List coloring the square of sparse graphs with large degree ${ }^{\text {* }}$

Marthe Bonamy ${ }^{\mathrm{a}, 1}$, Benjamin Lévêque ${ }^{\mathrm{a}}$, Alexandre Pinlou ${ }^{\mathrm{a}, \mathrm{b}}$
${ }^{\text {a }}$ Université Montpellier 2 - LIRMM, 161 rue Ada, 34095 Montpellier, France
${ }^{\mathrm{b}}$ Département MIAp, Université Paul-Valéry, Montpellier 3, France

A R T I CLE I N F O

Article history:
Received 20 August 2013
Accepted 13 March 2014
Available online 21 April 2014

Abstract

We consider the problem of coloring the squares of graphs of bounded maximum average degree, that is, the problem of coloring the vertices while ensuring that two vertices that are adjacent or have a common neighbor receive different colors.

Borodin et al. proved in 2004 and 2008 that the squares of planar graphs of girth at least seven and sufficiently large maximum degree Δ are list ($\Delta+1$)-colorable, while the squares of some planar graphs of girth six and arbitrarily large maximum degree are not. By Euler's Formula, planar graphs of girth at least 6 are of maximum average degree less than 3, and planar graphs of girth at least 7 are of maximum average degree less than $\frac{14}{5}<3$.

We strengthen their result and prove that there exists a function f such that the square of any graph with maximum average degree $m<3$ and maximum degree $\Delta \geq f(m)$ is list ($\Delta+1$)-colorable. Note the planarity assumption is dropped. This bound of 3 is optimal in the sense that the above-mentioned planar graphs with girth 6 have maximum average degree less than 3 and arbitrarily large maximum degree, while their square cannot be ($\Delta+1$)-colored. The same holds for list injective Δ-coloring.

© 2014 Elsevier Ltd. All rights reserved.

[^0]
1. Introduction

The square of a graph G is defined as a graph with the same set of vertices as G, where two vertices are adjacent if and only if they are adjacent or have a common neighbor in G. A k-coloring of the square of a graph G (also known as 2-distance k-coloring of G) is therefore a coloring of the vertices of G with k colors such that two vertices that are adjacent or have a common neighbor receive distinct colors. We define $\chi^{2}(G)$ as the smallest k such that the square of G admits a k-coloring. For example, the square of a cycle of length 5 cannot be colored with less than 5 colors as any two vertices are either adjacent or have a common neighbor: its square is the clique of size 5 .

The study of $\chi^{2}(G)$ on planar graphs was initiated by Wegner in 1977 [14], and has been active ever since. The maximum degree of a graph G is denoted $\Delta(G)$. Note that any graph G satisfies $\chi^{2}(G) \geq \Delta(G)+1$. Indeed, if we consider a vertex of maximal degree and its neighbors, they form a set of $\Delta(G)+1$ vertices, any two of which are adjacent or have a common neighbor. Hence at least $\Delta(G)+1$ colors are needed to color the square of G. It is therefore natural to ask when this lower bound is reached. For that purpose, we can study, as suggested by Wang and Lih [13], what conditions on the sparseness of the graph can be sufficient to ensure the equality holds. The sparseness of a planar graph can for example be measured by its girth. The girth of a graph G, denoted $g(G)$, is the length of a shortest cycle.

Conjecture 1 (Wang and Lih [13]). For any integer $k \geq 5$, there exists an integer $M(k)$ such that for every planar graph G satisfying $g(G) \geq k$ and $\Delta(G) \geq M(k), \chi^{2}(G)=\Delta(G)+1$.

Conjecture 1 was proved in $[5,7,12$] to be true for $k \geq 7$ and false for $k=6$. An extension of the k-coloring of the square is the list k-coloring of the square, where instead of having the same set of k colors for the whole graph, every vertex is assigned some set of k colors and has to be colored from it. Given a graph G, we call $\chi_{\ell}^{2}(G)$ the minimal integer k such that the square of G admits a list k-coloring for any list assignment. Obviously, coloring is a subcase of list coloring (where the same color list is assigned to every vertex), so for any graph G, we have $\chi_{\ell}^{2}(G) \geq \chi^{2}(G)$. Thus, in the case of list-coloring, Conjecture 1 is also false for $k=6$, and Borodin, Ivanova and Neustroeva [8] proved it to be true for $k \geq 7$.

Another way to measure the sparseness of a graph is through its maximum average degree as defined below. The average degree of a graph G, denoted $\operatorname{ad}(G)$, is $\frac{\sum_{v \in V} d(v)}{|V|}=\frac{2|E|}{|V|}$. The maximum average degree of a graph G, denoted $\operatorname{mad}(G)$, is the maximum of $\operatorname{ad}(H)$ over every subgraph H of G. Euler's formula links girth and maximum average degree in the case of planar graphs.

Lemma 1 (Folklore). For every planar graph $G,(\operatorname{mad}(G)-2)(g(G)-2)<4$.
The question raised by Conjecture 1 and now resolved could be reworded as follows: what is the minimum k such that any graph G with $g(G) \geq k$ and large enough $\Delta(G)$ (depending only on $g(G)$) satisfies $\chi_{\ell}^{2}=\Delta(G)+1$? A consequence of Lemma 1 is that we can transpose any theorem holding for an upper bound on $\operatorname{mad}(G)$ into a theorem holding for planar graphs with lower-bounded girth. It is then natural to transpose the question to the maximum average degree, as it is a more refined measure of sparseness. More precisely, what is the supremum M such that any graph G with $\operatorname{mad}(G)<M$ and large enough $\Delta(G)$ (depending only on $\operatorname{mad}(G)$) satisfies $\chi_{\ell}^{2}=\Delta(G)+1$?

