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Abstract: For graphs of bounded maximum average degree, we con-
sider the problem of 2-distance coloring, that is, the problem of coloring
the vertices while ensuring that two vertices that are adjacent or have a
common neighbor receive different colors. We prove that graphs with max-
imum average degree less than 7

3 and maximum degree � at least 4 are
2-distance (�+ 1)-colorable, which is optimal and improves previous re-
sults from Dolama and Sopena, and from Borodin et al. We also prove that
graphs with maximum average degree less than 12

5 (resp. 5
2 , 18

7 ) and maxi-
mum degree � at least 5 (resp. 6, 8) are list 2-distance (�+ 1)-colorable,
which improves previous results from Borodin et al., and from Ivanova.
We prove that any graph with maximum average degree m less than 14

5
and with large enough maximum degree � (depending only on m) can
be list 2-distance (�+ 1)-colored. There exist graphs with arbitrarily large
maximum degree and maximum average degree less than 3 that cannot
be 2-distance (�+ 1)-colored: the question of what happens between 14

5
and 3 remains open. We prove also that any graph with maximum average
degree m < 4 can be list 2-distance (�+C)-colored (C depending only on
m). It is optimal as there exist graphs with arbitrarily large maximum degree
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and maximum average degree less than 4 that cannot be 2-distance col-
ored with less than 3�

2 colors. Most of the above results can be transposed
to injective list coloring with one color less. C© 2014 Wiley Periodicals, Inc. J. Graph Theory

77: 190–218, 2014
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1. INTRODUCTION

A 2-distance k-coloring of a graph G is a coloring of the vertices of G with k colors such
that two vertices that are adjacent or have a common neighbor receive distinct colors.
We define χ2(G) as the smallest k such that G admits a 2-distance k-coloring. This is
equivalent to a proper vertex-coloring of the square of G, which is defined as a graph
with the same set of vertices as G, where two vertices are adjacent if and only if they are
adjacent or have a common neighbor in G. For example, the cycle of length 5 cannot be
2-distance colored with less than 5 colors as any two vertices are either adjacent or have
a common neighbor: indeed, its square is the clique of size 5.

The study of χ2(G) on planar graphs was initiated by Wegner in 1977 [19], and has
been actively studied because of his conjecture. The maximum degree of a graph G is
denoted �(G).

Conjecture 1 (Wegner [19]). If G is a planar graph, then:

� χ2(G) ≤ 7 if �(G) = 3
� χ2(G) ≤ �(G)+ 5 if 4 ≤ �(G) ≤ 7
� χ2(G) ≤ � 3�(G)

2 � + 1 if �(G) ≥ 8

This conjecture remains open.
Note that any graph G satisfies χ2(G) ≥ �(G)+ 1. Indeed, if we consider a vertex

of maximal degree and its neighbors, they form a set of �(G)+ 1 vertices, any two of
which are adjacent or have a common neighbor. Hence, at least �(G)+ 1 colors are
needed for a 2-distance coloring of G. It is therefore natural to ask when this lower bound
is reached. For that purpose, we can study, as suggested by Wang and Lih [18], what
conditions on the sparseness of the graph can be sufficient to ensure the equality holds.
The sparseness of a planar graph can, for example, be measured by its girth. The girth of
a graph G, denoted g(G), is the length of a shortest cycle.

Conjecture 2 (Wang and Lih [18]). For any integer k ≥ 5, there exists an integer M(k)

such that for every planar graph G satisfying g(G) ≥ k and �(G) ≥ M(k), χ2(G) =
�(G)+ 1.

Conjecture 2 was proved in [5, 8, 12, 13] to be true for k ≥ 7 and false for k ∈ {5, 6}.
More precisely, the following is known.

Theorem 1 (Borodin et al. [5, 6, 8]). There exist planar graphs G with g(G) = 6 such
that χ2(G) > �(G)+ 1 for arbitrarily large �(G) [5].

For any planar graph G, χ2(G) = �(G)+ 1 in each of the following cases:

(1) [6] �(G) ≥ 3 and g(G) ≥ 22
(2) [8] �(G) ≥ 4 and g(G) ≥ 15
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(3) [8] �(G) ≥ 5 and g(G) ≥ 13
(4) [8] �(G) ≥ 6 and g(G) ≥ 12
(5) [8] �(G) ≥ 7 and g(G) ≥ 11
(6) [8] �(G) ≥ 9 and g(G) ≥ 10
(7) [5] �(G) ≥ 15 and g(G) ≥ 8
(8) [5] �(G) ≥ 30 and g(G) ≥ 7

An extension of 2-distance k-coloring is the 2-distance k-list-coloring, where instead
of having the same set of k colors for the whole graph, every vertex is assigned some set
of k colors and has to be colored from it. Given a graph G, we call χ2

� (G) the minimal
integer k such that a 2-distance k-list-coloring exists. Obviously, 2-distance coloring is a
subcase of 2-distance list-coloring (where the same color list is assigned to every vertex),
so for any graph G, χ2

� (G) ≥ χ2(G). Kostochka and Woodall [15] even conjectured that
it is actually an equality.

Conjecture 3 (Kostochka and Woodall [15]). Any graph G satisfies χ2
� (G) = χ2(G).

However, this strong conjecture was recently disproved [16].
Borodin, Ivanova, and Neustroeva [9] strengthened Theorem 1 by extending the cases

(2)–(8) to list-coloring. Ivanova [14] improved the lower-bounds into the following
theorem.

Theorem 2 (Ivanova [14]). If G is a planar graph, then χ2
� (G) = �(G)+ 1 in each of

the following cases:

(1) �(G) ≥ 5 and g(G) ≥ 12
(2) �(G) ≥ 6 and g(G) ≥ 10
(3) �(G) ≥ 10 and g(G) ≥ 8
(4) �(G) ≥ 16 and g(G) ≥ 7

Another way to measure the sparseness of a graph is through its maximum average
degree as defined below. The average degree of a graph G, denoted ad(G), is

∑
v∈V d(v)

|V | =
2|E|
|V | . The maximum average degree of a graph G, denoted mad(G), is the maximum of

ad(H) on every subgraph H of G. See [10] for a first use of this measure in the context
of sparse graphs coloring.

Intuitively, this measures the sparseness of a graph because it states how great the
concentration of edges in a same area can be. For example, stating that mad(G) has to be
smaller than 2 means that G cannot be anything but a forest. Euler’s formula links girth
and maximum average degree in the case of planar graphs.

Lemma 1 (Folklore). For every planar graph G, mad(G) <
2g(G)

g(G)−2 .

Dolama and Sopena [11] used this measure of sparseness and proved the following
result:

Theorem 3 (Dolama and Sopena [11]). Every graph with �(G) ≥ 4 and mad(G) < 16
7

satisfies χ2(G) = �(G)+ 1.

A consequence of Lemma 1 is that we can transpose any theorem holding for an
upper-bound on mad(G) into a theorem holding for planar graphs with lower-bounded
girth, as presented in Table I.
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TABLE I. Mad/girth correspondence when G is a planar graph

If G is planar and g(G) ≥ 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Then mad(G) < 6 4 10
3 3 14

5
8
3

18
7

5
2

22
9

12
5

26
11

7
3

30
13

16
7

FIGURE 1. A graph G with mad(G) = 7
3 , �(G) = 4 and χ2(G) = 6.

1

2

p

FIGURE 2. A graph Gp with �(Gp) = p, mad(Gp) = 3− 5
2p+1 and

χ2(Gp) = �(Gp)+ 2.

In particular, Theorem 3 implies that for every planar graph G with g(G) ≥ 16 and
�(G) ≥ 4, χ2(G) = �(G)+ 1. However, this lower bound on the girth is not as good
as the one stated in Theorem 1.(2) by Borodin et al. (16 instead of 15). We present here
the following improvement of Theorem 3.

Theorem 4. Every graph G with �(G) ≥ 4 and mad(G) < 7
3 satisfies χ2(G) =

�(G)+ 1.

Theorem 4 and a proof sketch of it have been presented at Eurocomb 2011 [3]. It
happens to be optimal, as Montassier [17] pointed out that there exists a graph G with
mad(G) = 7

3 , �(G) = 4 and χ2(G) = 6 > �(G)+ 1 (see Fig. 1).
We can transpose it to planar graphs with a lower bound on the girth using Lemma 1.

Corollary 1. Every planar graph G with �(G) ≥ 4 and g(G) ≥ 14 satisfies χ2(G) =
�(G)+ 1.

It is then an improvement of Theorem 1.(2) (14 instead of 15). However, it is not
comparable to the more general result in [9] since we are not considering list-coloring,
and is probably not optimal in terms of girth.

The question raised by Conjecture 2 and now solved could be reworded as follows:
what is the minimum k such that any graph G with g(G) ≥ k and large enough �(G)

(depending only on g(G)) satisfies χ2
� = �(G)+ 1? It is then natural to transpose the

question to the maximum average degree, as it is a more refined measure of sparseness.
More precisely, what is the supremum M such that any graph G with mad(G) < M and
large enough �(G) (depending only on mad(G)) satisfies χ2

� = �(G)+ 1?
We know that M ≤ 3 due to the family of graphs that appears in [5] (see Fig. 2),

which are of increasing maximum degree, of maximum average degree < 3, and are not
2-distance (�+ 1)-colorable.

