$. Additionally, every edge $x y_{j}$ is good for $\left\{a, y_{i}\right\}$, if $i \neq j$, since $y_{i} y_{j} \notin E$. Thus, $g\left(a, y_{i}\right)-d\left(a, y_{i}\right) \geq \ell-1 \geq 1$ for every i. The contribution of a is thus at least 4 , and at least 10 if $\ell \geq 3$. It follows that x is the only vertex with two neighbors in the previous level, and moreover, it has precisely two such neighbors. Consequently $N_{p}=\{x\}$.

Consider now the levels N_{0}, \ldots, N_{p-1}. Since $G\left[N_{i}\right]$ is a graph without edges and x is the only vertex with at least two neighbors in the previous level, G is isomorphic to a cycle. It easy to calculate that in the case when $p \geq 3$, the contribution of a is at least 9 .

From Theorem 17 we also infer:
Theorem 18. Let G be a connected graph which has a bipartite 2-connected block distinct from C_{4}, or at least two blocks isomorphic to C_{4}. Then

$$
\eta(G) \geq 4 n
$$

Proof. If B is a block inducing a bipartite subgraph other than C_{4}, then $c_{B}(u) \geq 8$ for every vertex $u \in V(B)$, by Theorem 17 . On the other hand, $c_{C_{4}}(u) \geq 4$ for every vertex u of C_{4}. Consequently by Lemma $12, c_{G}(u) \geq 8$ for every vertex u in a graph G satisfying the assumptions of corollary, which means that $\eta(G) \geq 4 n$.

Similarly as above, we can derive Theorem 15 from Theorem 18.
Alternative proof of Theorem 15. By Theorem 18, we have

$$
\eta(G) \geq 4 n>4 n-8
$$

for every bipartite connected graph G with at least one 2-connected block distinct from C_{4}, or at least two blocks isomorphic to C_{4}. So, we may assume that G is a bipartite connected (unicyclic) graph with precisely one 2-connected block isomorphic to C_{4}.

Let $C=a b c d$ be the C_{4} in G, and let $T_{x}, x \in\{a, b, c, d\}$, be the component of $G \backslash E(C)$ containing x. Denote also $t_{x}=\left|V\left(T_{x}\right)\right|$. Again, $g(u, v)-d(u, v)=0$ for every pair $u, v \in V\left(T_{x}\right)$. For any pair of adjacent vertices $x, y \in V(C)$, it holds $g(u, v)-d(u, v)=$ 1 for every $u \in V\left(T_{x}\right)$ and $v \in V\left(T_{y}\right)$. If $d(x, y)=2$, then $g(u, v)-d(u, v)=2$ for every $u \in V\left(T_{x}\right)$ and $v \in V\left(T_{y}\right)$. Thus,

$$
\begin{align*}
\eta(G) & =\operatorname{Sz}(G)-W(G)=t_{a} t_{b}+t_{b} t_{c}+t_{c} t_{d}+t_{d} t_{a}+2\left(t_{a} t_{c}+t_{b} t_{d}\right) \\
& =\frac{n^{2}-\left(t_{a}-t_{c}\right)^{2}-\left(t_{b}-t_{d}\right)^{2}}{2} \tag{6}
\end{align*}
$$

It is straightforward to verify that the minimum value of (6) is achieved in the case when at most one tree $T_{x}, x \in\{a, b, c$, $d\}$, has more than one vertex. This completes the proof.

6. Revised Szeged index

In this section, we consider a variation of the Szeged index. The revised Szeged index is defined as

$$
\mathrm{Sz}^{*}(G)=\sum_{u v \in E}\left(n_{u v}(u)+\frac{n_{0}(u, v)}{2}\right)\left(n_{u v}(v)+\frac{n_{0}(u, v)}{2}\right),
$$

where $n_{0}(u, v)=n-n_{u v}(u)-n_{u v}(v)$. Similarly as above, we define

$$
\eta^{*}(G)=S z^{*}(G)-W(G)
$$

For every vertex $a \in V$, we set $h(a)$ to be the number of edges horizontal to a. Note that

$$
\sum_{a \in V} h(a)=\sum_{u v \in E} n_{0}(u, v)
$$

Clearly, in every bipartite graph we have $\eta^{*}(G)=\eta(G)$. We therefore focus on non-bipartite graphs exclusively. Note that in a non-bipartite graph, it holds that $h(a) \geq 1$ for every vertex a.