The authors [3] proved that $\frac{14}{5} \leq M$, which was recently also proved by Cranston and Škrekovski [11]. We know that $M \leq 3$ due to the family of graphs that appears in [5] (see Fig. 1), which are of maximum average degree <3, of increasing maximum degree, and whose squares are not ($\Delta+1$)-colorable. We prove here that $3 \leq M$, thus obtaining the exact value of M, which is 3 .

Theorem 1. There exists a function f such that for any $\epsilon>0$, every graph G with $\operatorname{mad}(G)<3-\epsilon$ and $\Delta(G) \geq f(\epsilon)$ satisfies $\chi_{\ell}^{2}(G)=\Delta(G)+1$.

This answers the transposition of Conjecture 1 to graphs with an upper-bounded maximum average degree. As the maximum average degree is not discrete, we obtain a sharper value than for planar graphs of bounded girth.

Fig. 1. A graph G_{p} with $\Delta\left(G_{p}\right)=p, \operatorname{mad}\left(G_{p}\right)=3-\frac{5}{2 p+1}$ and $\chi^{2}\left(G_{p}\right)=\Delta\left(G_{p}\right)+2$.

Fig. 2. For $p \geq C$, a graph $G_{p, C}$ with $\Delta\left(G_{p, C}\right)=p, \operatorname{mad}\left(G_{p, C}\right)=\frac{(2 C+1)(2 p+1)+1}{(C+1)(p+1)+1}$ and $\chi^{2}\left(G_{p, C}\right)=p+C+1$.
More generally, is it possible to get similar results when allowing an additional constant number of colors, as was done by Wang and Lih in [13] for planar graphs? More precisely, what is, for any $C \geq 2$, the supremum $M(C)$ such that any graph G with $\operatorname{mad}(G)<M(C)$ and sufficiently large $\Delta(G)$ (depending only on $\operatorname{mad}(G)$) satisfies $\chi_{\ell}^{2}(G) \leq \Delta(G)+C$?

The authors proved in [3] that $\lim _{C \rightarrow \infty} M(C)=4$. Interestingly, while graphs with $\operatorname{mad}(G)<4-\epsilon$ satisfy $\chi_{\ell}^{2}(G) \leq \Delta(G)+\mathcal{O}\left(\frac{1}{\epsilon}\right)$, some graphs with $\operatorname{mad}(G)<4$ and arbitrarily large maximum degree have $\chi^{2}(G) \geq \frac{3 \Delta(G)}{2}$. This is true even with a restriction to planar graphs with girth at least 4.

Charpentier [10] generalized the family of graphs presented in Fig. 1 to obtain for each C a family of graphs which are of maximum average degree less than $\frac{4 C+2}{C+1}$, of increasing maximum degree, and whose square requires $\Delta+C+1$ colors to be colored (see Fig. 2). Consequently, for every C, we have $M(C) \leq \frac{4 C+2}{C+1}$.

This result, and the fact that $\frac{4 C+2}{C+1}$ equals $M(C)$ when $C=1$ and when C tends to infinity, raise the following question.

Question 1. Is it true that $M(C)=\frac{4 C+2}{C+1}$ for any $C \geq 1$?
Theorem 1 is proved using a discharging method. The discharging method was introduced in the beginning of the 20th century. It is notably known for being used to prove the Four Color Theorem [1,2]. When the discharging rules are local (i.e., the weight cannot travel arbitrarily far), as is most commonly used, we say the discharging method is local. Borodin, Ivanova and Kostochka introduced in [6] the notion of global discharging, which is when there is no bound on the size of the discharging rules (i.e., the weight can travel arbitrarily far along the graph). When it is mixed, i.e., the discharging rules are of bounded size but take into account structures of unbounded size in the graph, we say the discharging method is semi-global (see [4] for a first occurrence of such a proof). Our proof of Theorem 1 is presented in Section 2 as global for simplicity, but could actually be made semi-global by more careful discharging. The global discharging argument is of the same vein as a nice proof of Borodin, Kostochka and Woodall [9] later simplified by Woodall [15]. We explain in Section 3 how this proof can be transposed to injective colorings.

2. Proof of Theorem 1

We prove that there exists a function f such that for any $\epsilon>0$, every graph G with $\operatorname{mad}(G)<3-\epsilon$ and $\Delta(G) \geq f(\epsilon)$ satisfies $\chi_{\ell}^{2}(G)=\Delta(G)+1$. In the following, we try to simplify the proof rather than improve the function f.

Fig. 3. Forbidden configurations for Theorem 1.
For technical reasons, we will have to consider $\epsilon \leq \frac{1}{20}$. For $\epsilon>\frac{1}{20}$, it suffices to set $f(\epsilon)=f\left(\frac{1}{20}\right)$. Indeed, if $\epsilon>\frac{1}{20}$, then for every graph with $\operatorname{mad}(G)<3-\epsilon$ and $\Delta(G) \geq f(\epsilon)$, we have in particular $\operatorname{mad}(G)<3-\frac{1}{20}$ and $\Delta(G) \geq f\left(\frac{1}{20}\right)$, thus the conclusion holds. From now on, we consider $\epsilon \leq \frac{1}{20}$.