We prove here that 14
5 ≤ M.
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Theorem 5. There exists a function f such that for a small enough ε > 0, every
graph with mad(G) < 14

5 − ε and Delta(G) ≥ f (ε) admits a list 2-distance (�(G)+ 1)-
coloring.

This answers partially to the transposition of Conjecture 2 to graphs with an upper-
bounded maximum average degree. As the maximum average degree is not discrete, it
could be expected that a sharper value would be obtained. It is however not the case here,
as the theorem does not even match what was already known on planar graphs. Indeed,
it only implies that any planar graph of girth at least eight and of large enough maximum
degree is list 2-distance (�+ 1)-colorable, while this holds for planar graphs of girth at
least seven.

For specific values of �(G), the following bounds can be obtained.

Theorem 6. For any graph G, χ2
� (G) = �(G)+ 1 in each of the following cases:

(1) �(G) ≥ 5 and mad(G) < 12
5

(2) �(G) ≥ 6 and mad(G) < 5
2

(3) �(G) ≥ 8 and mad(G) < 18
7

This theorem, once transposed to planar graphs with a lower-bound on the girth, yields
the following.

Corollary 2. If G is a planar graph, then χ2
� (G) = �(G)+ 1 in each of the following

cases:

(1) �(G) ≥ 5 and g(G) ≥ 12
(2) �(G) ≥ 6 and g(G) ≥ 10
(3) �(G) ≥ 8 and g(G) ≥ 9

Corollary 2 matches Theorem 2 for g(G) ≥ 12, 10 and improves it for g(G) ≥ 9.
This seems to support the idea that it is relevant to try to relax the planarity hypothesis
when studying the 2-distance colorability of sparse graphs. However, it might be that
a difference appears when these theorems are improved to their optimal values, which
are yet to be determined. Also, we can prove similarly that χ2

� (G) = �(G)+ 1 when
�(G) ≥ 14 and mad(G) < 8

3 (this corresponds to a girth lower-bounded by eight for
planar graphs), but contrary to the other cases, it is not as good as its planar equivalent in
Theorem 2 yet.

More generally, is it possible to get similar results when allowing an additional constant
number of colors, as was done by Wang and Lih in [18] for planar graphs? More
precisely, what is the supremum N such that any graph G with mad(G) < N satisfies
χ2

� (G) ≤ �(G)+ h(mad(G))?
We know that N ≤ 4 due to the family of graphs presented in Figure 3 (called Shannon’s

triangle), which are of increasing maximum degree, of maximum average degree < 4
and that need 3�

2 colors to be list 2-distance colored.
We prove here that N is actually equal to 4.

Theorem 7. There exists a function h such that every graph G with mad(G) < 4− ε

satisfies χ2
� (G) ≤ �(G)+ h(ε).

In Section 2, we introduce the terminology and notation. In Sections 3, 4, 5, 6, we
prove Theorems 4, 5, 6, and 7, respectively, and we justify in Section 7 how they can
be transposed to injective colorings. Their proofs all have the same outline, as follows.
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v1 w1

u1

w2

wp

v2

vp

u2

up

FIGURE 3. A graph Gp with �(Gp) = 2p, mad(Gp) = 4− 2
p and χ2(G) = 3p.

If the theorem is of the form “Every graph G with �(G) ≥ d and mad(G) < m satisfies
χ2(G) ≤ f (�(G))’, we prove a stronger version of it by relaxing the constraint on the
maximum degree: “For any k ≥ d, every graph G with �(G) ≤ k and mad(G) < m
satisfies χ2(G) ≤ f (k)” so that the property is closed under vertex- or edge-deletion.
First, we prove that there are some configurations a minimal counter-example cannot
contain, where a graph is a minimal counter-example when it does not satisfy the property
but any of its subgraphs does. To that purpose, we assume it contains one of the said
configurations, remove some vertices or edges, use the minimality to color the resulting
graph, and prove we can extend the coloring to the whole graph, a contradiction. Second,
we prove that a graph that does not contain any of those configurations cannot satisfy the
hypothesis on the maximum average degree. To that purpose, we assign to each vertex its
degree as a weight, introduce discharging rules as to how the weight can be redistributed
along the graph (with conservation of the total weight of the graph), and prove that
after application of the discharging rules, knowing which configurations are forbidden,
every vertex has a final weight of at least m. Since no weight was created nor deleted,
this implies that the average degree of the graph is at least m, hence cannot satisfy the
hypothesis on the maximum average degree. This completes the proof.

This method of proof is called a discharging method, and was introduced in the
beginning of the 20th century. It is notably known for being used to prove the Four Color
Theorem ([1] and [2]). When the discharging rules are local (i.e., the weight cannot travel
arbitrarily far), as is most commonly, we say the discharging method is local. Borodin,
Ivanova, and Kostochka introduced in [7] the notion of global discharging, which is when
there is no bound on the size of the discharging rules (i.e., the weight can travel arbitrarily
far along the graph). When it is mixed, that is, the discharging rules are of bounded size
but take into account structures of unbounded size in the graph, we say the discharging
method is semiglobal (see [4] for a first occurrence of such a proof).

Note that some of the configurations presented here are similar to configurations
studied in other articles about 2-distance coloring (see e.g., [9, 14]).

2. TERMINOLOGY AND NOTATIONS

In the figures, we draw in black a vertex that has no other neighbor than the ones already
represented, in white a vertex that might have other neighbors than the ones represented.
When there is a label inside a white vertex, it is an indication on the number of neighbors
it has. The label “i” means “exactly i neighbors”, the label “i+” (resp. “i−”) means that
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T (v, a4 )
v

a1

b1

3− or T (w1 , b1 )

w1

a2

b2

3− or T (w2 , b2 )

w2

a3

b3

3− or T (w3 , b3 )

w3

a4

FIGURE 4. A T (v, a4).

it has at least (resp. at most) i neighbors. Note that the white vertices may coincide with
other vertices.

A constraint of a vertex u is an already colored vertex that is adjacent to or has a
common neighbor with u. Two constraints with the same color count as one.

While proving that a given configuration is forbidden in a minimal counter-example,
we may recolor vertices. This is when a vertex is already assigned a color in the current
coloring of the graph (which corresponds to a valid 2-distance coloring of a given
subgraph), but we assign it another available color in order to have a coloring compatible
with a valid 2-distance coloring of the whole graph. This is useful when, for example,
two vertices that are adjacent or have a common neighbor in the graph are not and do not
in the considered subgraph.

Given a vertex u, the neighborhood N(u) is the set of vertices that are adjacent to u.
A p-link (p ≥ 1) x− a1 − ...− ap − y between x and y is a path such that d(a1) = ... =
d(ap) = 2. When a p-link exists between two vertices x and y, we say they are p-linked.
We define a branch of v as a p-link from v to another vertex, for some p ≥ 0. A graph is
minimal for a property if it satisfies this property but none of its subgraphs does.

3. PROOF OF THEOREM 4

We prove that every graph G with �(G) ≥ 4 and mad(G) < 7
3 satisfies χ2(G) = �(G)+

1. In the figures of this proof, a label T (v, a4) inside a vertex means that T (v, a4) exists,
as defined below.

A configuration T (v, a4) (see Fig. 4) is inductively defined as a vertex v of degree
4 with neighbors a1, a2, a3, a4, where for i ∈ {1, 2, 3}, vertex v is 2-linked by a path
v-ai-bi-wi either to a vertex wi of degree at most 3 or to a configuration T (wi, bi). By
abusing the notation, T (v, a4) is also the set that contains v, ai and bi, and that includes
T (wi, bi) if it exists (for i ∈ {1, 2, 3}).

Let k ≥ 4.

A. Forbidden Configurations

We define configurations (C1) to (C5) (see Fig. 5).

� (C1) is a vertex of degree 0 or 1.
� (C2) is a vertex 3-linked to a vertex of degree ≤ k − 1.

Journal of Graph Theory DOI 10.1002/jgt
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(C2)

1−u

(C1) (k − 1)−

w1

u1
v

u2

w2

v
u3

x3

w3

u2

x2

w2

(C3)

u1

3−
x1

T (v, x) v

(C4)

x

y

3− u

T (v, x) v

(C5)

x

u

y2

z2

a2

y1

z1

a1

FIGURE 5. Forbidden configurations for Theorem 4.

� (C3) is a vertex of degree 3 that is 2-linked to two vertices of degree 3, and 1-linked
to a vertex of degree ≤ 3.

� (C4) is a vertex u of degree≤ 3 that is 2-linked by a path u-y-x-v to a vertex v such
that T (v, x) exists.

� (C5) is a vertex u of degree 3 that is 2-linked to two vertices, and 1-linked by a
path u-x-v to a vertex v such that T (v, x) exists.

