Graphs with mad <3 and $\Delta \geq 17$ are list 2-distance ($\Delta+2$)-colorable

Marthe Bonamy, Benjamin Lévêque, and Alexandre Pinlou

LIRMM, Université Montpellier 2, France

Extended Abstract

All the graphs considered here are simple and finite. A 2-distance k-coloring of a graph G is a coloring of the vertices of G with k colors such that two vertices that are adjacent or have a common neighbor receive distinct colors. We define $\chi^{2}(G)$ as the smallest k such that G admits a 2 -distance k-coloring. A generalization of the 2 -distance k-coloring is the list 2 -distance k-coloring, where instead of having the same list of k colors for the whole graph, every vertex is assigned some set of k colors and has to be colored from it. We define $\chi_{\ell}^{2}(G)$ as the smallest k such that G admits a list 2-distance k-coloring of G for any list assignment. Obviously, 2-distance coloring is a sub-case of list 2-distance coloring (where the same color list is assigned to every vertex), so for any graph G, $\chi_{\ell}^{2}(G) \geq \chi^{2}(G)$.

The study of $\chi^{2}(G)$ on planar graphs was initiated by Wegner in 1977 [7], and has been actively studied because of his conjecture, stated below. The maximum degree of a graph G is denoted $\Delta(G)$.

Conjecture 1 (Wegner [7]) If G is a planar graph, then:

- $\chi^{2}(G) \leq 7$ if $\Delta(G)=3$
- $\chi^{2}(G) \leq \Delta(G)+5$ if $4 \leq \Delta(G) \leq 7$
- $\chi^{2}(G) \leq\left\lfloor\frac{3 \Delta(G)}{2}\right\rfloor+1$ if $\Delta(G) \geq 8$

Note that any graph G satisfies $\chi^{2}(G) \geq \Delta(G)+1$. Indeed, if we consider a vertex of maximal degree and its neighbors, they form a set of $\Delta(G)+1$ vertices, any two of which are adjacent or have a common neighbor. Hence at least $\Delta(G)+1$ colors are needed for a 2 -distance coloring of G. It is therefore natural to ask when this lower bound is reached. For that purpose, we can study, as suggested by Wang and Lih [6], what conditions on the sparseness of the graph can be sufficient to ensure the equality holds. A first measure of the sparseness of a planar graph is its girth. The girth of a graph G, denoted $g(G)$, is the length of a shortest cycle.

Conjecture 2 (Wang and Lih [6]) For any integer $k \geq 5$, there exists an integer $D(k)$ such that for every planar graph G verifying $g(G) \geq k$ and $\Delta(G) \geq D(k), \chi^{2}(G)=\Delta(G)+1$.

Conjecture 2 was proved by Borodin, Ivanova and Noestroeva [3, 4] to be true for $k \geq 7$, even in the case of list-coloring, and false for $k \in\{5,6\}$.

Dvořák, Král, Nejedlý and Sǩrekovski [5] proved that it is off by just one for $k=6$, i.e. for a planar graph G with girth 6 and sufficiently large $\Delta(G), \chi^{2}(G) \leq \Delta(G)+2$. They also conjectured that the same holds for planar graphs with girth 5 , but this remains open. Borodin and Ivanova [1, 2] improved the corresponding bound for graphs of girth 6, and extended it to list-coloring.

Theorem 3 (Borodin and Ivanova [1]) Every planar graph G with $\Delta(G) \geq 18$ and $g(G) \geq$ 6 admits a 2-distance $(\Delta(G)+2)$-coloring.

Theorem 4 (Borodin and Ivanova [2]) Every planar graph G with $\Delta(G) \geq 24$ and $g(G) \geq$ 6 admits a list 2 -distance $(\Delta(G)+2)$-coloring.

We improve the previous two theorems as follows.

Theorem 5 Every planar graph G with $\Delta(G) \geq 17$ and $g(G) \geq 6$ admits a list 2-distance $(\Delta(G)+2)$-coloring.

Another way to measure the sparseness of a graph is through its maximum average degree as defined below. The average degree of a graph G, denoted $\operatorname{ad}(G)$, is $\frac{\sum_{v \in V} d(v)}{|V|}=\frac{2|E|}{|V|}$. The maximum average degree of a graph G, denoted $\operatorname{mad}(G)$, is the maximum of $\operatorname{ad}(H)$ over all subgraph H of G. Using this measure, we, in fact, prove a more general theorem than Theorem 5.

Theorem 6 Every graph G with $\Delta(G) \geq 17$ and $\operatorname{mad}(G)<3$ admits a list 2-distance $(\Delta(G)+2)$-coloring.

Euler's formula links girth and maximum average degree in the case of planar graphs, as it easy to check that for any planar graph $G,(\operatorname{mad}(G)-2)(g(G)-2)<4$. Thus, planar graphs of girth at least 6 have a maximum average degree smaller than 3, and Theorem 5 is a corollary of Theorem 6 .

To prove Theorem 6, we use a global discharging method, that is, a discharging method where some forbidden configurations have unbounded size and where the weight can travel arbitrarily far.

An injective k-coloring of G is a (not necessarily proper) coloring of the vertices of G with k colors such that no vertex has two neighbors with the same color, or, in other words, such that two vertices that have a common neighbor receive distinct colors. A 2-distance k-coloring is also an injective coloring, but the reverse is not true. The list version of this coloring is a list injective k-coloring of G.

Some results on 2-distance coloring have their counterpart on injective coloring with one less color, and it is the case of Theorems 3 and 4. It happens that the proof of Theorem 6 also works with close to no alteration for list injective coloring, thus yielding a proof that every graph G with $\Delta(G) \geq 17$ and $\operatorname{mad}(G)<3$ admits a list injective $(\Delta(G)+1)$-coloring.

References

[1] O. V. Borodin, A. O. Ivanova. 2-distance ($\Delta+2$)-coloring of planar graphs with girth six and $\Delta \geq 18$. Discrete Mathematics, 309:6496-6502, 2009.
[2] O. V. Borodin, A. O. Ivanova. List 2-distance $(\Delta+2)$-coloring of planar graphs with girth six and $\Delta \geq 24$. Siberian Mathematical Journal, 50:958-964, 2009.
[3] O. V. Borodin, A. O. Ivanova and N. T. Neustroeva. 2-distance coloring of sparse plane graphs (in russian). Siberian Electronic Mathematical Reports, 1:76-90, 2004.
[4] O. V. Borodin, A. O. Ivanova and N. T. Neustroeva. List 2-distance ($\Delta+1$)-coloring of planar graphs with given girth. Journal of Applied and Industrial Mathematics, 2:317328, 2008.
[5] Z. Dvořák, D. Král, P. Nejedlý and R. Sǩrekovski. Coloring squares of planar graphs with girth six. European Journal of Combinatorics, 29:838-849, 2008.
[6] F. W. Wang, K. W. Lih. Labeling planar graphs with conditions on girth and distance two. SIAM Journal of Discrete Mathematics, 17:264-275, 2003.
[7] G. Wegner. Graphs with given diameter and a coloring problem. Technical report, 1977.