A conjecture about the difference between the revised Szeged index and the Wiener index of a graph has also been proposed by AutoGraphiX [7] and confirmed by Chen et al. [2].

Theorem 19. [2] Let G be a non-bipartite connected graph. Then

$$
\eta^{*}(G) \geq \frac{n^{2}}{4}+n-\frac{3}{2}
$$

Moreover, the equality is attained when the graph is composed of C_{3} and a tree rooted at a vertex of C_{3}.
Recently, Klavžar and Nadjafi-Arani [11] extended the result in a way that it takes the number of edges into account. Here we present a similar result.

Lemma 20. Let G be a non-bipartite connected graph. Then

$$
\eta^{*}(G) \geq \eta(G)+\frac{n^{2}}{4}+\frac{n}{2}
$$

More precisely, we have

$$
\eta^{*}(G) \geq \eta(G)+\frac{n^{2}}{4}+\frac{n}{2}+\frac{n+2}{4} \cdot \sum_{a \in V}(h(a)-1)
$$

Proof. We have

$$
\begin{aligned}
\eta^{*}(G) & =\mathrm{Sz}^{*}(G)-W(G) \\
& =\sum_{u v \in E}\left(n_{u v}(u)+\frac{n_{0}(u, v)}{2}\right)\left(n_{u v}(v)+\frac{n_{0}(u, v)}{2}\right)-\sum_{\{u, v\} \subseteq V} d(u, v) \\
& =\sum_{u v \in E}\left(n_{u v}(u) n_{u v}(v)+\frac{n_{0}(u, v)}{2}\left(n_{u v}(v)+n_{u v}(u)+n_{0}(u, v)\right)-\frac{n_{0}(u, v)^{2}}{4}\right)-\sum_{\{u, v\} \subseteq V} d(u, v) \\
& =\sum_{u v \in E}\left(n_{u v}(u) n_{u v}(v)\right)-\sum_{\{u, v\} \subseteq V} d(u, v)+\sum_{u v \in E}\left(\frac{n_{0}(u, v) \cdot n}{2}-\frac{n_{0}(u, v)^{2}}{4}\right) \\
& =\eta(G)+\frac{1}{2} \sum_{u v \in E} n_{0}(u, v)\left(n-\frac{n_{0}(u, v)}{2}\right)
\end{aligned}
$$

Note that $n_{0}(u, v) \leq n-2$ for any edge $u v$, and so

$$
\begin{aligned}
\eta^{*}(G) & \geq \eta(G)+\frac{1}{2} \sum_{u v \in E} n_{0}(u, v)\left(n-\frac{n-2}{2}\right) \\
& =\eta(G)+\frac{n+2}{4} \sum_{u v \in E} n_{0}(u, v) \\
& =\eta(G)+\frac{n+2}{4} \sum_{a \in V} h(a)
\end{aligned}
$$

Recall that $h(a) \geq 1$ for any vertex a. Thus,

$$
\eta^{*}(G) \geq \eta(G)+\frac{(n+2) \cdot n}{4}+\frac{n+2}{4} \sum_{a \in V}(h(a)-1)
$$

We use Lemma 20 to prove the following stronger version of Theorem 19.
Theorem 21. Let G be a non-bipartite connected graph. Then

$$
\eta^{*}(G) \geq \frac{n^{2}}{4}+n
$$

unless G is obtained from a tree by expanding a single vertex into C_{3}.
Proof. Suppose, to the contrary, that G is a non-bipartite graph with $\eta^{*}(G)<\frac{n^{2}}{4}+n$. By Lemma 20 , there is neither a vertex a with $h(a) \geq 3$, nor two vertices a, b with $h(a), h(b) \geq 2$. In particular, G does not contain a diamond (a K_{4} without one edge) as a subgraph, and hence G has no clique larger than a triangle. Similarly, the graph does not contain two edge-disjoint odd cycles. Therefore, there is at most one triangle in G.

Additionally, it holds that $\eta(G)<\frac{n}{2}$. By Lemma 12 , no block satisfies $c(a) \geq 1$ for every vertex. Observe that every vertex u of C_{5} satisfies $c(u)=1$. Thus by Lemma $10, G$ does not contain 2 -connected block without a triangle.