Let $f: \epsilon \mapsto \frac{3}{\epsilon^{2}}$. Assume by contradiction that there exists a constant $\frac{1}{20} \geq \epsilon>0$ and a graph Γ with $\operatorname{mad}(\Gamma)<3-\epsilon$ and $\Delta(\Gamma) \geq f(\epsilon)$ that satisfies $\chi_{\ell}^{2}(\Gamma)>\Delta(\Gamma)+1$. There is a minimal subgraph G of Γ such that $\chi_{\ell}^{2}(G)>\Delta(\Gamma)+1$, in the sense that the square of every proper subgraph of G is list $(\Delta(\Gamma)+1)$-colorable. For $k=\Delta(\Gamma)$, the graph G satisfies $\Delta(G) \leq k$ and $\chi_{\ell}^{2}(G)>k+1$, while the square of all its proper subgraphs are list $(k+1)$-colorable. We aim at proving that $\operatorname{mad}(G) \geq 3-\epsilon$, a contradiction to the fact that G is a subgraph of Γ with $\operatorname{mad}(\Gamma)<3-\epsilon$.

Let $M=\frac{6}{\epsilon}$. Note that since $\epsilon \leq \frac{1}{20}$, we have $k=\Delta(\Gamma) \geq f(\epsilon)=\frac{3}{\epsilon^{2}} \geq \frac{18}{\epsilon}=3 \times M$.
In Section 2.1, we introduce the terminology and notation. In Section 2.4, we use the structural observations from Sections 2.2 and 2.3 to derive with a discharging argument that such a graph has maximum average degree at least $3-\epsilon$, which concludes the proof.

2.1. Terminology and notations

In the figures, we draw in black a vertex that has no other neighbor than the ones already represented, in white a vertex that might have other neighbors than the ones represented. When there is a label inside a white vertex, it is an indication on the number of neighbors it has. The label ' i ' means "exactly i neighbors", the label ' i^{+}' (resp. ' i^{-}') means that it has at least (resp. at most) i neighbors. Note that the white vertices may coincide with other vertices.

A constraint of a vertex u is an already colored vertex that is adjacent to or has a common neighbor with u. Two constraints with the same color count as one.

Given a vertex u, the neighborhood $N(u)$ is the set of vertices that are adjacent to u. For $p \geq 1$, a p-link $x-a_{1}-\cdots-a_{p}-y$ between x and y is a path such that $d\left(a_{1}\right)=\cdots=d\left(a_{p}\right)=2$. When a p-link exists between two vertices x and y, we say they are p-linked. Given a subset X and a vertex u, we denote by $d_{X}(u)$ the number of neighbors of u in X, regardless of whether u belongs to X. Given a subset X, we informally refer to the set of vertices adjacent to at least one vertex in X by "the neighbors of $X^{\prime \prime}$.

2.2. Forbidden configurations

We define configurations $\left(C_{1}\right)-\left(C_{3}\right)$ (see Fig. 3).

- $\left(C_{1}\right)$ is a vertex u of degree 0 or 1 .
- $\left(C_{2}\right)$ is a vertex w_{1} of degree at most $k-1$ that is 2 -linked (through $w_{1}-u_{1}-u_{2}-w_{2}$) to a vertex w_{2} of degree at most $k-2$.
- $\left(C_{3}\right)$ is a vertex u with $3 \leq d(u) \leq M$ that is 1 -linked (through $\left.u-v_{i}-w_{i}\right)$ to $(d(u)-2)$ vertices $\left(w_{i}\right)_{1 \leq i \leq d(u)-2}$ of degree at most M, and such that the sum of the degrees of its two other neighbors x and y is at most $k-M+2$.

Lemma 2. Graph G cannot contain any of Configurations $\left(C_{1}\right)-\left(C_{3}\right)$.

Proof. We assume G contains a configuration, apply the minimality to color a subgraph of G, and prove this coloring can be extended to the whole graph, a contradiction.

Claim 1. G cannot contain $\left(C_{1}\right)$.
Proof. Using the minimality of G, we color $G \backslash\{u\}$. Since $\Delta(G) \leq k$, and $d(u) \leq 1$, vertex u has at most k constraints. There are $k+1$ colors, so the coloring of $G \backslash\{u\}$ can be extended to G.

Claim 2. G cannot contain (C_{2}).
Proof. Using the minimality of G, we color $G \backslash\left\{u_{1}, u_{2}\right\}$. The vertex u_{1} has at most $\left|\left\{w_{2}\right\}\right|+d\left(w_{1}\right) \leq 1+$ $(k-1) \leq k$ constraints. Hence we can color u_{1}. Then u_{2} has at most $\left|\left\{w_{1}, u_{1}\right\}\right|+d\left(w_{2}\right) \leq 2+(k-2) \leq k$ constraints, so we can extend the coloring of $G \backslash\left\{u_{1}, u_{2}\right\}$ to G.

Claim 3. G cannot contain (C_{3}).
Proof. Using the minimality of G, we color $G \backslash\left\{v_{1}, \ldots, v_{d(u)-2}\right\}$. We did not delete u in order to obtain a coloring where x and y receive different colors, but u might have the same color as some w_{i}, so it needs to be recolored. The vertex u has at most $M-2+d(x)+d(y) \leq k$ constraints, hence we can recolor u. Then every v_{i} has at most $M+M \leq k$ constraints, so we can extend the coloring of $G \backslash\left\{v_{1}, \ldots, v_{d(u)-2}\right\}$ to G.
This concludes the proof of Lemma 2.

2.3. Global structure

We define three sets V_{1}, V_{2} and T that will outline some global structure on G. We build step-bystep the set V_{1} as follows.

Any vertex u of degree at most $M-1$ belongs to V_{1} if it has $d(u)-1$ neighbors $v_{1}, \ldots, v_{d(u)-1}$ of degree 2 whose other neighbors $w_{1}, \ldots, w_{d(u)-1}$ are of degree at most $M-1$, and at most one of $\left\{w_{1}, \ldots, w_{d(u)-1}\right\}$ does not belong to V_{1}.