Lemma 2. If G is a minimal graph such that �(G) ≤ k and G admits no 2-distance
(k + 1)-coloring, G does not contain any of Configurations (C1) to (C5).

Proof. We prove Lemma 2 by assuming G contains one of the configurations (C1) to
(C5), using the minimality of G to color one of its subgraphs, and extending the coloring
to the whole graph, hence obtaining a contradiction.

We follow the notations introduced on Figure 5. �

Claim 1. G cannot contain (C1).

Proof. Using the minimality of G, we color G \ {u}. Since d(u) ≤ 1, vertex u has at
most �(G) constraints. There are at least �(G)+ 1 colors, so the coloring of G \ {u}
can be extended to G. �

Claim 2. G cannot contain (C2).

Proof. Using the minimality of G, we color G \ {v, u1}. Vertex u1 has at most
|{w1, u2}| + d(w1)− 1 = d(w1)+ 1 ≤ �(G) constraints. Hence, we can color u1. Then
v has at most four constraints, so we can extend the coloring of G \ {v, u1} to G. �

Claim 3. G cannot contain (C3).

Proof. Using the minimality of G, we color G \ {v, u1, u2, u3, x2, x3}. We color x2

with a different color of that of w3 (this is possible since x2 has at most three constraints),
u3 with the same color as x2 (the only constraint of u3 is w3, and x2 and w3 do not
have the same color), u1 (at most four constraints), x3 (at most four constraints), v (at
most four constraints), u2 (at most four constraints). Thus, we can extend the coloring of
G \ {v, u1, u2, u3, x2, x3} to G. �
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T (v, u4) v

u1

x1

w1

b1
c1

u2

x2

w2

b2c2

u3

x3

w3

b3

c3

u4

FIGURE 6. v is the only vertex of degree 4 in T (v, u4).

Claim 4. If H is a graph that contains some T (v, u4) and does not contain Config-
uration (C2), any partial 2-distance 5-coloring α of H that is not defined on T (v, u4)

nor on N(u4) (but that may be defined on u4) can be extended to be also defined on
T (v, u4).

In the description of a coloring procedure, we note “x← c” as a shortcut for “We

assign color c to x,” “a4
T :z←− c” as a shortcut for “We color a4 with c and apply Claim 4

to color T (z, a4),” and we note also “x” as a shortcut for “We color arbitrarily x with any
of the available colors.”

Proof. We prove this claim by induction on the size of T (v, u4).
We name v− ui − xi − wi the vertices along a branch (ui and xi are of degree 2), and

bi and ci the two other neighbors of wi (if d(wi) = 3) (see Fig. 6). All along this proof, a
denotes α(u4). According to the hypothesis, α is not defined on v, ui, xi, and T (wi, xi) if
it exists, for i ∈ {1, 2, 3}.

Assume for the moment that the uis and xis are pairwise distinct, and distinct from any
of the wis.

We are in one of the following four cases depending on the structure of T (v, u4).

(1) Vertex v is the only vertex of degree 4 in T (v, u4).
We deal with the worst-case situation, that is, the three branches from v end with
a vertex of degree 3 (if we can extend the coloring in that case, then we would be
able to do the same if one or more were of degree only 2), and α is defined on
wi, bi, and ci.
Since we have only five colors, we are always in one of the following five cases
(up to symmetry):

� α(w1) = α(w2) = α(w3), α(b1) = α(b2).
- a = α(w1). Then apply: v← α(b1), x3, u3, u2, u1, x2, x1.
- a 	= α(w1). Then apply: v← α(w1), u1, u2, u3, x1, x2, x3.

� α(w1) = α(w2) 	= α(w3), α(b1) = α(w3).
- a = α(w1). Then apply: v← α(w3), x2, u2, u1, x1, u3, x3.
- a 	= α(w1). Then apply: v← α(w1), x3, u3, u2, u1, x2, x1.
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T (v, u4)
v

u1

x1

w1

b1
c1

u2

x2

w2

b2c2

u3

x3

T (w3 , x3)
w3

u4

FIGURE 7. v is 2-linked to exactly one vertex of degree 4 in T (v, u4).

� α(w1) = α(w2) 	= α(w3), α(b1) = α(b2) (and α(w3) 	∈ {α(b1), α(c1)}).
- a = α(w1). Then apply: v← α(w3), u2 ← α(b2), u1 ← α(c1), x1, x2, u3,

x3.
- a 	= α(w1). Then apply: v← α(w1), x3, u3, u2, u1, x2, x1.

� α(w1), α(w2), and α(w3) are pairwise different, α(w1) = α(b2).
- a = α(w1). Then apply: v← α(w3), x2, u2, x1, u1, u3, x3.
- a 	= α(w1). Then apply: v← α(w1), x3, u3, u2, x2, u1, x1.

� α(w1), α(w2), and α(w3) are pairwise different, α(b1) = α(b2) =
α(b3), α(c1) = α(c2) = α(c3).
- a = α(w1) (up to permutation). Then apply: v← α(b1), u2 ← α(w3), u3 ←
α(w2), x2, x3, u1, x1.

- a = α(b1). Then apply: v← α(c1), u1 ← α(w2), u2 ← α(w3), u3 ←
α(w1), x1, x2, x3.

- a = α(c1). Then apply: v← α(b1), u1 ← α(w2), u2 ← α(w3), u3 ←
α(w1), x1, x2, x3.

(2) Vertex v is 2-linked to exactly one vertex w3 of degree 4 in T (v, u4) (see Fig. 7).
Again, we deal with the worst-case situation. So, in this drawing, α is defined only
on the wi, bi, and ci, for i = 1 or 2. Again, because there are only five colors, we
are in one of the following three cases;

� α(w1) = α(w2).

- a = α(w1). Then apply: x3
T :w3←−− a, v← α(b1), u3, x2, u2, u1, x1.

- a 	= α(w1). Then apply: x3
T :w3←−− a, v← α(w1), u3, u1, u2, x1, x2.

� α(w1) = α(b2).

- a = α(w1). Then apply: x3
T :w3←−− a, v← α(w2), u3, x1, u1, u2, x2.

- a 	= α(w1). Then apply: x3
T :w3←−− a, v← α(w1), u3, x2, u2, u1, x1.

� α(b1) = α(b2) (and α(w1) 	= α(w2)).

- a = α(b1). Then apply: x3
T :w3←−− a, v← α(w1), x2, u2, u3, u1, x1.
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T (v, x)

v

x y u
z1

z2

FIGURE 8. Worst case for claim (5).

- a 	= α(b1). Then apply: x3
T :w3←−− c 	∈ {α(b1), α(w1), α(w2)}, v← α(b1). As-

sume α(w2) differs from the coloring of w3 (true up to permutation as
α(w1) 	= α(w2)). Then apply: u3 ← α(w2), u1, u2, x1, x2.

(3) Vertex v is 2-linked in T (v, u4) to exactly two vertices w2 and w3 of degree 4. If
a = α(w1), then apply: v← α(b1), if a 	= α(w1), then apply: v← α(w1). In both

cases, we then color x3
T :w3←−− a, x2

T :w2←−− a, u2, u3, u1, x1.
(4) Vertex v is 2-linked in T (v, u4) to three vertices w1, w2 and w3 of degree 4. Apply:

x1
T :w1←−− a, x2

T :w2←−− a, x3
T :w3←−− a, v← (the color of w1), u2, u3, u1.

Let us now justify our assumptions. Since (C2) is forbidden, there is no (i, j) such
that wi = x j and wj = xi, nor such that xi = x j. However, there can be a couple (i, j)
such that wi = u j, wj = ui, xi = x j. In that case, we pretend they are distinct (we assign
arbitrary colors to the virtual wi and wj and their alleged other neighbors bi, ci, b j, c j),
apply the procedure described above, get a coloring α of the resulting graph, then derive
from it a coloring of the initial graph by matching α on every common vertex except
xi and then coloring xi in one of the available colors (indeed α(ui) 	= α(u j) as v is a
common neighbor, and xi has exactly three vertices at distance 2 or less). Therefore we
can assume without loss of generality that no vertex ui, xi superposes with another. The
case wi = wj is not a problem in the above procedure (note that wi = wj can only happen
if d(wi) ≤ 3).

Also, if α is not defined on all wi, bi, and ci, we can apply the procedure with arbitrary
colors for them (it is always possible to assign colors in such a way that wi, bi, and ci

receive different colors). �
Note that this claim implies that the same holds when the number of colors is k + 1

instead of just 5: we pick five colors among the range of k + 1, this induces a partial
2-distance 5-coloring on the graph. Then we apply the claim and the extended coloring
is compatible with the initial coloring.

Claim 5. G cannot contain (C4).

Proof. We deal with the worst-case situation, that is, d(u) = 3: see Figure 8 for
notation.

Using the minimality of G, there exists a coloring α of G \ (T (v, x) ∪ {x, y}). We use

Claim 4 to extend it to G through: x
T :v←− α(z1), y. �

Claim 6. G cannot contain (C5).

