

Available online at www.sciencedirect.com

Electronic Notes in DISCRETE MATHEMATICS

Electronic Notes in Discrete Mathematics 38 (2011) 155-160

www.elsevier.com/locate/endm

2-distance coloring of sparse graphs \star

Marthe Bonamy^{a,1} Benjamin Lévêque^a Alexandre Pinlou^{a,2}

^a LIRMM, Université Montpellier 2, CNRS {marthe.bonamy,benjamin.leveque,alexandre.pinlou}@lirmm.fr

Abstract

A 2-distance coloring of a graph is a coloring of the vertices such that two vertices at distance at most 2 receive distinct colors. We prove that every graph with maximum degree Δ at least 4 and maximum average degree less that $\frac{7}{3}$ admits a 2-distance $(\Delta + 1)$ -coloring. This result is tight. This improves previous known results of Dolama and Sopena.

Keywords: 2-distance coloring; square coloring; maximum average degree.

1 Introduction

All the graphs we consider here are simple, finite and undirected. Let G = (V, E) be a graph. For any subgraph H of G, we denote V(H) and E(H) the vertices and edges of H. For any vertex $v \in V$, the *degree* of v in G, denoted d(v), is the number of neighbors of v in G. The maximum degree of G, denoted $\Delta(G)$, is $\max_{v \in V} d(v)$. The maximum average degree of G, denoted $\max(G)$, is the maximum for every subgraph H of G of $\frac{2|E(H)|}{|V(H)|}$. A 2-distance coloring

1571-0653/\$ – see front matter O 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.endm.2011.09.027

^{*} Research partially supported by the ANR GRATOS, contract ANR-09-JCJC-0041-01.

¹ École Normale Supérieure de Lyon

² Second affiliation: Département MIAp, Université Paul-Valéry, Montpellier 3

of a graph G is a coloring of the vertices of G such that two vertices that are adjacent or have a common neighbor receive distinct colors. This is equivalent to a proper vertex-coloring of the square of G. We define $\chi^2(G)$ as the smallest k such that G admits a 2-distance k-coloring. Note that any graph G satisfies $\chi^2(G) \ge \Delta(G) + 1$. The girth g(G) is the length of a shortest cycle in G. Two vertices x and y are p-linked if there exists a path $x \cdot v_1 \cdots \cdot v_p \cdot y$ such that vertices v_1, \ldots, v_p have degree 2, and $v_1 \cdots \cdot v_p$ is called a branch of x (or y).

Borodin, Ivanova and Neustroeva [1] studied sparse planar graphs, and prove the following result:

Theorem 1.1 ([1]) Every planar graph G with $g(G) \ge 15$ and $\Delta(G) \ge 4$ admits a 2-distance $(\Delta(G) + 1)$ -coloring.

Note that this result was later extended to list-coloring [2].

Dolama and Sopena [3] proved a more general result than Theorem 1.1, which is not restricted to planar graphs anymore. Theorem 1.2 however presents a slight loss in quality compared to Theorem 1.1: since for any planar graph G, (mad(G) - 2)(g(G) - 2) < 4, Theorem 1.2 implies only that Theorem 1.1 holds for $g(G) \ge 16$.

Theorem 1.2 ([3]) Every graph G with $mad(G) < \frac{16}{7}$ and $\Delta(G) \ge 4$ admits a 2-distance $(\Delta(G) + 1)$ -coloring.

We aim at making the upper bound on the maximum average degree optimal, and prove the following.

Theorem 1.3 Every graph G with $mad(G) < \frac{7}{3}$ and $\Delta(G) \ge 4$ admits a 2-distance $(\Delta(G) + 1)$ -coloring.

The bound we obtain is optimal. Indeed, as pointed out by Montassier [6], there is a graph G with $mad(G) = \frac{7}{3}$, $\Delta(G) = 4$ and $\chi^2(G) = 6$ (see Figure 1).