Thus, at first, the only vertices in V_{1} are those of degree 2 which are adjacent to a vertex of degree 2 whose other neighbor is of degree at most $M-1$. Note that the set is well-defined as a vertex that satisfies at some point the requirements to be in V_{1} will always satisfy them, and the order in which vertices are declared to be in V_{1} has absolutely no influence on the set V_{1} as it is when no more vertex can be added (equivalently, when all the vertices satisfying the requirements are already in V_{1}).

As for V_{2}, any vertex u of degree at most $M-1$ belongs to V_{2} if it has $d(u)-1$ neighbors $v_{1}, \ldots, v_{d(u)-1}$ of degree 2 whose other neighbors $w_{1}, \ldots, w_{d(u)-1}$ are of degree at most $M-1$, and all of $\left\{w_{1}, \ldots, w_{d(u)-1}\right\}$ belong to V_{1}. Note that V_{2} is a subset of V_{1}.

We define T as the set of vertices of degree 2 whose both neighbors are in V_{1}. See Fig. 4 for examples of vertices in V_{1}, V_{2} or T. In the figures, we denote by a label V_{1} (resp. V_{2}, T) the fact that a vertex belongs to V_{1} (resp. V_{2}, T). Similarly, we denote by a label $\neg V_{1}$ a vertex that does not belong to V_{1}. Since $V_{2} \subset V_{1}$, we omit the label V_{1} on vertices labeled V_{2}.

Lemma 3. The vertices of V_{1} satisfy the following:

- Every vertex of V_{1} has exactly one neighbor of degree at least $k-M$.
- The set V_{1} is a stable set.
- The sets V_{1} and T are disjoint.

Proof. Assume by contradiction that a vertex u of V_{1} has no neighbor of degree at least $k-M$. Then u is adjacent to $d(u)-1$ vertices $v_{1}, \ldots, v_{d(u)-1}$ of degree 2 whose other neighbors are of degree at most $M-1$, and to another vertex w of degree at most $k-M-1$. We consider two cases depending on whether $d(u)=2$.

- If $d(u)=2$, then the other neighbor of v_{1} is a vertex of degree at most $M-1 \leq k-1$ that is 2 -linked to w, which is a vertex of degree at most $k-M-1 \leq k-2$. By Claim 2 in Lemma 2 , Configuration $\left(C_{2}\right)$ is not contained in G, a contradiction.

Fig. 4. Examples of vertices in V_{1}, V_{2} or T.

- If $d(u) \geq 3$, then u is a vertex with $3 \leq d(u) \leq M-1 \leq M$ that is 1 -linked (through v_{i}, for $1 \leq i \leq d(u)-2)$ to $d(u)-2$ vertices of degree at most $M-1 \leq M$, and such that the sum of the degrees of its two other neighbors w and $v_{d(u)-1}$ is at most $k-M-1+2 \leq k-M+2$. By Claim 3 in Lemma 2, Configuration $\left(C_{3}\right)$ is not contained in G, a contradiction.
Therefore every vertex u of V_{1} has a neighbor of degree at least $k-M$. By the definition of V_{1}, all the other neighbors of u are of degree 2 . Thus u has a unique neighbor of degree at most $k-M$.

Since $k \geq 2 M$ then $k-M>M-1$ and vertex u has no neighbor v of degree $3 \leq d(v) \leq M-1$. Consequently, two vertices u, v of V_{1} that are adjacent must both be of degree 2. By definition of V_{1}, the other neighbors of u and v must be of degree at most $M-1$, a contradiction. It follows that V_{1} is a stable set in G and thus $T \cap V_{1}=\emptyset$.

Any connected component C of $G\left[V_{1} \cup T\right]$ is a weak component of G if every vertex belongs to V_{2} or T (in other words, if no vertex of C belongs to V_{1} and not to V_{2}). The only apparent weak components on Fig. 4 are encircled. The strength of a component of $G\left[V_{1} \cup T\right]$ is the number of vertices of V_{1} it contains. Let C_{w} be the set of weak components of G of strength less than $\frac{1}{\epsilon}$. Let S_{w} be the set of vertices of V_{2} that belong to an element of C_{w}. Let U be the set of vertices of degree at least $k-M$ with a neighbor in S_{w}.

We first need the following two results.
Theorem 2 ([9], Theorem 3). For any bipartite multigraph G, if Lis a color assignment such that $\forall(u, v) \in$ $E,|L(u, v)| \geq \max (d(u), d(v))$, then G is L-edge-choosable.

Lemma 4. Let H be a bipartite multigraph with vertex set $V(H)=A \cup B$, and $A \neq \emptyset, B \neq \emptyset$. For $\alpha>0$, if for every subset $B^{\prime} \subseteq B$ and $A^{\prime}=N\left(B^{\prime}\right) \subseteq A$, there exists a vertex $u \in A^{\prime}$ with $d_{B^{\prime}}(u)<\alpha$, then $\alpha|A|>|B|$.

Proof. By induction on $|B|$. If $|B|<\alpha$, since $|A| \geq 1$, the conclusion holds. If $|B| \geq \alpha$, there exists $u \in A$ with $d(u)<\alpha$. We apply the induction hypothesis to the graph $H \backslash(\{u\} \cup N(u))$. It follows that $\alpha(|A|-1)>|B|-\alpha$, hence the result.

