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Abstract

A 2-distance coloring of a graph is a coloring of the vertices such that two vertices at
distance at most 2 receive distinct colors. We prove that every graph with maximum
degree Δ at least 4 and maximum average degree less that 7

3 admits a 2-distance
(Δ + 1)-coloring. This result is tight. This improves previous known results of
Dolama and Sopena.
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1 Introduction

All the graphs we consider here are simple, finite and undirected. Let G =
(V,E) be a graph. For any subgraph H of G, we denote V (H) and E(H) the
vertices and edges of H. For any vertex v ∈ V , the degree of v in G, denoted
d(v), is the number of neighbors of v in G. The maximum degree of G, denoted
Δ(G), is maxv∈V d(v). The maximum average degree of G, denoted mad(G),

is the maximum for every subgraph H of G of 2|E(H)|
|V (H)| . A 2-distance coloring
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of a graph G is a coloring of the vertices of G such that two vertices that are
adjacent or have a common neighbor receive distinct colors. This is equivalent
to a proper vertex-coloring of the square of G. We define χ2(G) as the smallest
k such that G admits a 2-distance k-coloring. Note that any graph G satisfies
χ2(G) ≥ Δ(G) + 1. The girth g(G) is the length of a shortest cycle in G.
Two vertices x and y are p-linked if there exists a path x-v1-· · · -vp-y such that
vertices v1, . . . , vp have degree 2, and v1-· · · -vp is called a branch of x (or y).

Borodin, Ivanova and Neustroeva [1] studied sparse planar graphs, and
prove the following result:

Theorem 1.1 ([1]) Every planar graph G with g(G) ≥ 15 and Δ(G) ≥ 4
admits a 2-distance (Δ(G) + 1)-coloring.

Note that this result was later extended to list-coloring [2].

Dolama and Sopena [3] proved a more general result than Theorem 1.1,
which is not restricted to planar graphs anymore. Theorem 1.2 however
presents a slight loss in quality compared to Theorem 1.1: since for any pla-
nar graph G, (mad(G) − 2)(g(G) − 2) < 4, Theorem 1.2 implies only that
Theorem 1.1 holds for g(G) ≥ 16.

Theorem 1.2 ([3]) Every graph G with mad(G) < 16
7
and Δ(G) ≥ 4 admits

a 2-distance (Δ(G) + 1)-coloring.

We aim at making the upper bound on the maximum average degree op-
timal, and prove the following.

Theorem 1.3 Every graph G with mad(G) < 7
3
and Δ(G) ≥ 4 admits a

2-distance (Δ(G) + 1)-coloring.

The bound we obtain is optimal. Indeed, as pointed out by Montassier [6],
there is a graph G with mad(G) = 7

3
, Δ(G) = 4 and χ2(G) = 6 (see Figure 1).

Fig. 1. A graph G with mad(G) = 7
3 , Δ(G) = 4 and χ2(G) = 6.

When restricted to planar graphs, Theorem 1.3 is an improvement of The-
orem 1.1 as it implies that Theorem 1.1 holds with g(G) ≥ 14. It is not
comparable to the more general result in [2], since we are not considering
list-coloring.
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We are going to use a discharging method to prove Theorem 1.3. We will
prove that there are some configurations a minimal counter-example cannot
contain, and, then use discharging rules to show that this graph does not exist.

2 Proof

In the figures, we draw in black a vertex that has no other neighbor than the
ones already represented, in white a vertex that might have other neighbors
than the ones represented. When there is a label inside a white vertex, it is an
indication on the number of neighbors it has. The label ’i’ means ”exactly i
neighbors”, the label ’i+’ (resp. ’i−’) means that it has at least (resp. at most)
i neighbors. Note that the white vertices may coincide with other vertices.
The label ’T (v, a)’ inside a vertex v means that T (v, a) exists, as defined below.

A configuration T (v, a4) (see Figure 2), is inductively defined as a vertex
v of degree 4 with neighbors a1, a2, a3, a4, where for i ∈ {1, 2, 3}, vertex v is
2-linked by a path v-ai-bi-wi either to a vertex wi of degree at most 3 or to a
configuration T (wi, bi).

T (v, a4)

v

a1
b1

3− or T (w1, b1)

w1

a2

b2

3− or T (w2, b2)

w2

a3
b3

3− or T (w3, b3)

w3

a4

Fig. 2. A T (v, u4).

Now we define configurations (C1) to (C5) (see Figure 3).

• (C1) is a vertex of degree 0 or 1.

• (C2) is a vertex 3-linked to a vertex not of maximal degree.

• (C3) is a vertex of degree 3 that is 2-linked to two vertices of degree 3, and
1-linked to a vertex of degree at most 3.

• (C4) is a vertex u of degree at most 3 that is 2-linked by a path u-y-x-v to
a vertex v such that T (v, x) exists.