Fig. 1. A graph G with $mad(G) = \frac{7}{3}$, $\Delta(G) = 4$ and $\chi^2(G) = 6$.

When restricted to planar graphs, Theorem 1.3 is an improvement of Theorem 1.1 as it implies that Theorem 1.1 holds with $g(G) \ge 14$. It is not comparable to the more general result in [2], since we are not considering list-coloring. We are going to use a discharging method to prove Theorem 1.3. We will prove that there are some configurations a minimal counter-example cannot contain, and, then use discharging rules to show that this graph does not exist.

2 Proof

In the figures, we draw in black a vertex that has no other neighbor than the ones already represented, in white a vertex that might have other neighbors than the ones represented. When there is a label inside a white vertex, it is an indication on the number of neighbors it has. The label 'i' means "exactly i neighbors", the label 'i+' (resp. 'i-') means that it has at least (resp. at most) i neighbors. Note that the white vertices may coincide with other vertices. The label 'T(v, a)' inside a vertex v means that T(v, a) exists, as defined below.

A configuration $T(v, a_4)$ (see Figure 2), is inductively defined as a vertex v of degree 4 with neighbors a_1 , a_2 , a_3 , a_4 , where for $i \in \{1, 2, 3\}$, vertex v is 2-linked by a path v- a_i - b_i - w_i either to a vertex w_i of degree at most 3 or to a configuration $T(w_i, b_i)$.

Fig. 2. A $T(v, u_4)$.

Now we define configurations (C_1) to (C_5) (see Figure 3).

- (C_1) is a vertex of degree 0 or 1.
- (C_2) is a vertex 3-linked to a vertex not of maximal degree.
- (C_3) is a vertex of degree 3 that is 2-linked to two vertices of degree 3, and 1-linked to a vertex of degree at most 3.
- (C_4) is a vertex u of degree at most 3 that is 2-linked by a path u-y-x-v to a vertex v such that T(v, x) exists.
- (C_5) is a vertex u of degree 3 that is 2-linked to two vertices, and 1-linked by a path u-x-v to a vertex v such that T(v, x) exists.

Fig. 3. Forbidden configurations.

In the following lemma, we actually use k instead of $\Delta(G)$ in order to ensure that any subgraph of G admits a (k + 1)-coloring even though Δ can decrease.

A graph is *minimal* for a property if it satisfies this property but none of its subgraphs does.

Lemma 2.1 Let $k \ge 4$ and G such that $\Delta(G) \le k$ and G admits no 2-distance (k+1)-coloring, and G is minimal for this property. Then G does not contain any of Configurations (C_1) to (C_5) .

The following lemma will ensure that the discharging rules we introduce later are well-defined.

Lemma 2.2 In a graph G where (C_4) is forbidden, and x and y are two vertices of degree 4 that are 2-linked by a path x-a-b-y, at most one of T(x, a) and T(y, b) exists.

We design discharging rules R_1 , R_2 , R_3 (see Figure 4). We use them in the proof of Lemma 2.3, where the initial weight of a vertex equals its degree, and its final weight is shown to be at least $\frac{7}{3}$. For any two vertices x and y of degree at least 3, with $d(x) \ge d(y)$,

- Rule R_1 is when x and y are 1-linked by a path x a y.
 - $(R_{1,1})$ If d(x) = d(y), then both x and y give $\frac{1}{6}$ to a.
 - $(R_{1,2})$ If d(x) > d(y) and T(x, a) exists, then both x and y give $\frac{1}{6}$ to a.
 - $(R_{1,3})$ If d(x) > d(y) and T(x, a) does not exist, then x gives $\frac{1}{3}$ to a.
- Rule R_2 is when x and y are 2-linked by a path x a b y.
 - $(R_{2,1})$ If d(x) = d(y) and neither T(x, a) nor T(y, b) exist, then x (resp. y) gives $\frac{1}{3}$ to a (resp. b).