Lemma 5. The graph G satisfies $\left|C_{w}\right| \leq \frac{1}{\epsilon} \times\left|\left\{v \in V \mid d_{G}(v) \geq k-M\right\}\right|$.
Proof. Assume by contradiction that $\left|C_{w}\right|>\frac{1}{\epsilon} \times|\{v \in V \mid d(v) \geq k-M\}|$.
Recall that by Lemma 3, every vertex of $S_{w} \subseteq V_{1}$ has a unique neighbor in U. Let D be the bipartite multigraph whose vertex set is $V(D)=U \cup C_{w}$, and whose edge set is in bijection with S_{w} : for every element $v \in S_{w}$, we add an edge (u, w), where u is the element of U adjacent to v and w is the element of C_{w} to which v belongs.

For $A=\{v \in V \mid d(v) \geq k-M\}, B=C_{w}$ and $\alpha=\frac{1}{\epsilon}$, we have $|B|>\alpha|A|$. So by Lemma 4 , there is a subset C_{w}^{\prime} of C_{w} such that, for U^{\prime} the neighbors of C_{w}^{\prime} in U, the subgraph D^{\prime} induced in D by $C_{w}^{\prime} \cup U^{\prime}$ satisfies $\forall u \in U^{\prime}, d_{D^{\prime}}(u) \geq \frac{1}{\epsilon}$.

Fig. 5. Discharging rules R_{1}, R_{2}, and R_{3} for Theorem 1.
Let S_{w}^{\prime} (resp. T^{\prime}) be the set of vertices of S_{w} (resp. T) that belong to an element of C_{w}^{\prime}.
We color by minimality $G \backslash\left(S_{w}^{\prime} \cup T^{\prime}\right)$. Note that every vertex v of S_{w}^{\prime}, belonging to V_{2}, is adjacent to exactly one vertex u of degree at least $k-M$, and that all its other neighbors $v_{1}, \ldots, v_{d(u)-1}$ are vertices of T whose other neighbors $w_{1}, \ldots, w_{d(u)-1}$ are in V_{1}. Since the element C of $C_{w}^{\prime} \subseteq C_{w}$ to which v belongs is a connected component of $G\left[V_{1} \cup T\right]$, all the v_{i} 's and w_{i} 's belong to $C \in C_{w}^{\prime}$. Consequently, for every i, we have $v_{i} \in T^{\prime}$ and $w_{i} \in S_{w}^{\prime}$. Thus v has at most $k+1-d_{D^{\prime}}(u)$ constraints, hence v has at least $d_{D^{\prime}}(u)$ colors available. To color the vertices of S_{w}^{\prime}, it is sufficient to list-color the edges of D^{\prime}, where every edge is assigned the same list of colors as the vertex of S_{w}^{\prime} it is in bijection with.

By definition of C_{w} and since $C_{w}^{\prime} \subseteq C_{w}$, every element of C_{w}^{\prime} contains at most $\frac{1}{\epsilon}$ vertices of V_{2}, so it has degree at most $\frac{1}{\epsilon}$ in D thus in D^{\prime}. Moreover, every vertex of U^{\prime} has degree at least $\frac{1}{\epsilon}$ in D^{\prime}. Thus for every edge (u, v) of D^{\prime}, with $u \in U$ and $v \in C_{w}^{\prime}$, we have $\max \left(d_{D^{\prime}}(u), d_{D^{\prime}}(v)\right)=d_{D^{\prime}}(u)$. So D^{\prime} is a bipartite multigraph whose every edge has a list assignment of size at least max $\left(d_{D^{\prime}}(u), d_{D^{\prime}}(v)\right)$. We apply Theorem 2 to color the vertices of S_{w}^{\prime}.

It then remains to color the vertices of T^{\prime}. These are vertices of degree 2 whose both neighbors are in S_{w}^{\prime}. But all the vertices of S_{w}^{\prime} are of degree at most M. So the vertices of T^{\prime} have at most $2 \times M \leq k$ constraints, and we can color the vertices of T^{\prime}, a contradiction.

2.4. Discharging rules

We introduce four discharging rules R_{1}, R_{2}, R_{3} and R_{g} (' g ' stands for 'global'), as follows (see Fig. 5). We will use them in the case where the initial weight of a vertex v is $d(v)-3+\epsilon$. The weight of a subset of vertices is the sum of the weights of the vertices it contains. During the discharging process, a subset of vertices (here, a weak component) may receive some charge: the question of which vertices in that subset actually receive this charge is of no importance. Indeed, we later consider only the weight of the component, and do not care for the details inside.

Here each connected component of $G\left[T \cup V_{1}\right]$ (and in particular each weak component of G) behaves as a single entity. For any vertex x,

- Rule R_{1} is when $d(x)=2$ and its two neighbors a and b are such that $d(a)=2$ and $d(b) \geq M$, and the other neighbor c of a is not in V_{1}. Then x gives $\frac{\epsilon}{2}$ to a.
- Rule R_{2} is when $3 \leq d(x) \leq M-1$ and $x \notin V_{1}$. If x has a neighbor a of degree 2 whose other neighbor is y,
- Rule $R_{2.1}$ is when $d(y)=2$. Then x gives $1-\frac{3 \epsilon}{2}$ to a.
- Rule $R_{2.2}$ is when $3 \leq d(y)<M$. If $y \notin V_{1}$, then x gives $\frac{1-\epsilon}{2}$ to a. If $y \in V_{1}$, then x gives $1-\epsilon$ to a.
- Rule R_{3} is when $M \leq d(x)$. Then x gives $1-\frac{\epsilon}{2}$ to each of its neighbors.
- Rule R_{g} states that every vertex of degree at least $k-M$ gives an additional $\frac{1}{\epsilon}$ to an initially empty common pot, and every weak component of G of strength less than $\frac{1}{\epsilon}$ receives 1 from this pot.