Proof. Using the minimality of G, there exists a coloring α of G \ (T (v, x) ∪
{x, u, y1, y2}). Then we extend the coloring to G as follows:
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x

a

y

d(x) = d(y) d(x) > d(y) d(x) > d(y) d(x) = d(y) d(x) = d(y) d(x) > d(y)

R1.1 R1.2 R1.3 R2.1 R2.2 R2.3

Rule 1: x and y are 1-linked Rule 2: x and y are 2-linked

1
6

1
6

T (x, a)x
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6

1
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Rule 3: x and y are 3-linked.
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x
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a b c
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y1
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1
6

1
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1
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FIGURE 9. Discharging rules R1, R2, R3 for Theorem 4.

� α(z1) = α(a2). Then apply: x
T :v←− α(z1), u, y1, y2.

� α(z1) 	= α(a2). Then apply: x
T :v←− α(z1), u← α(a2), y1, y2. �

This concludes the proof of Lemma 2.
The following lemma will ensure that the discharging rules we introduce later are

well-defined.

Lemma 3. In a graph H where (C4) is forbidden, and x and y are two vertices of degree
4 such that a path x-a-b-y (with a and b of degree 2) exists, T (x, a) and T (y, b) cannot
both exist.

Proof. Assume by contradiction that there is a path x− a− b− y such that both
T (x, a) and T (y, b) exist. We consider without loss of generality that x and y are chosen
such that |T (y, b)| is minimum (i.e., there exists no T (y2, b2) � T (y, b) such that y2 −
b2 − a2 − x2 is a 2-link and T (x2, a2) exists). Let b′ be a neighbor of y, b′ 	= b. Then
T (y, b′) exists (by definition, using the existence of T (y, b) and of T (x, a)). If there is
no vertex w of degree 4 that is 2-linked (with w− c− b′ − y) to y, then the existence of
T (y, b′) implies that the graph contains (C4), a contradiction. If such a w exists, T (w, c)

exists, T (w, c) � T (y, b) (by definition, using the existence of T (y, b)). Consequently,
y− b′ − c− w is a path such that T (y, b′) and T (w, c) exist, with T (w, c) � T (y, b), a
contradiction. �

B. Discharging Rules

Let R1, R2, R3 be three discharging rules (see Fig. 9). We use them in the proof of
Lemma 4, where the initial weight of a vertex equals its degree, and its final weight is
shown to be at least 7

3 . For any two vertices x and y of degree at least 3, with d(x) ≥ d(y),
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� Rule R1 is when x and y are 1-linked by a path x− a− y.

- (R1.1) If d(x) = d(y), then both x and y give 1
6 to a.

- (R1.2) If d(x) > d(y) and T (x, a) exists, then both x and y give 1
6 to a.

- (R1.3) If d(x) > d(y) and T (x, a) does not exist, then x gives 1
3 to a.

� Rule R2 is when x and y are 2-linked by a path x− a− b− y.

- (R2.1) If d(x) = d(y) and neither T (x, a) nor T (y, b) exist, then x (resp. y) gives
1
3 to a (resp. b).

- (R2.2) If d(x) = d(y) and T (y, b) exists, then x gives 1
3 to a and both x and y give

1
6 to b.

- (R2.3) If d(x) > d(y), then x gives 1
3 to a and both x and y give 1

6 to b.

� Rule R3 is when x and y, both of degree at least 4, are 3-linked by a path x− a−
b− c− y. Then x gives 1

3 to a and 1
6 to b, and symmetrically for y.

We use these discharging rules to prove the following lemma:

Lemma 4. A graph H that does not contain Configurations (C1) to (C5) satisfies
mad(G) ≥ 7

3 .

Proof. We attribute to each vertex a weight equal to its degree, and apply discharging
rules R1, R2, and R3. We show that all the vertices have a weight of at least 7

3 in the end.
There are no vertices of degree 0 or 1 in the graph, due to the fact that (C1) is forbidden,

so we study only the vertices of degree 2 or more. �

Claim 7. All the vertices of degree 2 have a weight of at least 7
3 after application of the

rules.

Proof. Consider any maximal p-link x− s1 − · · · − sp − y, with d(x), d(y) ≥ 3.
There is no Configuration (C2), so p ≤ 3, and every vertex of degree 2 belongs to
such a p-link. According to the discharging rules, a vertex of degree 2 never gives away
any weight. We prove that it receives at least 1

3 . There are three cases depending on the
value of p, each corresponding to Rule Rp:

� If p = 1, then Rule R1 applies to x− s1 − y, and s1 receives 1
3 .

� If p = 2, then Rule R2 applies to x− s1 − s2 − y, and both s1 and s2 receive 1
3 .

Indeed, Lemma 3 ensures that all the cases for x and y are dealt with in Rule R2.
� If p = 3, then since G does not contain Configuration (C2), d(x), d(y) ≥ 4. Then,

Rule R3 applies to x− s1 − s2 − s3 − y, and s1, s2, s3 receive 1
3 each.

Consequently, each vertex of degree 2 starts with a weight of 6
3 , gives nothing away

and receives at least 1
3 during the discharging, which makes it end with a weight of at

least 7
3 . �

Claim 8. All the vertices of degree 3 have a weight of at least 7
3 after application of the

rules.
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Proof. We prove that a vertex v of degree 3 never gives away more than 2
3 . To each

branch, it gives either 1
3 [Rule R2.1] or 1

6 [Rules R1.1, R1.2, R2.3] (or nothing). We prove that
if v gives 1

3 to two branches, then it gives nothing to the third. Assume, by contradiction,
that v gives 1

3 to two branches, and that the third one receives something from v. Since
R2.1 is the only rule that makes v give 1

3 to a branch, it is applied twice. Then the third
branch has to induce:

� A configuration for which R1.1, R2.1, or R2.3 applies, that is, a vertex of degree
2 followed by a vertex of degree at most 3. But then the graph contains (C3), a
contradiction.

� A configuration for which R1.2 applies. Then the graph contains (C5), a contradic-
tion.

If v gives 1
3 at most once, then v gives at most 2

3 on the whole. So, in all cases, vertex
v starts with a weight of 9

3 , and gives at most 2
3 away, so it still has a weight of at least 7

3
after application of the rules. �

Claim 9. All the vertices of degree 4 have a weight of at least 7
3 after application of the

rules.

Proof. We prove that a vertex v of degree 4 never gives more than 5
3 away. To each

branch, it gives either 1
2 [Rules R2.2, R2.3, R3], 1

3 [Rules R1.3, R2.1] or 1
6 [Rules R1.1, R1.2,

R2.2, R2.3] (or nothing). We prove that if v gives 1
2 three times, then it gives at most 1

6

to the fourth branch. Assume that v gives 1
2 to three branches. The only case when v

gives three times 1
2 is when for u4 the fourth neighbor of v, T (v, u4) exists. Indeed, we

applied R2.2, R2.3, or R3 on each of the three branches, which means that for i ∈ {1, 2, 3},
v is 2-linked through v− ui − xi − wi to a vertex wi such that d(wi) ≤ 3 or T (wi, xi)

exists, hence T (v, u4) exists. Let us enumerate the cases for the branch starting from
u4:

� Vertex u4 is of degree d(u4) ≥ 3. No rule applies, so v does not give anything to
this branch.

� Vertex v is 1-linked to a vertex u of degree d(u) ≥ 3. If d(u) ≥ 4, then R1.1 or R1.3

applies. If d(u) = 3, then R1.2 applies. In both cases, v does not give more than 1
6 .

� Vertex v is 2-linked to a vertex of degree at most 3. Then the graph contains (C4).
Hence, this case never occurs.

� Vertex v is 2-linked to a vertex u of degree d(u) ≥ 4. If d(u) ≥ 5, then R2.3 is
applied. If d(u) = 4, then, because of Lemma 3, R2.2 is applied. In both cases, v
does not give away more than 1

6 .

If v does not give 1
2 more than twice, then v gives at most 5

3 on the whole. So, in all
cases, v starts with a weight of 12

3 , and gives at most 5
3 away, so it still has a weight of at

least 7
3 after application of the rules. �

Claim 10. All the vertices of degree ≥ 5 have a weight of at least 7
3 after application of

the rules.
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Proof. Each vertex gives at most 1
2 to each branch. Hence, a vertex v gives at most

d(v)× 1
2 on the whole. And for d(v) ≥ 5, we have d(v)− 1

2 × d(v) ≥ 7
3 . �

Hence, every vertex of G has a weight of at least 7
3 after application of the discharging

rules. Consequently,
∑

v∈V d(v)

|V | ≥ 7
3 , which implies mad(G) ≥ 7

3 . This concludes the proof
of Lemma 4.

