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a b s t r a c t

We consider the problem of coloring the squares of graphs of
boundedmaximumaverage degree, that is, the problemof coloring
the vertices while ensuring that two vertices that are adjacent or
have a common neighbor receive different colors.

Borodin et al. proved in 2004 and 2008 that the squares
of planar graphs of girth at least seven and sufficiently large
maximum degree ∆ are list (∆ + 1)-colorable, while the squares
of some planar graphs of girth six and arbitrarily large maximum
degree are not. By Euler’s Formula, planar graphs of girth at least 6
are of maximum average degree less than 3, and planar graphs of
girth at least 7 are of maximum average degree less than 14

5 < 3.
We strengthen their result and prove that there exists a

function f such that the square of any graph with maximum
average degree m < 3 and maximum degree ∆ ≥ f (m) is list
(∆ + 1)-colorable. Note the planarity assumption is dropped. This
bound of 3 is optimal in the sense that the above-mentioned planar
graphs with girth 6 have maximum average degree less than 3 and
arbitrarily large maximum degree, while their square cannot be
(∆ + 1)-colored. The same holds for list injective ∆-coloring.
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1. Introduction

The square of a graph G is defined as a graph with the same set of vertices as G, where two vertices
are adjacent if and only if they are adjacent or have a common neighbor inG. A k-coloring of the square
of a graphG (also known as 2-distance k-coloring ofG) is therefore a coloring of the vertices ofGwith k
colors such that two vertices that are adjacent or have a common neighbor receive distinct colors. We
define χ2(G) as the smallest k such that the square of G admits a k-coloring. For example, the square
of a cycle of length 5 cannot be colored with less than 5 colors as any two vertices are either adjacent
or have a common neighbor: its square is the clique of size 5.

The study of χ2(G) on planar graphs was initiated by Wegner in 1977 [14], and has been active
ever since. The maximum degree of a graph G is denoted ∆(G). Note that any graph G satisfies
χ2(G) ≥ ∆(G) + 1. Indeed, if we consider a vertex of maximal degree and its neighbors, they form a
set of ∆(G) + 1 vertices, any two of which are adjacent or have a common neighbor. Hence at least
∆(G) + 1 colors are needed to color the square of G. It is therefore natural to ask when this lower
bound is reached. For that purpose, we can study, as suggested byWang and Lih [13], what conditions
on the sparseness of the graph can be sufficient to ensure the equality holds. The sparseness of a planar
graph can for example be measured by its girth. The girth of a graph G, denoted g(G), is the length of
a shortest cycle.

Conjecture 1 (Wang and Lih [13]). For any integer k ≥ 5, there exists an integer M(k) such that for every
planar graph G satisfying g(G) ≥ k and ∆(G) ≥ M(k), χ2(G) = ∆(G) + 1.

Conjecture 1 was proved in [5,7,12] to be true for k ≥ 7 and false for k = 6. An extension of the
k-coloring of the square is the list k-coloring of the square, where instead of having the same set of k
colors for the whole graph, every vertex is assigned some set of k colors and has to be colored from it.
Given a graph G, we call χ2

ℓ (G) the minimal integer k such that the square of G admits a list k-coloring
for any list assignment. Obviously, coloring is a subcase of list coloring (where the same color list is
assigned to every vertex), so for any graphG, we haveχ2

ℓ (G) ≥ χ2(G). Thus, in the case of list-coloring,
Conjecture 1 is also false for k = 6, and Borodin, Ivanova and Neustroeva [8] proved it to be true for
k ≥ 7.

Another way to measure the sparseness of a graph is through its maximum average degree as
defined below. The average degree of a graph G, denoted ad(G), is


v∈V d(v)

|V |
=

2|E|

|V |
. The maximum

average degree of a graph G, denoted mad(G), is the maximum of ad(H) over every subgraph H of G.
Euler’s formula links girth and maximum average degree in the case of planar graphs.

Lemma 1 (Folklore). For every planar graph G, (mad(G) − 2)(g(G) − 2) < 4.

The question raised by Conjecture 1 and now resolved could be reworded as follows: what is the
minimum k such that any graph G with g(G) ≥ k and large enough ∆(G) (depending only on g(G))
satisfiesχ2

ℓ = ∆(G)+1? A consequence of Lemma 1 is that we can transpose any theorem holding for
an upper bound on mad(G) into a theorem holding for planar graphs with lower-bounded girth. It is
then natural to transpose the question to themaximumaverage degree, as it is amore refinedmeasure
of sparseness. More precisely, what is the supremumM such that any graph Gwith mad(G) < M and
large enough ∆(G) (depending only on mad(G)) satisfies χ2

ℓ = ∆(G) + 1?
The authors [3] proved that 14

5 ≤ M , which was recently also proved by Cranston and
Škrekovski [11]. We know that M ≤ 3 due to the family of graphs that appears in [5] (see Fig. 1),
which are of maximum average degree < 3, of increasing maximum degree, and whose squares are
not (∆ + 1)-colorable. We prove here that 3 ≤ M , thus obtaining the exact value ofM , which is 3.