We use these discharging rules to prove the following lemma:
Lemma 6. Graph G satisfies $\operatorname{mad}(G) \geq 3-\epsilon$.
Proof. We attribute to each vertex v a weight equal to $d(v)-3+\epsilon$, and apply discharging rules R_{1}, R_{2}, R_{3} and R_{g}. We show that all the vertices of $G \backslash\left(T \cup V_{1}\right)$ have a non-negative weight in the end, and that each connected component of $G\left[T \cup V_{1}\right]$ has a non-negative total weight.

By Lemma 5, the common pot has a non-negative value, and Rule R_{g} is valid.
Let x be a vertex of $G \backslash\left(T \cup V_{1}\right)$. By Configuration $\left(C_{1}\right)$, we have $d(x) \geq 2$.

1. $d(x)=2$.

The vertex x has an initial weight of $-1+\epsilon$. We prove that it receives at least $1-\epsilon$. Let u_{1} and u_{2} be its two neighbors. We consider two cases depending on whether one of them is of degree at least M.
(a) $d\left(u_{1}\right) \geq M$ or $d\left(u_{2}\right) \geq M$.

Consider w.l.o.g. that $d\left(u_{1}\right) \geq M$. By R_{3}, vertex u_{1} gives $1-\frac{\epsilon}{2}$ to x. The vertex x gives at most $\frac{\epsilon}{2}$ to u_{2} by R_{1}. So x receives at least $1-\epsilon$.
(b) $d\left(u_{1}\right)<M$ and $d\left(u_{2}\right)<M$.

Assume that u_{1} or u_{2} is of degree 2 . Consider w.l.o.g. that $d\left(u_{1}\right)=2$. Then u_{1} belongs to V_{1} by definition, and the other neighbor of u_{1} is of degree at least M. Since $u_{1} \in V_{1}$ and $x \notin T$, then $u_{2} \notin V_{1}$ and we have $M \geq d\left(u_{2}\right) \geq 3$. By R_{1} and $R_{2.1}$, vertex u_{1} gives $\frac{\epsilon}{2}$ to x, and u_{2} gives $1-\frac{3 \epsilon}{2}$. So x receives $1-\epsilon$ and gives no weight away. If both u_{1} and u_{2} have degree at least three, then since $x \notin T$, at most one of u_{1} and u_{2} is in V_{1} and $R_{2.2}$ applies. So vertices u_{1} and u_{2} give a total of $1-\epsilon$ to x, and x gives no weight away.
2. $3 \leq d(x) \leq M-1$.

The vertex x has an initial weight of $d(x)-3+\epsilon \geq \epsilon$. Let u_{1}, \ldots, u_{q} denote its neighbors of degree 2 whose other neighbor is of degree at most $M-1$, where u_{1}, \ldots, u_{p} denote its neighbors of degree 2 whose other neighbor belongs to V_{1} (note that p may be equal to 0 when x has no such neighbor, and that q may be equal to p. We consider two cases depending on q.
(a) $q \leq d(x)-3$.

Then x gives at most $(d(x)-3) \times(1-\epsilon) \leq d(x)-3+\epsilon$ by R_{2}.
(b) $q \geq d(x)-2$.

Then, by Configuration $\left(C_{3}\right)$, vertex x has a neighbor v with $d(v) \geq \frac{k-M+2}{2} \geq M$ (recall that $k \geq 3 \times M)$. By Rule R_{3}, vertex x receives $1-\frac{\epsilon}{2}$ from v. We consider two cases depending on p.
i. $p \leq d(x)-3$. By Rule R_{2}, x gives at most $(d(x)-3) \times(1-\epsilon)+2 \times \frac{1-\epsilon}{2} \leq d(x)-3+\epsilon+\left(1-\frac{\epsilon}{2}\right)$.
ii. $p \geq d(x)-2$. Since $x \notin V_{1}$, we have $p=q=d(x)-2$. By Rule R_{2}, x gives at most $(d(x)-2) \times(1-\epsilon) \leq d(x)-3+\epsilon+\left(1-\frac{\epsilon}{2}\right)$.
3. $M \leq d(x) \leq k-M-1$.

By Rule R_{3}, vertex x gives at most $d(x) \times\left(1-\frac{\epsilon}{2}\right)$. Since $M=\frac{6}{\epsilon}$, we have $d(x) \times \frac{\epsilon}{2} \geq 3 \geq 3-\epsilon$, so x has a non-negative final weight.
4. $k-M \leq d(x)$.

By Rules R_{3} and R_{g}, vertex x gives at most $\frac{1}{\epsilon}+d(x) \times\left(1-\frac{\epsilon}{2}\right)$. Since $k \geq \frac{3}{\epsilon^{2}}, M=\frac{6}{\epsilon}$ and $\epsilon \leq \frac{1}{20}$, we have $d(x) \times \frac{\epsilon}{2} \geq\left(\frac{3}{\epsilon^{2}}-\frac{6}{\epsilon}\right) \times \frac{\epsilon}{2}=\frac{3}{2 \epsilon}-3 \geq \frac{1}{\epsilon}+10-3 \geq \frac{1}{\epsilon}+3-\epsilon$, so x has a non-negative final weight.
Therefore, every vertex of $G \backslash\left(T \cup V_{1}\right)$ has a non-negative final weight. It remains to consider vertices of $G\left[T \cup V_{1}\right]$. Let C be a connected component of $G\left[T \cup V_{1}\right]$. Let s be the strength of C. Note that $s \geq 1$.