- $(R_{2,2})$ If d(x) = d(y) and T(y,b) exists, then x gives $\frac{1}{3}$ to a and both x and y give $\frac{1}{6}$ to b.
- · $(R_{2,3})$ If d(x) > d(y), then x gives $\frac{1}{3}$ to a and both x and y give $\frac{1}{6}$ to b.
- Rule R_3 is when x and y, both of degree at least 4, are 3-linked by a path x a b c y. Then x gives $\frac{1}{3}$ to a and $\frac{1}{6}$ to b, and symmetrically for y.

<u>Rule 1:</u> x and y are 1-linked <u>**Rule 2:**</u> x and y are 2-linked

<u>Rule 3</u>: x and y are 3-linked.

Fig. 4. Discharging rules R_1 , R_2 , R_3 .

We use these discharging rules to prove the following lemma:

Lemma 2.3 A graph G that does not contain Configurations (C₁) to (C₅) verifies $mad(G) \geq \frac{7}{3}$.

Proof of Theorem 1.3

We prove a stronger version of Theorem 1.3 by contradiction. For $k \ge 4$, let G be a minimal graph such that $\Delta(G) \le k$, $\operatorname{mad}(G) < \frac{7}{3}$ and G does not admit a (k + 1)-coloring. Graph G is also a minimal graph such that $\Delta(G) \le k$ and G does not admit a (k + 1)-coloring (all its proper subgraphs verify $\Delta \le k$ and $\operatorname{mad} < \frac{7}{3}$, so they admit a (k + 1)-coloring). By Lemma 2.1, graph G cannot contain (C_1) to (C_5) . Lemma 2.3 implies that $\operatorname{mad}(G) \ge \frac{7}{3}$. Contradiction.

3 Conclusion

We actually proved a slightly stronger result than Theorem 1.3. However, the addition, namely that every graph G with $mad(G) < \frac{7}{3}$ and $\Delta(G) \leq 3$ admits a 2-distance 5-coloring, can be derived from a result of Dvořák, Škrekovski and Tancer [4].

Note that the proof of Theorem 1.3 also provides an $O(|V|^3)$ algorithm to find a 2-distance coloring of a graph G with $\Delta(G) + 1$ colors if G verifies the hypothesis of Theorem 1.3: indeed Lemma 2.3 proves that every graph G with $mad(G) < \frac{7}{3}$ contains $(C_1), (C_2), ...$ or (C_5) . Consequently, we can find a (C_i) in G, remove the corresponding vertices, and extend the coloring to the initial graph using the proof of Lemma 2.1.

As it was conjectured by Kostochka and Woodall [5] that 2-distance listcoloring requires exactly as many colors as 2-distance coloring, future work could aim at extending Theorem 1.3 to list-coloring.

References

- Borodin, O. V., A. O. Ivanova and N. T. Neustroeva, 2-distance coloring of sparse plane graphs (in russian), Siberian Electronic Mathematical Reports 1 (2004), pp. 76–90.
- [2] Borodin, O. V., A. O. Ivanova and N. T. Neustroeva, List 2-distance (Δ + 1)coloring of planar graphs with given girth, Journal of Applied and Industrial Mathematics 2 (2008), pp. 317–328.
- [3] Dolama, M. H. and É. Sopena, On the maximum average degree and the incidence chromatic number of a graph, Discrete Mathematics and Theoretical Computer Science 7 (2005), pp. 203–216.
- [4] Dvořák, Z., R. Škrekovski and M. Tancer, List-Coloring squares of sparse subcubic graphs, SIAM Journal on Discrete Mathematics 22 (2008), pp. 139– 159.
- [5] Kotsochka, A. V., and D. R. Woodall, *Choosability conjectures and multicircuits*, Discrete Mathematics 240 (2001), pp. 123–143.
- [6] Montassier, M., Personal Communication.