C. Conclusion

Proof of Theorem 4. We prove by contradiction that ∀k ≥ 4, every graph G with
�(G) ≤ k and mad(G) < 7

3 satisfies χ2(G) ≤ k + 1. For k ≥ 4, let G be a minimal
graph with �(G) ≤ k and mad(G) < 7

3 that does not admit a 2-distance (k + 1)-coloring.
Graph G is also a minimal graph with �(G) ≤ k that does not admit a 2-distance (k + 1)-
coloring (all its subgraphs have a maximum average degree < 7

3 ). Lemma 2 implies that
G does not contain the configurations (C1), (C2), (C3), (C4), (C5). Lemma 4 implies that
mad(G) ≥ 7

3 , a contradiction. �

The limitation in transposing the above proof to list-coloring lies in Configurations
(C4) and (C5): while proving these configurations are forbidden, we often affect the same
color to different vertices in order to complete the coloring, which is hard to transpose
to list-coloring as the color lists can differ. Configurations (C1), (C2), and (C3) can be
forbidden in the case of list-coloring.

4. PROOF OF THEOREM 5

We prove that there exists a function f such that for a small enough ε > 0, every graph
G with mad(G) < 14

5 − ε and �(G) ≥ f (ε) satisfies χ2(G) = �(G)+ 1. We choose
to present a proof that yields a function f far from optimal, but that is as simple as
possible and contains the decisive ideas. It is however easy to improve it, though the
proof increases accordingly in complexity and is not of great interest.

Let 1
20 ≥ ε > 0, and k be a constant integer, k ≥ f (ε) = 16

5ε
+ 2. It holds that k ≥ 66

since ε ≤ 1
20 (this upper-bound was chosen to that purpose).

A. Forbidden Configurations

We define configurations (C1) to (C4) (see Fig. 10).

� (C1) is a vertex of degree 0 or 1.
� (C2) is a vertex of degree at most k − 1 that is 2-linked to a vertex of degree at

most k − 2.
� (C3) is a vertex of degree at most 6, that is, 1-linked to a vertex of degree at most

13, and such that the sum of the degrees of its other neighbors is at most k − 1.
� (C4) is a set of vertices {ai}0≤i≤p−1, p ≥ 3, such that ∀i (i taken modulo p), ai is

3-linked (through a path ai − b2i − ci − b2i+1 − ai+1) to ai+1.
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(k − 1)− w1

(C2)

u1

u2

(k − 2)−
w2

13− w1

v

u

x5

x4

(k − 1 − x1 − x2 − x4 − x5 )−

(C3)

x2

x1

1− u

(C1)

ai

(C4)

b2i−1b2i

ci−1ci

b2i−2b2i+1

ai+1ai−1

FIGURE 10. Forbidden configurations for Theorem 5.

Lemma 5. If G is a minimal graph such that �(G) ≤ k and G admits no 2-distance
(k + 1)-list-coloring, then G cannot contain any of Configurations (C1) to (C4).

Proof. We assume G contains the configuration, apply the minimality to color
a subgraph of G, and prove this coloring can be extended to the whole graph, a
contradiction. �

Claim 11. G cannot contain (C1)

Proof. Using the minimality of G, we color G \ {u}. Since �(G) ≤ k, and d(u) ≤ 1,
vertex u has at most k constraints. There are k + 1 colors, so the coloring of G \ {u} can
be extended to G. �

Claim 12. G cannot contain (C2)

Proof. Using the minimality of G, we color G \ {u1, u2}. Vertex u1 has at most
|{w2}| + d(w1) ≤ 1+ (k − 1) ≤ k constraints. Hence, we can color u1. Then u2 has at
most |{w1, u1}| + d(w2) ≤ 2+ (k − 2) ≤ k constraints, so we can extend the coloring of
G \ {u1, u2} to G. �

Claim 13. G cannot contain (C3)

Proof. Using the minimality of G, we color G \ {v}. Vertex u has at most k − 1+ 1
constraints, hence we can recolor u. Then v has at most 13+ 5+ 1 ≤ 66 ≤ k constraints,
so we can extend the coloring of G \ {v} to G. �

Claim 14. G cannot contain (C4)

Proof. Using the minimality of G, we color G \ {b1, . . . , b2p−1, c1, . . . , cp}. For every
j, b j has at most k − 1 constraints, hence it has at least two colors available. So coloring the
set {b1, . . . , b2p−1} is equivalent to 2-list-coloring an even cycle. Then every ci has at most
4 ≤ 66 ≤ k constraints, so we can extend the coloring of G \ {b1, . . . , b2p−1, c1, . . . , cp}
to G. �

This concludes the proof of Lemma 5.
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Rule 1:3 ≤ d(x) ≤ 13, x 1-linked to y

3 ≤ d(y) ≤ 13

R1.2

d(y) = 2

R1.1

x

a

3+ 13−y

2
5

x

a

y

z

3
5

Rule 2: 14 ≤ d(x) ≤ k − 4

R2

x

a

4
5

Rule 3: k − 3 ≤ d(x), x adjacent to a

d(a) ≥ 3

R3.2

d(a) = 2

R3.1

x

3+a

1 −
x

a

y

4
5 −

1
5

FIGURE 11. Discharging rules R1, R2, and R3 for Theorem 5.

B. Discharging Rules

Let R1, R2, R3, and Rg (“g” stands for “global”) be four discharging rules (see Fig. 11):
for any vertex x of degree at least 3,

� Rule R1 is when 3 ≤ d(x) ≤ 13. If x has a neighbor a of degree 2 whose other
neighbor is y,

- Rule R1.1 is when d(y) = 2. Then x gives 3
5 to a.

- Rule R1.2 is when 3 ≤ d(y) ≤ 13. then x gives 2
5 to a.

� Rule R2 is when 14 ≤ d(x) ≤ k − 4. Then x gives 4
5 to each of its neighbors.

� Rule R3 is when k − 3 ≤ d(x). Let a be a neighbor of x.

- Rule R3.1 is when d(a) = 2. Then, for y the other neighbor of a, x gives 4
5 − ε

to a and 1
5 to y.

- Rule R3.2 is when d(a) ≥ 3. Then x gives 1− ε to a.

� Rule Rg states that every vertex of degree k gives an additional 2
5 to a common pot,

and every vertex of degree 2, which is adjacent to two vertices of degree 2 receives
2
5 from this pot.

We use these discharging rules to prove the following lemma:

Lemma 6. A graph G that does not contain Configurations (C1)–(C4) satisfies
mad(G) ≥ 14

5 − ε.

Proof. We attribute to each vertex a weight equal to its degree, and apply discharging
rules R1, R2, R3, and Rg. We show that all the vertices have a weight of at least 14

5 − ε in
the end.

Since (C4) is forbidden, if we consider the structure A induced in G by the paths
a1, . . . , a5 where d(a2) = d(a3) = d(a4) = 2 ((C2) implies that d(a1) = d(a5) = k), A
is a forest. This means that in G, there are less vertices of degree 2 adjacent to two vertices
of degree 2 than vertices of degree k: hence Rule Rg is valid.

� There are no vertices of degree 0 or 1.
� Let s be a maximal p-link of vertices of degree 2 (maximal in the sense that it does

not admit a vertex of degree 2 as a neighbor). The p-link s cannot be a cycle as
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(C2) is forbidden. According to the discharging rules, a vertex of degree 2 never
gives away any weight. We prove that it receives at least 4

5 − ε. There are three
cases depending on p (due to Configuration (C2), p ≤ 3):

- p = 1. Let a be the only vertex in s.
* a has a neighbor x of degree at least 14: then it receives at least 4

5 − ε from it,
according to Rule R2 or R3.

* a has two neighbors x1 and x2 of degree less than 13: then it receives 2
5 from

each, according to Rule R1.2.
- p = 2. Let a and b be the vertices of s, and x (resp. y) the other neighbor of a

(resp. b), with d(x) ≥ d(y). Due to Configuration (C2), d(x) ≥ k − 1. Then a
receives 4

5 − ε from x (Rule R3.1), and b receives 1
5 from x (Rule R3.1), and at

least 3
5 from y (Rules R1.1, R2, and R3).

- p = 3. Due to Configuration (C2), for a2 − a3 − a4 the vertices of s and a1 (resp.
a5) the other neighbor of a2 (resp. a4), d(a1) = d(a5) = k. Then Rules R3.1 and
Rg apply: a2 (resp. a4) receives 4

5 − ε from a1 (resp. a5), and a3 receives 1
5 from

a1 and a5, and 2
5 from Rg.

� Let x be a vertex with d(x) = 3. We prove that x loses a weight of at most 1
5 + ε.

- If x is adjacent to two vertices of degree 2 whose other neighbor is of degree at
most 13, then, according to Configuration (C3), its third neighbor is of degree
at least k − 3, hence x receives 1− ε, due to Rule R3.2, and gives at most 2× 3

5

away, according to Rule R1, so it loses at most 1
5 + ε.

- If x is adjacent to exactly one vertex of degree 2 whose other neighbor is of
degree at most 13, then, according to Configuration (C3), x has a neighbor of
degree at least 14, hence it receives at least 4

5 (according to Rule R2), and gives
at most 3

5 away (according to Rule R1), so it loses less than 1
5 + ε.

- If x is adjacent to no vertex of degree 2 whose other neighbor is of degree at
most 13, then it gives nothing away as no rule applies.

� Let x be a vertex with 4 ≤ d(x) ≤ 6.