If $s=1$, then C consists of a single vertex u of degree 2 in G and that is adjacent to a vertex v of degree at least $k-M$ and 1 -linked to a vertex w of degree less than M. Thus, by R_{1} and R_{3}, vertex u has an initial weight of $-1+\epsilon$, receives $1-\frac{\epsilon}{2}$ from v, and gives $\frac{\epsilon}{2}$ to its neighbor of degree 2 : its final weight is 0 . We assume from now on that $s \geq 2$.

No vertex of C gives weight. Indeed, a vertex of C can only send charge according to R_{1} since all the other rules are for vertices of degree at least M or vertices of degree at least 3 but not in V_{1}. If a
vertex x of C sends some charge according to R_{1}, then $d(x)=2$ and its two neighbors a and b are such that $d(b) \geq M$ and $d(a)=2$, where the other neighbor c of a is not in V_{1}. Since $d(b) \geq M$, we have $b \notin V_{1}$ and $x \notin T$, so $x \in V_{1}$. Then, since V_{1} is a stable set by Lemma 3 , we have $a \notin V_{1}$, and $s=1$, a contradiction with our assumption.

We denote by $N(C)$ the set of vertices that do not belong to C but are adjacent to a vertex in C. Since every vertex in $C \cap V_{1}$ has a neighbor of degree at least $k-M$ (thus not in C), and the vertices in $C \cap V_{1}$ that are not in V_{2} have a neighbor of degree $2<k-M$ that is not in C, we have $\sum_{v \in V_{1} \cap C} d_{N(C)}(v) \geq s+\left|C \cap\left(V_{1} \backslash V_{2}\right)\right|$. Also, every vertex u in $C \cap V_{1}$ receives $1-\frac{\epsilon}{2}$ from its neighbor of degree at least $k-M$. Thus the weight W of C (without taking R_{g} into account) is as follows.

$$
\begin{aligned}
W & \geq \sum_{v \in C}(d(v)-3+\epsilon)+s \times\left(1-\frac{\epsilon}{2}\right) \\
& \geq \sum_{v \in T \cap C}(d(v)-3+\epsilon)+\sum_{v \in V_{1} \cap C}(d(v)-3+\epsilon)+s \times\left(1-\frac{\epsilon}{2}\right) \\
& \geq \sum_{v \in T \cap C}(-1+\epsilon)+\sum_{v \in V_{1} \cap C} d_{C}(v)+\sum_{v \in V_{1} \cap C} d_{N(C)}(v)+\sum_{v \in V_{1} \cap C}(-3+\epsilon)+s \times\left(1-\frac{\epsilon}{2}\right) \\
& \geq \sum_{v \in T \cap C}(-1+\epsilon)+\sum_{v \in V_{1} \cap C} d_{C}(v)+\left(s+\left|C \cap\left(V_{1} \backslash V_{2}\right)\right|\right)+s \times(-3+\epsilon)+s \times\left(1-\frac{\epsilon}{2}\right) .
\end{aligned}
$$

Remember that the vertex set of C is the union of $V_{1} \cap C$ and $T \cap C$, which are stable sets. Also, the two neighbors of a vertex in T belong to C, so $\sum_{v \in V_{1} \cap C} d_{C}(v)=\sum_{v \in T \cap C} d_{C}(v)=2|T \cap C|$. Since C is a connected component, we have $|T \cap C| \geq|V \cap C|-1=s-1$. Then,

$$
\begin{aligned}
W & \geq|T \cap C| \times(-1+\epsilon)+2|T \cap C|+|N(C) \backslash U|+s \times\left(-1+\frac{\epsilon}{2}\right) \\
& \geq\left(-1-\epsilon+\frac{3 \epsilon s}{2}\right)+|N(C) \backslash U| .
\end{aligned}
$$

We consider three cases depending on whether C is weak and $s<\frac{1}{\epsilon}$.

1. C is a weak component of G and $s<\frac{1}{\epsilon}$.

By R_{g}, component C receives an extrâ weight of 1 . Thus, its final weight is $1+W \geq 1+(-1-\epsilon+$ $\left.\frac{3 \epsilon s}{2}\right)=-\epsilon+\frac{3 \epsilon s}{2}>0$.
2. C is a weak component of G and $s \geq \frac{1}{\epsilon}$.

Then the final weight of C is $W \geq-1-\epsilon+\frac{3 \epsilon s}{2} \geq-1-\epsilon+\frac{3 \epsilon}{2 \times \epsilon} \geq 0$.
3. C is not a weak component of G.

There is at least a vertex v in $\left(V_{1} \cap C\right) \backslash V_{2}$. Then the final weight of C is $W \geq\left(-1-\epsilon+\frac{3 \epsilon 5}{2}\right)+1 \geq 0$.
Consequently, after application of the discharging rules, every vertex v of $G \backslash\left\{V_{1} \cup T\right\}$ has a nonnegative final weight, and every connected component C of $G\left[V_{1} \cup T\right]$ has a non-negative final total weight, meaning that $\sum_{v \in G}(d(v)-3+\epsilon) \geq 0$. Therefore, $\operatorname{mad}(G) \geq 3-\epsilon$. This completes the proof of Lemma 6 , and thus of Theorem 1.

3. List injective coloring

A list injective k-coloring of a graph is a (not necessarily proper) list k-coloring of its vertices such that two vertices with a common neighbor are of different color, or, in other words, such that no vertex has two neighbors with the same color. We denote by $\chi_{\ell}^{i}(G)$ the minimum k such that a graph G admits a list injective k-coloring. Note that the proof for Theorem 1 also work, with close to no alteration, for list injective coloring with one color less. Indeed, the discharging part does not depend on the problem considered, and the configuration part can easily be checked to work also for this as, though one less color is available, every critical vertex has at least one less constraint since already colored neighbors do not count anymore. There is no reason to think that this would be the case for any discharging proof about list coloring of the square, but it happens to be the case most often.

