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Extended Abstract

All the graphs considered here are simple and finite. A 2-distance k-coloring of a graph
G is a coloring of the vertices of G with k colors such that two vertices that are adjacent or
have a common neighbor receive distinct colors. We define χ2(G) as the smallest k such that
G admits a 2-distance k-coloring. A generalization of the 2-distance k-coloring is the list
2-distance k-coloring, where instead of having the same list of k colors for the whole graph,
every vertex is assigned some set of k colors and has to be colored from it. We define χ2

ℓ(G)
as the smallest k such that G admits a list 2-distance k-coloring of G for any list assignment.
Obviously, 2-distance coloring is a sub-case of list 2-distance coloring (where the same color
list is assigned to every vertex), so for any graph G, χ2

ℓ(G) ≥ χ2(G).

The study of χ2(G) on planar graphs was initiated by Wegner in 1977 [7], and has been
actively studied because of his conjecture, stated below. The maximum degree of a graph G
is denoted ∆(G).

Conjecture 1 (Wegner [7]) If G is a planar graph, then:

• χ2(G) ≤ 7 if ∆(G) = 3

• χ2(G) ≤ ∆(G) + 5 if 4 ≤ ∆(G) ≤ 7

• χ2(G) ≤ ⌊ 3∆(G)
2 ⌋+ 1 if ∆(G) ≥ 8

Note that any graph G satisfies χ2(G) ≥ ∆(G) + 1. Indeed, if we consider a vertex of
maximal degree and its neighbors, they form a set of ∆(G) + 1 vertices, any two of which
are adjacent or have a common neighbor. Hence at least ∆(G) + 1 colors are needed for a
2-distance coloring of G. It is therefore natural to ask when this lower bound is reached.
For that purpose, we can study, as suggested by Wang and Lih [6], what conditions on the
sparseness of the graph can be sufficient to ensure the equality holds. A first measure of the
sparseness of a planar graph is its girth. The girth of a graph G, denoted g(G), is the length
of a shortest cycle.

Conjecture 2 (Wang and Lih [6]) For any integer k ≥ 5, there exists an integer D(k)
such that for every planar graph G verifying g(G) ≥ k and ∆(G) ≥ D(k), χ2(G) = ∆(G)+1.

Conjecture 2 was proved by Borodin, Ivanova and Noestroeva [3, 4] to be true for k ≥ 7,
even in the case of list-coloring, and false for k ∈ {5, 6}.

Dvořák, Král, Nejedlý and Sǩrekovski [5] proved that it is off by just one for k = 6, i.e.
for a planar graph G with girth 6 and sufficiently large ∆(G), χ2(G) ≤ ∆(G) + 2. They
also conjectured that the same holds for planar graphs with girth 5, but this remains open.
Borodin and Ivanova [1, 2] improved the corresponding bound for graphs of girth 6, and
extended it to list-coloring.

Theorem 3 (Borodin and Ivanova [1]) Every planar graph G with ∆(G) ≥ 18 and g(G) ≥
6 admits a 2-distance (∆(G) + 2)-coloring.

Theorem 4 (Borodin and Ivanova [2]) Every planar graph G with ∆(G) ≥ 24 and g(G) ≥
6 admits a list 2-distance (∆(G) + 2)-coloring.

We improve the previous two theorems as follows.
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Theorem 5 Every planar graph G with ∆(G) ≥ 17 and g(G) ≥ 6 admits a list 2-distance
(∆(G) + 2)-coloring.

Another way to measure the sparseness of a graph is through its maximum average degree
as defined below. The average degree of a graph G, denoted ad(G), is

∑
v∈V d(v)
|V | = 2|E|

|V | . The
maximum average degree of a graph G, denoted mad(G), is the maximum of ad(H) over
all subgraph H of G. Using this measure, we, in fact, prove a more general theorem than
Theorem 5.

Theorem 6 Every graph G with ∆(G) ≥ 17 and mad(G) < 3 admits a list 2-distance
(∆(G) + 2)-coloring.

Euler’s formula links girth and maximum average degree in the case of planar graphs,
as it easy to check that for any planar graph G, (mad(G)− 2)(g(G)− 2) < 4. Thus, planar
graphs of girth at least 6 have a maximum average degree smaller than 3, and Theorem 5 is
a corollary of Theorem 6.

To prove Theorem 6, we use a global discharging method, that is, a discharging method
where some forbidden configurations have unbounded size and where the weight can travel
arbitrarily far.

An injective k-coloring of G is a (not necessarily proper) coloring of the vertices of G
with k colors such that no vertex has two neighbors with the same color, or, in other words,
such that two vertices that have a common neighbor receive distinct colors. A 2-distance
k-coloring is also an injective coloring, but the reverse is not true. The list version of this
coloring is a list injective k-coloring of G.

Some results on 2-distance coloring have their counterpart on injective coloring with one
less color, and it is the case of Theorems 3 and 4. It happens that the proof of Theorem 6
also works with close to no alteration for list injective coloring, thus yielding a proof that
every graph G with ∆(G) ≥ 17 and mad(G) < 3 admits a list injective (∆(G) + 1)-coloring.
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