- If x is adjacent to a vertex of degree 2 whose other neighbor is of degree at most
13, due to Configuration (C3), we know that x has a neighbor y that is of degree
at least 14. Indeed, 5× 13 = 65 ≤ k − 1. This means that x receives at least 4

5

(by Rules R2 and R3), and gives at most (d(x)− 1)× 3
5 (by Rule R1). Its final

weight is at least d(x)+ 4
5 − (d(x)− 1)( 3

5 ), which is at least 14
5 since d(x) ≥ 4.

- If x is adjacent to no vertex of degree 2 whose other neighbor is of degree at
most 13, then its final weight is at least d(x) ≥ 4 ≥ 14

5 .

� Let x be a vertex with 7 ≤ d(x) ≤ 13. It gives at most d(x)× 3
5 away (due to Rule

R1), which means it has at least a weight of 14
5 at the end since d(x) ≥ 7.

� Let x be a vertex with 14 ≤ d(x) ≤ k − 4. It gives at most d(x)× 4
5 away (due to

Rule R2), which means it has at least a weight of 14
5 at the end since d(x) ≥ 14.
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� Let x be a vertex with k − 3 ≤ d(x). It gives at most d(x)× (1− ε)+ 2
5 away

(due to Rules R3 and Rg), which means it has at least a weight of 14
5 − ε in the end

since d(x) ≥ 16
5ε
+ 2.

Consequently, after application of the discharging rules, every vertex v of G has a weight
of at least 14

5 − ε, meaning that
∑

v∈G d(v) ≥∑
v∈G( 14

5 − ε). Therefore, mad(G) ≥ 14
5 −

ε. This completes the proof of Lemma 6. �

C. Conclusion

Proof of Theorem 5. We prove by contradiction that there exists a function f such
that for a small enough ε > 0, for any k ≥ f (ε), every graph G with mad(G) < 14

5 − ε

and �(G) ≤ k satisfies χ2
� (G) ≤ k + 1. For 1

20 ≥ ε > 0, k ≥ 16
5ε
+ 2, let G be a min-

imal graph such that �(G) ≤ k, mad(G) < 14
5 − ε and G does not admit a list 2-

distance (k + 1)-coloring. Graph G is also a minimal graph such that �(G) ≤ k and
G does not admit a list 2-distance (k + 1)-coloring (all its proper subgraphs satisfy
� ≤ k and mad < 14

5 − ε, so they admit a list 2-distance (k + 1)-coloring). By Lem-
mas 5, graph G cannot contain (C1) to (C4). Lemma 6 implies that mad(G) ≥ 14

5 − ε, a
contradiction. �

The limit in transposing it to a greater upper-bound on the mad lies in the case where
a vertex of degree 3 is 2-linked to two vertices of degree k, and is adjacent to a vertex of
degree k. Assume we prove, for some a, that every vertex has a weight of at least 2+ a
after application of the discharging rules. Then, on the whole, the vertices of degree 2 and
3 in the configuration need to receive at least 4× a− (1− a). It means that if a ≥ 4

5 , the
vertices of degree k have to give at least 1 when they are adjacent to such a configuration.
However, we cannot forbid this configuration, nor a cycle of them, so we were not able
to prove that the vertices of degree k can afford to do that and still have a weight of at
least 2+ a at the end.

5. PROOF OF THEOREM 6

We prove that every graph G with �(G) ≥ 5 (resp. 6, 8) and mad(G) < 12
5 (resp. 5

2 , 18
7 )

satisfies χ2
� (G) = �(G)+ 1.

It is a refined version of the proof of Theorem 5 when restricted to particular cases
(mad(G) < 12

5 , 5
2 , 18

7 ).
Let k be a constant integer, k ≥ 5.

A. Forbidden Configurations

We define configurations (C1) to (C8) (see Fig. 12).

� (C1) is a vertex u of degree 0 or 1.
� (C2) is a vertex w1 of degree at most k − 1 that is 2-linked (through a path

w1 − v1 − v2 − w2) to a vertex w2 of degree at most k − 2.
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(k − 1)− w1

(C2)

v1

v2

(k − 2)−
w2

u

v2

(k − 3)− w2

(k − 2)−

(C3)

v3

v1

(k − 2)−w11− u

(C1)

ai

(C4)

b2i−1b2i

ci−1ci

b2i−2b2i+1

ai+1ai−1

u

v2

(k − 2)−
w2

(k − 4)−

(C5)

v3

v1

(k − 2)−
w1

u

v2

w2

x2

(k − 3)−

(C6)

v4

v1 w1 x1

v3

(k − 2)−
w3

u

v2

(k − 1 − d(v2 ))−

(C7)

v3

v1

w1

x1

u

v2
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x2

v3

w3

(C8)
x3

v1

w1

x1

v4

w4

x4

v5

w5

x5

FIGURE 12. Forbidden configurations for Theorem 6.

� (C3) is a vertex u of degree 3 that is 1-linked (through a path u− v1 − w1) to a
vertex w1 of degree at most k − 2, 1-linked (through a path u− v2 − w2) to a vertex
w2 of degree at most k − 3, and whose third neighbor v3 is of degree at most k − 2.

� (C4) is a set of vertices {ai}0≤i≤p−1, p ≥ 3, such that ∀i (i taken modulo p), ai is
3-linked (through a path ai − b2i − ci − b2i+1 − ai+1) to ai+1.

� (C5) is a vertex u of degree 3 that is 1-linked (through two paths u− v1 − w1 and
u− v2 − w2) to two vertices w1 and w2 of degree at most k − 2, and whose third
neighbor v3 is of degree at most k − 4.

� (C6) is a vertex u of degree 4 that is 2-linked (through two paths u− v1 − w1 − x1

and u− v2 − w2 − x2) to two vertices x1 et x2, 1-linked (through a path u− v3 −
w3) to a vertex w3 of degree at most k − 2, and whose fourth neighbor v4 is of
degree at most k − 3.

� (C7) is a vertex u of degree 3 that is 2-linked (through a path u− v1 − w1 − x1) to
a vertex x1, and such that the sum of the degrees of its two other neighbors is at
most k − 1.

� (C8) is a vertex u of degree 5 that is 2-linked (through a path u− vi − wi − xi,
i ∈ {1, 2, . . . , 5}) to five vertices x1, . . . , x5.
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Lemma 7. If G is a minimal graph such that �(G) ≤ k and G admits no list 2-distance
(k + 1)-coloring, and if i ≤ k, then G cannot contain Configuration (Ci).

Proof. We assume G contains the configuration, apply the minimality to color
a subgraph of G, and prove this coloring can be extended to the whole graph, a
contradiction. �

Claim 15. G cannot contain (C1)

Proof. Using the minimality of G, we color G \ {u}. Since �(G) ≤ k, and d(u) ≤ 1,
vertex u has at most k constraints. There are k + 1 colors, so the coloring of G \ {u} can
be extended to G. �

Claim 16. G cannot contain (C2)

Proof. Using the minimality of G, we color G \ {v1, v2}. Vertex v1 has at most
|{w2}| + d(w1) ≤ 1+ (k − 1) ≤ k constraints. Hence, we can color v1. Then v2 has at
most |{w1, v1}| + d(w2) ≤ 2+ (k − 2) ≤ k constraints, so we can extend the coloring of
G \ {v1, v2} to G. �

Claim 17. G cannot contain (C3)

Proof. Using the minimality of G, we color G \ {u, v1, v2}. Vertex u has at most
k − 2+ 1+ 1 ≤ k constraints. Hence, we can color u. Then we color v1 (at most k −
2+ 2 ≤ k constraints), and v2 (at most k − 3+ 3 ≤ k constraints), so we can extend the
coloring of G \ {u, v1, v2} to G. �

Claim 18. G cannot contain (C4)

Proof. Using the minimality of G, we color G \ {b1, . . . , b2p−1, c1, . . . , cp}. For every
j, b j has at most k − 2 constraints, hence it has at least two colors available. So coloring
the set {b1, . . . , b2p−1} is equivalent to list 2-coloring an even cycle. Then every ci has at
most 4 ≤ k constraints, so we can extend the coloring of G \ {b1, . . . , b2p−1, c1, . . . , cp}
to G. �

Claim 19. G cannot contain (C5)

Proof. Using the minimality of G, we color G \ {u, v1, v2}. We can color successively
v1 (at most k − 2+ 1 ≤ k constraints), v2 (at most k − 2+ 2 ≤ k constraints), and u (at
most k − 4+ 2+ 2 ≤ k constraints), so we can extend the coloring of G \ {u, v1, v2} to
G. �

Claim 20. If k ≥ 6, G cannot contain (C6)

Proof. Using the minimality of G, we color G \ {u, v1, v2, v3}. Vertex u has at most
k − 3+ 1+ 1+ 1 ≤ k constraints. Hence, we can color u. Then we color v3 (at most k −
2+ 2 ≤ k constraints), v2 (at most 5 ≤ k constraints), and v2 (at most 6 ≤ k constraints),
so we can extend the coloring of G \ {u, v1, v2} to G. �
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Rule 1: 3 ≤ d(x) ≤ M

3 ≤ d(y) ≤ M

R1.2

d(y) = 2

R1.1

d(a) = 3

R1.3

x

a

3+ M−y

α
2

x

a

y

z

2α − β

x

a

2(β − α)

Rule 2: M < d(x) < k − 1

R2

x

a

α

Rule 3: k − 1 ≤ d(x)

d(a) ≥ 3

R3.2

d(a) = 2

R3.1

x

3+a

β

x

a

y

β − α

α

FIGURE 13. Discharging rules R1, R2, and R3 for Theorem 6.