We thus obtain the following theorem.
Theorem 3. There exists a function f such that for any $\epsilon>0$, every graph G with $\operatorname{mad}(G)<3-\epsilon$ and $\Delta(G) \geq f(\epsilon)$ satisfies $\chi_{\ell}^{i}(G)=\Delta(G)$.

Theorem 3 is optimal in the same sense as Theorem 1 by the graph family described in Fig. 1.

4. Conclusion

For any $C \geq 1$, we asked for the supremum $M(C)$ such that any graph G with $\operatorname{mad}(G)<M(C)$ and sufficiently large $\Delta(G)$ (depending only on $\operatorname{mad}(G)$) satisfies $\chi_{\ell}^{2}(G) \leq \Delta(G)+C$. It was already known [3] that $\lim _{C \rightarrow \infty} M(C)=4$. We proved here that $M(1)=3$, and conjectured that $M(C)=$ $\frac{4 C+2}{C+1}$.

It might be a good approach to try, for every fixed C, to adapt the same proof outline. However, rather than prove incremental results, it would be more interesting to look for a general proof that would work for every C, or maybe only for every large enough C.

The proof that $\lim _{C \rightarrow \infty} M(C)=4$ [3] is quite short and simple. However, finding the exact value of $M(C)$ might still be difficult for large C. Indeed, the proof does not even involve lower bounds on $\Delta(G)$.

This leads to a similar question (with no constraint on $\Delta(G)$).
Question 2. What is, for any $C \geq 1$, the maximum $m(C)$ such that any graph G with $\operatorname{mad}(G)<m(C)$ satisfies $\chi_{\ell}^{2}(G) \leq \Delta(G)+C$?

Obviously, we have $m(C) \leq M(C)<4$ for every C. Our proof that $\lim _{C \rightarrow \infty} M(C)=4$ was actually a proof that $\lim _{C \rightarrow \infty} m(C)=4$. Note that $m(1)=m(2)=2$, as a cycle C_{5} of length five has $\operatorname{mad}\left(C_{5}\right)=2, \Delta\left(C_{5}\right)=2$ and $\chi^{2}\left(C_{5}\right)=5$, while any graph G with $\operatorname{mad}(G)<2$ is a forest and thus satisfies $\chi_{\ell}^{2}(G)=\Delta(G)+1$. So there is a significant gap for $C=1,2$. What about general C ? Does there exist some C for which $m(C)=M(C)$?

References

[1] K. Appel, W. Haken, Every map is four colorable: part 1, discharging, Illinois J. Math. 21 (1977) 422-490.
[2] K. Appel, W. Haken, J. Koch, Every map is four colorable: part 2, reducibility, Illinois J. Math. 21 (1977) 491-567.
[3] M. Bonamy, B. Lévêque, A. Pinlou, 2-distance coloring of sparse graphs, J. Graph Theory (2014) http://dx.doi.org/10.1002/ jgt.21782. in press.
[4] O.V. Borodin, On the total coloring of planar graphs, J. Reine Angew. Math. 394 (1989) 180-185.
[5] O.V. Borodin, A.N. Glebov, A.O. Ivanova, T.K. Neustroeva, V.A. Tashkinov, Sufficient conditions for the 2-distance ($\Delta+1$)colorability of plane graphs, Sib. Electron. Math. Reports 1 (2004) 129-141. (in Russian).
[6] O.V. Borodin, A.O. Ivanova, A.V. Kostochka, Oriented 5-coloring of sparse plane graphs, J. Appl. Ind. Math. 1(2007) 9-17.
[7] O.V. Borodin, A.O. Ivanova, N.T. Neustroeva, 2-distance coloring of sparse plane graphs, Sib. Electron. Math. Reports 1 (2004) 76-90. (in Russian).
[8] O.V. Borodin, A.O. Ivanova, N.T. Neustroeva, List 2-distance ($\Delta+1$)-coloring of planar graphs with given girth, J. Appl. Ind. Math. 2 (2008) 317-328.
[9] O.V. Borodin, A.V. Kostochka, D.R. Woodall, List edge and list total colourings of multigraphs, J. Combin. Theory Ser. B 71 (2) (1997) 184-204.
[10] C. Charpentier, Private communication, 2012.
[11] D. Cranston, R. Škrekovski, Sufficient sparseness conditions for G^{2} to be $(\Delta+1)$-choosable, when $\Delta \geq 5$, Preprint, http://arxiv.org/pdf/1303.5136.
[12] Z. Dvořák, D. Král, P. Nejedlý, R. Škrekovski, Coloring squares of planar graphs with girth six, European J. Combin. 29 (2008) 838-849.
[13] F.W. Wang, K.W. Lih, Labeling planar graphs with conditions on girth and distance two, SIAM J. Discrete Math. 17 (2)(2003) 264-275.
[14] G. Wegner, Graphs with Given Diameter and a Coloring Problem, Technical Report, 1977.
[15] D. Woodall, The average degree of a multigraph critical with respect to edge or total choosability, Discrete Math. 310 (6) (2010) 1167-1171.

[^0]: 4. This work was partially supported by the ANR grant EGOS 12 JS02 00201.

 E-mail addresses: marthe.bonamy@lirmm.fr (M. Bonamy), benjamin.leveque@lirmm.fr (B. Lévêque), alexandre.pinlou@lirmm.fr (A. Pinlou).
 1 Tel.: +33 467418580.
 http://dx.doi.org/10.1016/j.ejc.2014.03.006
 0195-6698/© 2014 Elsevier Ltd. All rights reserved.