Hence, G has a unique 2 -connected block B and this block contains a triangle. Suppose that there is a vertex a in B satisfying $c_{B}(a)=0$. Moreover, suppose that a is not a dominating vertex in B. Then the breadth-first-search tree for B rooted
in a contains at least three levels. Since B is 2-connected, there must be in the last level either a vertex with two neighbors in the previous level or an edge whose endpoints are adjacent to two distinct neighbors in the previous level. Both these cases contradict to $c(a)=0$. Hence, a is dominating in B. Since there is at most one triangle in B and B is 2 -connected, we conclude that B is isomorphic to C_{3}.

Finding $\eta^{*}(G)$ for all graphs G obtained from a tree by expanding a single vertex into C_{3} we obtain an alternative proof of Theorem 19.

Alternative proof of Theorem 19. By Theorem 21, we have

$$
\eta^{*}(G) \geq \frac{n^{2}}{4}+n>\frac{n^{2}}{4}+n-\frac{3}{2}
$$

for every connected non-bipartite graph G, unless G is obtained from a tree by expanding a single vertex into C_{3}. So, we may assume that G is a graph obtained from a tree by expanding one vertex into C_{3}.

Let $C=a b c$ be the C_{3} in G and let $T_{x}, x \in\{a, b, c\}$, be the component of $G \backslash E(C)$ containing x. Denote also $t_{x}=\left|V\left(T_{x}\right)\right|$. Then

$$
\eta^{*}(G)=\mathrm{Sz}^{*}(G)-W(G)=\mathrm{Sz} z^{*}(G)-\mathrm{Sz}(G)+\mathrm{Sz}(G)-W(G)=\mathrm{Sz}^{*}(G)-\mathrm{Sz}(G)
$$

The last equality holds as G is a block graph. Note also that $n_{0}(u, v)=0$, unless $u v \in\{a b, b c, a c\}$, in which cases it holds $n_{0}(a, b)=t_{c}, n_{0}(b, c)=t_{a}$, and $n_{0}(a, c)=t_{b}$. Since $n_{x}(x, y)=t_{x}$ for $x, y \in\{a, b, c\}, x \neq y$, we have

$$
\begin{align*}
\eta^{*}(G) & =\sum_{u v \in E}\left(\left(n_{u}(u v)+\frac{n_{0}(u, v)}{2}\right)\left(n_{v}(u v)+\frac{n_{0}(u, v)}{2}\right)-n_{u}(u v) n_{v}(u v)\right) \\
& =\left(\left(n_{a}(a b)+\frac{1}{2} t_{c}\right)\left(n_{b}(a b)+\frac{1}{2} t_{c}\right)-n_{a}(a b) n_{b}(a b)\right) \\
& +\left(\left(n_{b}(b c)+\frac{1}{2} t_{a}\right)\left(n_{c}(b c)+\frac{1}{2} t_{a}\right)-n_{b}(b c) n_{c}(b c)\right) \\
& +\left(\left(n_{a}(a c)+\frac{1}{2} t_{b}\right)\left(n_{c}(a c)+\frac{1}{2} t_{b}\right)-n_{a}(a c) n_{c}(a c)\right) \\
& =\frac{1}{4}\left(t_{a}^{2}+t_{b}^{2}+t_{c}^{2}\right)+t_{a} t_{b}+t_{a} t_{c}+t_{b} t_{c} \\
& =\frac{5}{12} n^{2}-\frac{1}{12}\left(\left(t_{a}-t_{b}\right)^{2}+\left(t_{b}-t_{c}\right)^{2}+\left(t_{c}-t_{a}\right)^{2}\right) \tag{7}
\end{align*}
$$

The minimum value of (7) is achieved when at most one tree $T_{x}, x \in\{a, b, c\}$, has more than one vertex. This completes the proof.

Acknowledgment

The second author acknowledges partial support by Slovak research grants VEGA 1/0026/16, VEGA 1/0142/17, APVV 013612 and APVV-15-0220. The research was partially supported by Slovenian research agency ARRS (program no. P1-0383), and by French agency Campus France (Proteus PHC project 31284Q).