Claim 21. If k ≥ 7, G cannot contain (C7)

Proof. Using the minimality of G, we color G \ {v1}. We recolor u (at most k − 1+
1 ≤ k constraints), then we color v1 (at most 5 ≤ k constraints), so we can transform the
coloring of G \ {v1} into a coloring of G. �

Claim 22. If k ≥ 8, G cannot contain (C8)

Proof. Using the minimality of G, we color G \ {u, v1, v2, v3, v4, v5}. We color ver-
tices u, v1, v2, v3, v4, v5 (each has at most seven constraints), so we can extend the coloring
of G \ {u, v1, v2, v3, v4, v5} to G.

This concludes the proof of Lemma 7. �

B. Discharging Rules

Let α, β (1 > β ≥ α > 0), M (k − 1 ≥ M ≥ 3) be parameters that we will assign later.
Let R1, R2, R3, and Rg be four discharging rules (see Fig. 13): for any vertex x of degree
at least 3,

� Rule R1 is when 3 ≤ d(x) ≤ M.

- If x has a neighbor a of degree 2 whose other neighbor is y,
* Rule R1.1 is when d(y) = 2. Then x gives 2α − β to a.
* Rule R1.2 is when 3 ≤ d(y) ≤ M. Then x gives α

2 to a.
- Rule R1.3 is when d(x) ≥ 4 and x has a neighbor a of degree 3. Then x gives

2(β − α) to a.

� Rule R2 is when M < d(x) < k − 1. Then x gives α to each of its neighbors.
� Rule R3 is when k − 1 ≤ d(x). Let a be a neighbor of x.

- Rule R3.1 is when d(a) = 2. Then, for y the other neighbor of a, x gives α to a
and β − α to y.

- Rule R3.2 is when d(a) ≥ 3. Then x gives β to a.

� Rule Rg states that every vertex of degree k gives an additional 3α − 2β to a
common pot, and every vertex of degree 2 which is adjacent to two vertices of
degree 2 receives 3α − 2β from this pot.
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We use these discharging rules to prove the following lemma:

Lemma 8. A graph G with �(G) ≤ k that does not contain Configuration (Ci) for i ≤ k
satisfies mad(G) ≥ 2+ α, where α = 2

5 if k = 5, 1
2 if 7 ≥ k ≥ 6, 4

7 if k ≥ 8.

Proof. If k ≤ 7, we choose M = k − 2 and β = α. If k ≥ 8, we choose M = k − 3
and β = α + 1

21 .
We attribute to each vertex a weight equal to its degree, and apply discharging rules

R1, R2, R3, and Rg. We show that all the vertices have a weight of at least 2+ α in the
end.

Since (C4) is forbidden, if we consider the structure A induced in G by the paths
a1, . . . , a5 where d(a2) = d(a3) = d(a4) = 2 ((C2) implies that d(a1) = d(a5) = k), A
is a forest. This means that in G, there are less vertices of degree 2 adjacent to two vertices
of degree 2 than vertices of degree k: hence Rule Rg is valid.

� There are no vertices of degree 0 or 1.
� Let s be a maximal path of vertices of degree 2 (maximal in the sense that it does

not admit a vertex of degree 2 as a neighbor; every vertex of degree 2 belongs
to such a path as Configuration (C2) is forbidden). According to the discharging
rules, a vertex of degree 2 never gives away weight. We prove that it receives at
least α. There are three cases depending on the size of s (s can’t be of size greater
than 3 due to Configuration (C2)):

- |s| = 1. Let a be the only vertex in s.
* a has a neighbor x of degree at least M + 1: then it receives at least α from it,

according to Rule R2 or R3.
* a has two neighbors x1 and x2 of degree at most M: then it receives α

2 from
each, according to Rule R1.2.

- |s| = 2. Let a and b be the vertices of s, and x (resp. y) the other neighbor of
a (resp. b), with d(x) ≥ d(y). Due to Configuration (C2), d(x) ≥ k − 1. Then a
receives α from x (Rule R3.1), and b receives β − α from x (Rule R3.1), and at
least 2α − β from y (Rules R1.1, R2, and R3.1).

- |s| = 3. Due to Configuration (C2), for a2 − a3 − a4 the vertices of s and a1

(resp. a5) the other neighbor of a2 (resp. a4), d(a1) = d(a5) = k. Then Rules
R3.1 and Rg apply: a2 (resp. a4) receives α from a1 (resp. a5), and a3 receives
β − α from a1 and a5, and 3α − 2β from Rg.

� Let x be a vertex with d(x) = 3. We prove that x loses a weight of at most 1− α.

- If x is adjacent to a vertex of degree 2 whose other neighbor is also of degree 2.
* x has no other neighbor of degree 2 whose other neighbor is of degree at most

M. Then, according to Rule R1.1, it gives 2α − β, which is less than 1− α if
k ≤ 7, as α = β ≤ 1

2 . If k ≥ 8, then according to Configuration (C7), x has a
neighbor of degree at least 4, hence R1.3, R2, or R3 applies and x receives at least
2(β − α), and 1− α + 2(β − α) ≥ 2α − β when α = 4

7 and β = 4
7 + 1

21 .
* x has a second neighbor of degree 2 whose other neighbor is of degree at

most M. Then, according to Configuration (C3), the third neighbor of x is of
degree at least k − 1. Then, x receives at least β (Rule R3.2), gives at most
2× (2α − β) (Rules R1.1 and R1.2), and 1− α + β ≥ 2× (2α − β).
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- If x is adjacent to two vertices of degree 2 whose other neighbor is of degree at
least 3 and at most M, then we have three cases:
* k = 5, α = 2

5 . Vertex x gives at most 3× α
2 (Rule R1.2), but 1− α ≥ 3× α

2 as
α = 2

5 .
* 7 ≥ k ≥ 6, α = 1

2 . According to Configuration (C5), the third neighbor of x
is of degree at least 3, so, according to Rule R1.2, x gives 2× α

2 ≤ 1− α as
α = 1

2 .
* k ≥ 8, α = 4

7 . Then M = k − 3. According to Configuration (C3), the third
neighbor of x is of degree at least k − 1, hence x receives β (Rule R3.2) and
gives at most 2× α

2 (Rule R1.2) away, so it loses nothing.
- If x is adjacent to exactly one vertex of degree 2 whose other neighbor y is of

degree at least 3 and at most 13, then x gives at most α
2 (Rule R1.2), which is

possible as 1− α ≥ α
2 .

- If x is adjacent to no vertex of degree 2 whose other neighbor is of degree at
most 13, then it gives nothing away.

� Let x be a vertex with d(x) = 4, in the case where 4 ≤ M. Then k ≥ 6 and α ≥ 1
2 .

We are in one of the following two cases.

- If x is 2-linked to two vertices, and 1-linked to a vertex of degree at most M,
then, according to Configuration (C6), its other neighbor y is of degree at least
k − 2. According to Rules R1.1 and R1.2, x gives nothing to y, and gives at most
2α − β to its other three neighbors. If k ≤ 7 and α ≤ 1

2 , on the whole x gives at
most 3(2α − β) ≤ 2− α. If k ≥ 8, M = k − 3, hence x receives at least α from
y, and 3(2α − β) ≤ 2− α + α.

- If not, according to R1, x gives at most 3× α
2 + 2α − β or 2× (2α − β)+ 2×

(2β − 2α), and in both cases, it has a weight of at least 2+ α at the end.

� Let x be a vertex with d(x) = 5, in the case where 5 ≤ M. Then k ≥ 7. If k = 7
and α = 1

2 , then it gives at most 5× (2α − β) ≤ 3− α. If k ≥ 8 and α = 4
7 ,

Configuration (C8) states that x cannot be 2-linked to 5 vertices, hence it gives at
most 4× (2α − β)+ α

2 ≤ 3− α.
� Let x be a vertex with 6 ≤ d(x) ≤ M. It gives at most d(x)× (2α − β) away,

which means it has at least a weight of 2+ α at the end since d(x) ≥ 6.
� Let x be a vertex with M < d(x) < k − 1. It gives at most d(x)× α away (R2),

which means it has at least a weight of 2+ α at the end since d(x) > M.
� Let x be a vertex with k − 1 ≤ d(x) < k. It gives at most d(x)× β away (R3),

which means it has at least a weight of 2+ α in the end since d(x) ≥ k − 1.
� Let x be a vertex with d(x) = k. It gives at most d(x)× β + 3α − 2β away (R3

and Rg), which means it has at least a weight of 2+ α in the end since d(x) = k.