• (C5) is a vertex u of degree 3 that is 2-linked to two vertices, and 1-linked
by a path u-x-v to a vertex v such that T (v, x) exists.
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(C2)

1−u

(C1)
(k − 1)−

w1

u1

v
u2

w2

v
u3

x3

w3

u2

x2

w2

(C3)

u1

3−
x1

T (v, x) v

(C4)

x

y

3− u

T (v, x) v

(C5)

x

u
y2

z2
a2

y1
z1

a1

Fig. 3. Forbidden configurations.

In the following lemma, we actually use k instead of Δ(G) in order to
ensure that any subgraph of G admits a (k + 1)-coloring even though Δ can
decrease.

A graph is minimal for a property if it satisfies this property but none of
its subgraphs does.

Lemma 2.1 Let k ≥ 4 and G such that Δ(G) ≤ k and G admits no 2-distance
(k+1)-coloring, and G is minimal for this property. Then G does not contain
any of Configurations (C1) to (C5).

The following lemma will ensure that the discharging rules we introduce
later are well-defined.

Lemma 2.2 In a graph G where (C4) is forbidden, and x and y are two
vertices of degree 4 that are 2-linked by a path x-a-b-y, at most one of T (x, a)
and T (y, b) exists.

We design discharging rules R1, R2, R3 (see Figure 4). We use them in
the proof of Lemma 2.3, where the initial weight of a vertex equals its degree,
and its final weight is shown to be at least 7

3
. For any two vertices x and y of

degree at least 3, with d(x) ≥ d(y),

• Rule R1 is when x and y are 1-linked by a path x− a− y.
· (R1.1) If d(x) = d(y), then both x and y give 1

6
to a.

· (R1.2) If d(x) > d(y) and T (x, a) exists, then both x and y give 1
6
to a.

· (R1.3) If d(x) > d(y) and T (x, a) does not exist, then x gives 1
3
to a.

• Rule R2 is when x and y are 2-linked by a path x− a− b− y.
· (R2.1) If d(x) = d(y) and neither T (x, a) nor T (y, b) exist, then x (resp.
y) gives 1

3
to a (resp. b).
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· (R2.2) If d(x) = d(y) and T (y, b) exists, then x gives 1
3
to a and both x

and y give 1
6
to b.

· (R2.3) If d(x) > d(y), then x gives 1
3
to a and both x and y give 1

6
to b.

• Rule R3 is when x and y, both of degree at least 4, are 3-linked by a path
x− a− b− c− y. Then x gives 1

3
to a and 1

6
to b, and symmetrically for y.

x

a

y

d(x) = d(y) d(x) > d(y) d(x) > d(y) d(x) = d(y) d(x) = d(y) d(x) > d(y)

R1.1 R1.2 R1.3 R2.1 R2.2 R2.3

Rule 1: x and y are 1-linked Rule 2: x and y are 2-linked

1
6

1
6

T (x, a)x

a

3y

1
6

1
6

¬T (x, a)x

a

y

1
3

¬T (x, a) x

a

b

¬T (y, b) y

1
3

1
3

4 x

a

b

T (y, b) y

1
3

1
6

1
6

x

a

b

y

1
3

1
6

1
6

Rule 3: x and y are 3-linked.

4+
x

R3 :
a b c

4+

y1
3

1
6

1
6

1
3

Fig. 4. Discharging rules R1, R2, R3.

We use these discharging rules to prove the following lemma:

Lemma 2.3 A graph G that does not contain Configurations (C1) to (C5)
verifies mad(G) ≥ 7

3
.

Proof of Theorem 1.3

We prove a stronger version of Theorem 1.3 by contradiction. For k ≥ 4,
let G be a minimal graph such that Δ(G) ≤ k, mad(G) < 7

3
and G does

not admit a (k + 1)-coloring. Graph G is also a minimal graph such that
Δ(G) ≤ k and G does not admit a (k + 1)-coloring (all its proper subgraphs
verify Δ ≤ k and mad < 7

3
, so they admit a (k+1)-coloring). By Lemma 2.1,

graph G cannot contain (C1) to (C5). Lemma 2.3 implies that mad(G) ≥ 7
3
.

Contradiction. �
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3 Conclusion

We actually proved a slightly stronger result than Theorem 1.3. However, the
addition, namely that every graph G with mad(G) < 7

3
and Δ(G) ≤ 3 admits

a 2-distance 5-coloring, can be derived from a result of Dvořák, Škrekovski
and Tancer [4].

Note that the proof of Theorem 1.3 also provides an O(|V |3) algorithm to
find a 2-distance coloring of a graph G with Δ(G) + 1 colors if G verifies the
hypothesis of Theorem 1.3: indeed Lemma 2.3 proves that every graph G with
mad(G) < 7

3
contains (C1), (C2), ... or (C5). Consequently, we can find a

(Ci) in G, remove the corresponding vertices, and extend the coloring to the
initial graph using the proof of Lemma 2.1.

As it was conjectured by Kostochka and Woodall [5] that 2-distance list-
coloring requires exactly as many colors as 2-distance coloring, future work
could aim at extending Theorem 1.3 to list-coloring.
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