Theorem 1. There exists a function f such that for any ϵ > 0, every graph G with mad(G) < 3 − ϵ and
∆(G) ≥ f (ϵ) satisfies χ2

ℓ (G) = ∆(G) + 1.

This answers the transposition of Conjecture 1 to graphs with an upper-bounded maximum
average degree. As the maximum average degree is not discrete, we obtain a sharper value than for
planar graphs of bounded girth.
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Fig. 1. A graph Gp with ∆(Gp) = p, mad(Gp) = 3 −
5

2p+1 and χ2(Gp) = ∆(Gp) + 2.

Fig. 2. For p ≥ C , a graph Gp,C with ∆(Gp,C ) = p, mad(Gp,C ) =
(2C+1)(2p+1)+1
(C+1)(p+1)+1 and χ2(Gp,C ) = p + C + 1.

More generally, is it possible to get similar results when allowing an additional constant number
of colors, as was done by Wang and Lih in [13] for planar graphs? More precisely, what is, for any
C ≥ 2, the supremum M(C) such that any graph G with mad(G) < M(C) and sufficiently large ∆(G)
(depending only on mad(G)) satisfies χ2

ℓ (G) ≤ ∆(G) + C?
The authors proved in [3] that limC→∞ M(C) = 4. Interestingly, while graphswithmad(G) < 4−ϵ

satisfy χ2
ℓ (G) ≤ ∆(G) + O( 1

ϵ
), some graphs with mad(G) < 4 and arbitrarily large maximum degree

have χ2(G) ≥
3∆(G)

2 . This is true even with a restriction to planar graphs with girth at least 4.
Charpentier [10] generalized the family of graphs presented in Fig. 1 to obtain for each C a family

of graphs which are of maximum average degree less than 4C+2
C+1 , of increasing maximum degree, and

whose square requires ∆ + C + 1 colors to be colored (see Fig. 2). Consequently, for every C , we have
M(C) ≤

4C+2
C+1 .

This result, and the fact that 4C+2
C+1 equalsM(C) when C = 1 and when C tends to infinity, raise the

following question.

Question 1. Is it true that M(C) =
4C+2
C+1 for any C ≥ 1?

Theorem 1 is proved using a discharging method. The discharging method was introduced in the
beginning of the 20th century. It is notably known for being used to prove the Four Color Theorem
[1,2]. When the discharging rules are local (i.e., the weight cannot travel arbitrarily far), as is most
commonly used, we say the discharging method is local. Borodin, Ivanova and Kostochka introduced
in [6] the notion of global discharging, which is when there is no bound on the size of the discharging
rules (i.e., the weight can travel arbitrarily far along the graph). When it is mixed, i.e., the discharging
rules are of bounded size but take into account structures of unbounded size in the graph, we say
the discharging method is semi-global (see [4] for a first occurrence of such a proof). Our proof of
Theorem 1 is presented in Section 2 as global for simplicity, but could actually be made semi-global
by more careful discharging. The global discharging argument is of the same vein as a nice proof of
Borodin, Kostochka and Woodall [9] later simplified by Woodall [15]. We explain in Section 3 how
this proof can be transposed to injective colorings.

2. Proof of Theorem 1

Weprove that there exists a function f such that for any ϵ > 0, every graph Gwithmad(G) < 3−ϵ
and ∆(G) ≥ f (ϵ) satisfies χ2

ℓ (G) = ∆(G) + 1. In the following, we try to simplify the proof rather
than improve the function f .
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Fig. 3. Forbidden configurations for Theorem 1.

For technical reasons, we will have to consider ϵ ≤
1
20 . For ϵ > 1

20 , it suffices to set f (ϵ) = f ( 1
20 ).

Indeed, if ϵ > 1
20 , then for every graph with mad(G) < 3 − ϵ and ∆(G) ≥ f (ϵ), we have in particular

mad(G) < 3 −
1
20 and ∆(G) ≥ f ( 1

20 ), thus the conclusion holds. From now on, we consider ϵ ≤
1
20 .

Let f : ϵ →
3
ϵ2
. Assume by contradiction that there exists a constant 1

20 ≥ ϵ > 0 and a graph Γ

withmad(Γ ) < 3−ϵ and∆(Γ ) ≥ f (ϵ) that satisfiesχ2
ℓ (Γ ) > ∆(Γ )+1. There is aminimal subgraph

G of Γ such that χ2
ℓ (G) > ∆(Γ ) + 1, in the sense that the square of every proper subgraph of G is list

(∆(Γ ) + 1)-colorable. For k = ∆(Γ ), the graph G satisfies ∆(G) ≤ k and χ2
ℓ (G) > k + 1, while the

square of all its proper subgraphs are list (k + 1)-colorable. We aim at proving that mad(G) ≥ 3 − ϵ,
a contradiction to the fact that G is a subgraph of Γ with mad(Γ ) < 3 − ϵ.