References

[1] T. Al-Fozan, P. Manuel, I. Rajasingh, R.S. Rajan, On Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 339-353.
2] L. Chen, X. Li, M. Liu, The (revised) Szeged index and the Wiener index of a nonbipartite graph, Eur. J. Comb. 36 (2014) 237-246,
[3] L. Chen, X. Li, M. Liu, I. Gutman, On a relation between Szeged and Wiener indices of bipartite graphs, Trans. Comb. 1 (2012) 43-49.
[4] A. Dobrynin, I. Gutman, Solving a problem connected with distances in graphs, Gr. Theory Notes N Y 28 (1995) 21-23.
[5] R.C. Entringer, D.E. Jackson, D.A. Snyder, Distance in graphs, Czechoslov. Math. J. 26 (1976) 283-296.
[6] I. Gutman, A formula for the Wiener number of trees and its extension to graphs containing cycles, Gr. Theory Notes N Y 27 (1994) 9-15.
[7] P. Hansen, Computers and conjectures in chemical graph theory, in: Proceedings of the Plenary Talk in the International Conference on Mathematical Chemistry, Xiamen, China, 2010.
[8] F. Harary, Status and contrastatus, Sociometry 22 (1959) 23-43.
[9] P.V. Khadikar, N.V. Deshpande, P.P. Kale, A. Dobrynin, I. Gutman, G. Dömötör, The Szeged index and an analogy with the Wiener index, J. Chem. Inf. Comput. Sci. 35 (3) (1995) 547-550.
[10] S. Klavžar, M.J. Nadjafi-Arani, Improved bounds on the difference between the Szeged index and the Wiener index of graphs, Eur. J. Comb. 39 (2014) 148-156.
[11] S. Klavžar, M.J. Nadjafi-Arani, On the difference between the revised Szeged index and the Wiener index, Discr. Math. 333 (2014) 28-34.
[12] S. Klavžar, A. Rajapakse, I. Gutman, The Szeged and the Wiener index of graphs, Appl. Math. Lett. 9 (5) (1996) 45-49.
[13] M. Knor, B. Lužar, R. Škrekovski, I. Gutman, On Wiener index of common neighborhood graphs, MATCH Commun. Math. Comput. Chem. 72 (2014) 321-332.
[14] M. Knor, R. Škrekovski, Wiener index of line graphs, in: M. Dehmer, F. Emmert-Streib (Eds.), Quantitative Graph Theory: Mathematical Foundations and Applications, CRC Press, 2014, pp. 279-301.
[15] H. Lei, T. Li., Y. Shi, H. Wang, Wiener polarity index and its generalization in trees, MATCH Commun. Math. Comput. Chem. 78 (2017) 199-212.
[16] H. Lin, On the Wiener index of trees with given number of branching vertices, MATCH Commun. Math. Comput. Chem. 72 (2014) 301-310.
[17] J. Ma, Y. Shi., Z. Wang, J. Yue, On Wiener polarity index of bicyclic networks, Sci. Rep. 6 (2016) 19066.
[18] M.J. Nadjafi-Arani, H. Khodashenas, A.R. Ashrafi, On the differences between Szeged and Wiener indices of graphs, Discr. Math. 311 (20) (2011) 2233-2237.
[19] M.J. Nadjafi-Arani, H. Khodashenas, A.R. Ashrafi, Graphs whose Szeged and Wiener numbers differ by 4 and 5, Math. Comput. Model. 55 (3-4) (2012) 1644-1648.
[20] S. Simić, I. Gutman, V. Baltić, Some graphs with extremal Szeged index, Math. Slov. 50 (1) (2000) 1-15.
[21] R. Škrekovski, I. Gutman, Vertex version of the Wiener theorem, MATCH Commun. Math. Comput. Chem. 72 (2014) 295-300.
[22] L. Šoltés, Transmission in graphs: a bound and vertex removing, Math. Slov. 1 (1991) 11-16.
[23] H. Wiener, Structural determination of paraffin boiling points, J. Amer. Chem. Soc. 69 (1947) 17-20.
[24] K. Xu, M. Liu, K.C. Das, I. Gutman, B. Furtula, A survey on graphs extremal with respect to distance-based topological indices, MATCH Commun. Math. Comput. Chem. 71 (2014) 461-508.

[^0]: * Corresponding author.

 E-mail addresses: mbonamy@uwaterloo.ca (M. Bonamy), knor@math.sk (M. Knor), borut.luzar@gmail.com (B. Lužar), alexandre.pinlou@lirmm.fr (A. Pinlou), skrekovski@gmail.com (R. Škrekovski).