Consequently, after application of the discharging rules, every vertex v of G
has a weight of at least 2+ α, meaning that

∑
v∈G d(v) ≥∑

v∈G(2+ α). Therefore,
mad(G) ≥ 2+ α. �
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1
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x
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u

3−

(C2)
3−

M−

M−

FIGURE 14. Forbidden configurations for Theorem 7.

C. Conclusion

Proof of Theorem 6. We prove by contradiction that ∀k ≥ 5, every graph G with
�(G) ≤ k and mad(G) < 2+ α, where α = 2

5 if k = 5, 1
2 if 7 ≥ k ≥ 6, 4

7 if k ≥ 8,
satisfies χ2

� (G) ≤ k + 1. Let G be a minimal graph such that �(G) ≤ k, mad(G) < 2+ α

and G does not admit a list 2-distance (k + 1)-coloring. Graph G is also a minimal
graph such that �(G) ≤ k and G does not admit a list 2-distance (k + 1)-coloring (all
its proper subgraphs satisfy � ≤ k and mad < 2+ α, so they admit a list 2-distance
(k + 1)-coloring). By Lemma 7, graph G cannot contain Configuration (Ci) if i ≤ k.
Lemma 8 implies that mad(G) ≥ 2+ α, a contradiction. �

6. PROOF OF THEOREM 7

Let 1 > ε > 0, let M = 8
ε
− 2, and h(ε) = 5M − 6.

Note that M − (4− ε) = M × (1− ε
2 ), and that h(ε) ≥ 2M + 3.

Again, we choose to present a simple proof despite the fact that it means the function
h is probably not as good as possible. However, it is still optimal up to a constant factor
as the graph family presented in Figure 3 shows that it could not be less than 2

ε
. Indeed,

the family (Gp)p∈N∗ satisfies χ2
� (Gp) ≥ χ2(Gp) ≥ 3p = �(Gp)+ 2

4−mad(Gp)
.

We prove by contradiction that every graph G with mad(G) < 4− ε admits a 2-
distance (�(G)+ h(ε))-list-coloring.

We call weak a vertex of degree 2 or 3 that has at most one neighbor of degree M+. In
the figures, the label “w” means the vertex is weak.

A. Forbidden Configurations

We define Configurations (C1) and (C2) (see Fig. 14). Configuration (C1) is a vertex u of
degree 1. Configuration (C2) is a vertex u of degree M− that has a weak neighbor x, and
at most 3 neighbors of degree 4+, among which at most one is of degree M+.

Lemma 9. If G is a minimal graph such that G admits no list 2-distance (�(G)+ h(ε))-
coloring, then G cannot contain Configurations (C1) nor (C2).

Proof.

(C1) We color G \ {u} using the minimality of G. Vertex u has at most �(G) constraints,
so there is a free color for u, a contradiction.
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M+R1 :

1 − 2

M−R2 : w

1 − 2

FIGURE 15. Discharging rules R1, R2 for Theorem 7.

(C2) We remove the (u, x) edge, and use the minimality of G to color the resulting
graph. We recolor u (at most �(G)+ 2M + 3(M − 3)+ 2 = �(G)+ 5M − 7
constraints), and x (at most �(G)+M +M constraints), so we can transform the
coloring of G \ {(u, x)} into a coloring of G. �

B. Discharging Rules

Let R1, R2 be two discharging rules (see Fig. 15). Discharging rule R1 states that a vertex
of degree at least M gives 1− ε

2 to each of its neighbors. Discharging rule R2 states that
a vertex of degree less than M gives 1− ε

2 to each of its weak neighbors.
We use these discharging rules to prove the following lemma.

Lemma 10. A graph G that does not contain Configurations (C1) or (C2) satisfies
mad(G) ≥ 4− ε.

Proof. We attribute to each vertex a weight equal to its degree, and apply the two
discharging rules R1, R2. We show that each vertex of G has a weight of at least 4− ε at
the end of the discharging.

Let u be a vertex of G. Since Configuration (C1) is forbidden, we have d(u) ≥ 2. We
make a case analysis whether u gives some weight away or not.

� u gives some weight away.
- If d(u) ≥ M, (R1) is applied, and by definition of M, vertex u gives 1− ε

2 to
each of its neighbors and still has a weight of at least 4− ε.

- If d(u) < M, (R2) is applied and u has a weak neighbor x. Since (C2) is forbidden,
u is in one of these two situations:
* u has at least two neighbors of degree M+. According to R1, they each give 1−

ε
2 to u. Then u has at most d − 2 weak neighbors, and d(u)− (4− ε)+ 2(1−
ε
2 ) ≥ (d(u)− 2)(1− ε

2 ), so u has a weight of at least 4− ε after application
of the discharging rules.

* u has at least four neighbors of degree 4+. So u has at most d − 4 weak
neighbors, and d(u)− (4− ε) ≥ (d(u)− 4)(1− ε

2 ), hence u has a weight of
at least 4− ε after application of the discharging rules.

� u gives no weight away.
- d(u) ≥ 4. Then u still has a weight of at least 4− ε after application of the

discharging rules.
- u is a weak vertex. Then, according to (C2), it cannot be adjacent to another

weak vertex, so it gives nothing away and receives 1− ε
2 from each of its

neighbors. After application of the discharging rules, it has a weight at least
2+ 2× (1− ε

2 ) = 4− ε

- d(u) ≤ 3 and u is not weak. Then, u has at least two neighbors of degree at least
M, so u receives at least 2× (1− ε

2 ). It had initially a weight of at least 2 and

Journal of Graph Theory DOI 10.1002/jgt



216 JOURNAL OF GRAPH THEORY

gave nothing away, meaning that it has a weight of at least 4− ε after application
of the discharging rules.

Consequently, after application of the discharging rules, every vertex in G has a weight
of at least 4− ε after application of the discharging rules, meaning that

∑
v∈V d(v) ≥∑

v∈V (4− ε). Therefore, mad(G) ≥ 4− ε. �

C. Conclusion

Proof of Theorem 7. We prove by contradiction that ∀1 > ε > 0, every graph G
with mad(G) < 4− ε satisfies χ2

� (G) ≤ �(G)+ h(ε). Let G be a minimal graph with
mad(G) < 4− ε that does not admit a list 2-distance (�(G)+ h(ε))-coloring. Graph
G is also a minimal graph that does not admit a list 2-distance �(G)+ h(ε)-coloring.
By Lemma 9, G cannot contain Configurations (C1) nor (C2). Lemma 10 implies that
mad(G) ≥ 4− ε, a contradiction. �

7. INJECTIVE COLORING

A list injective k-coloring of a graph is a (not necessarily proper) list k-coloring of its
vertices such that two vertices with a common neighbor are of different color, or, in other
words, such that no vertex has two neighbors with the same color.

Note that the proofs for Theorems 5 to 7 also work, with close to no alteration, for list
injective coloring with one color less. Indeed, the discharging part of each proof does not
depend on the problem considered, and the configuration part of it can easily be checked
to work also for this as, though one less color is available, every critical vertex has at least
one less constraint since already colored neighbors do not count anymore. There is no
reason to think that this would be the case for any discharging proof about list 2-distance
coloring, but it happens to be the case most often.

We thus obtain the following theorem.

Theorem 8. There exists function f and g such that for a small enough ε > 0, any graph
G with one of the following properties admits a list injective (�(G)+ 1)-coloring.

(1) mad(G) < 12
5 and �(G) ≥ 5

(2) mad(G) < 5
2 and �(G) ≥ 6

(3) mad(G) < 18
7 and �(G) ≥ 8

(4) mad(G) < 14
5 − ε and Delta(G) ≥ f (ε)

And any graph G with mad(G) < 4− ε admits a list injective (�(G)+ h(ε))-
coloring.

8. CONCLUSION

We have proved in Theorem 4 and Theorem 6 that some known results on the 2-distance
colorability of planar graphs with a lower-bounded girth could be improved by studying
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graphs with an upper-bounded maximum average degree. Through Theorem 5, we have
partially answered the question of how Conjecture 2 could be transposed to graphs with
an upper-bounded maximum average degree. With Theorem 7, we have answered what
Theorem 5 becomes when an additional constant number of colors is allowed.

It happens that relatively efficient algorithms can be derived from any of those the-
orems, as we have actually proved in the intermediary lemmas that any graph with a
small enough maximum average degree contains one of the given configurations, and
that coloring a graph containing one of them comes down to coloring a subgraph. Hence
the graph can be colored recursively by spotting a configuration, coloring the corre-
sponding subgraph, and extending the coloring. Besides, applying the discharging rules
on the graph speeds up the spotting of the configurations as the weight does not have the
expected value near them. The resulting algorithms are at worst cubic in the number of
vertices.

As pointed out all along, there are a few open questions remaining. Can the proof of
Theorem 4 be extended to list-coloring? What are the optimal values of Theorem 2? What
is the optimal upper-bound on the maximum average degree in Theorem 5? In particular,
does there exist a family of graphs of increasing maximum degree, of maximum average
degree tending to 14

5 and who are not 2-distance (�+ 1)-colorable, or can the theorem
be improved?
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