LetM =
6
ϵ
. Note that since ϵ ≤

1
20 , we have k = ∆(Γ ) ≥ f (ϵ) =

3
ϵ2

≥
18
ϵ

= 3 × M .
In Section 2.1, we introduce the terminology and notation. In Section 2.4, we use the structural

observations from Sections 2.2 and 2.3 to derive with a discharging argument that such a graph has
maximum average degree at least 3 − ϵ, which concludes the proof.

2.1. Terminology and notations

In the figures, we draw in black a vertex that has no other neighbor than the ones already
represented, inwhite a vertex thatmight have other neighbors than the ones represented.When there
is a label inside a white vertex, it is an indication on the number of neighbors it has. The label ‘i’ means
‘‘exactly i neighbors’’, the label ‘i+’ (resp. ‘i−’) means that it has at least (resp. at most) i neighbors.
Note that the white vertices may coincide with other vertices.

A constraint of a vertex u is an already colored vertex that is adjacent to or has a common neighbor
with u. Two constraints with the same color count as one.

Given a vertex u, the neighborhood N(u) is the set of vertices that are adjacent to u. For p ≥ 1, a
p-link x − a1 − · · · − ap − y between x and y is a path such that d(a1) = · · · = d(ap) = 2. When a
p-link exists between two vertices x and y, we say they are p-linked. Given a subset X and a vertex u,
we denote by dX (u) the number of neighbors of u in X , regardless of whether u belongs to X . Given a
subset X , we informally refer to the set of vertices adjacent to at least one vertex in X by ’’the neighbors
of X ’’.

2.2. Forbidden configurations

We define configurations (C1)–(C3) (see Fig. 3).
• (C1) is a vertex u of degree 0 or 1.
• (C2) is a vertex w1 of degree at most k − 1 that is 2-linked (through w1-u1-u2-w2) to a vertex w2

of degree at most k − 2.
• (C3) is a vertex u with 3 ≤ d(u) ≤ M that is 1-linked (through u-vi-wi) to (d(u) − 2) vertices

(wi)1≤i≤d(u)−2 of degree at mostM , and such that the sum of the degrees of its two other neighbors
x and y is at most k − M + 2.

Lemma 2. Graph G cannot contain any of Configurations (C1)–(C3).
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Proof. WeassumeG contains a configuration, apply theminimality to color a subgraph ofG, and prove
this coloring can be extended to the whole graph, a contradiction.

Claim 1. G cannot contain (C1).

Proof. Using theminimality of G, we color G\{u}. Since∆(G) ≤ k, and d(u) ≤ 1, vertex u has at most
k constraints. There are k + 1 colors, so the coloring of G \ {u} can be extended to G. �

Claim 2. G cannot contain (C2).

Proof. Using theminimality ofG, we colorG\{u1, u2}. The vertex u1 has atmost |{w2}|+d(w1) ≤ 1+

(k−1) ≤ k constraints. Hencewe can color u1. Then u2 has atmost |{w1, u1}|+d(w2) ≤ 2+(k−2) ≤ k
constraints, so we can extend the coloring of G \ {u1, u2} to G. �

Claim 3. G cannot contain (C3).

Proof. Using theminimality of G, we color G\{v1, . . . , vd(u)−2}. We did not delete u in order to obtain
a coloring where x and y receive different colors, but u might have the same color as some wi, so it
needs to be recolored. The vertex u has at most M − 2 + d(x) + d(y) ≤ k constraints, hence we
can recolor u. Then every vi has at most M + M ≤ k constraints, so we can extend the coloring of
G \ {v1, . . . , vd(u)−2} to G. �

This concludes the proof of Lemma 2. �

2.3. Global structure

We define three sets V1, V2 and T that will outline some global structure on G. We build step-by-
step the set V1 as follows.

Any vertex u of degree at most M − 1 belongs to V1 if it has d(u) − 1 neighbors v1, . . . , vd(u)−1
of degree 2 whose other neighbors w1, . . . , wd(u)−1 are of degree at most M − 1, and at most one of
{w1, . . . , wd(u)−1} does not belong to V1.

Thus, at first, the only vertices in V1 are those of degree 2 which are adjacent to a vertex of degree
2 whose other neighbor is of degree at most M − 1. Note that the set is well-defined as a vertex that
satisfies at some point the requirements to be in V1 will always satisfy them, and the order in which
vertices are declared to be in V1 has absolutely no influence on the set V1 as it is when nomore vertex
can be added (equivalently, when all the vertices satisfying the requirements are already in V1).

As for V2, any vertex u of degree at most M − 1 belongs to V2 if it has d(u) − 1 neighbors
v1, . . . , vd(u)−1 of degree 2 whose other neighbors w1, . . . , wd(u)−1 are of degree at most M − 1, and
all of {w1, . . . , wd(u)−1} belong to V1. Note that V2 is a subset of V1.

We define T as the set of vertices of degree 2whose both neighbors are in V1. See Fig. 4 for examples
of vertices in V1, V2 or T . In the figures, we denote by a label V1 (resp. V2, T ) the fact that a vertex
belongs to V1 (resp. V2, T ). Similarly, we denote by a label ¬V1 a vertex that does not belong to V1.
Since V2 ⊂ V1, we omit the label V1 on vertices labeled V2.

Lemma 3. The vertices of V1 satisfy the following:

• Every vertex of V1 has exactly one neighbor of degree at least k − M.
• The set V1 is a stable set.
• The sets V1 and T are disjoint.

Proof. Assume by contradiction that a vertex u of V1 has no neighbor of degree at least k − M . Then
u is adjacent to d(u) − 1 vertices v1, . . . , vd(u)−1 of degree 2 whose other neighbors are of degree at
mostM − 1, and to another vertex w of degree at most k−M − 1. We consider two cases depending
on whether d(u) = 2.

• If d(u) = 2, then the other neighbor of v1 is a vertex of degree at most M − 1 ≤ k − 1 that is
2-linked to w, which is a vertex of degree at most k − M − 1 ≤ k − 2. By Claim 2 in Lemma 2,
Configuration (C2) is not contained in G, a contradiction.
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Fig. 4. Examples of vertices in V1 , V2 or T .

• If d(u) ≥ 3, then u is a vertex with 3 ≤ d(u) ≤ M − 1 ≤ M that is 1-linked (through vi, for
1 ≤ i ≤ d(u) − 2) to d(u) − 2 vertices of degree at mostM − 1 ≤ M , and such that the sum of the
degrees of its two other neighbors w and vd(u)−1 is at most k−M − 1+ 2 ≤ k−M + 2. By Claim 3
in Lemma 2, Configuration (C3) is not contained in G, a contradiction.

Therefore every vertex u of V1 has a neighbor of degree at least k − M . By the definition of V1, all the
other neighbors of u are of degree 2. Thus u has a unique neighbor of degree at most k − M .

Since k ≥ 2M then k − M > M − 1 and vertex u has no neighbor v of degree 3 ≤ d(v) ≤ M − 1.
Consequently, two vertices u, v of V1 that are adjacent must both be of degree 2. By definition of V1,
the other neighbors of u and v must be of degree at most M − 1, a contradiction. It follows that V1 is
a stable set in G and thus T ∩ V1 = ∅. �

Any connected component C ofG[V1∪T ] is aweak component of G if every vertex belongs to V2 or T
(in other words, if no vertex of C belongs to V1 and not to V2). The only apparent weak components on
Fig. 4 are encircled. The strength of a component of G[V1∪T ] is the number of vertices of V1 it contains.
Let Cw be the set of weak components of G of strength less than 1

ϵ
. Let Sw be the set of vertices of V2

that belong to an element of Cw . Let U be the set of vertices of degree at least k − M with a neighbor
in Sw .

We first need the following two results.

Theorem 2 ([9], Theorem 3). For any bipartite multigraph G, if L is a color assignment such that ∀(u, v) ∈

E, |L(u, v)| ≥ max(d(u), d(v)), then G is L-edge-choosable.

Lemma 4. Let H be a bipartite multigraph with vertex set V (H) = A∪B, and A ≠ ∅, B ≠ ∅. For α > 0, if
for every subset B′

⊆ B and A′
= N(B′) ⊆ A, there exists a vertex u ∈ A′ with dB′(u) < α, then α|A| > |B|.

Proof. By induction on |B|. If |B| < α, since |A| ≥ 1, the conclusion holds. If |B| ≥ α, there exists
u ∈ Awith d(u) < α. We apply the induction hypothesis to the graph H \ ({u} ∪N(u)). It follows that
α(|A| − 1) > |B| − α, hence the result. �

Lemma 5. The graph G satisfies |Cw| ≤
1
ϵ

× |{v ∈ V | dG(v) ≥ k − M}|.

Proof. Assume by contradiction that |Cw| > 1
ϵ

× |{v ∈ V | d(v) ≥ k − M}|.
Recall that by Lemma 3, every vertex of Sw ⊆ V1 has a unique neighbor in U . Let D be the bipartite

multigraph whose vertex set is V (D) = U ∪ Cw , and whose edge set is in bijection with Sw: for every
element v ∈ Sw , we add an edge (u, w), where u is the element ofU adjacent to v andw is the element
of Cw to which v belongs.

For A = {v ∈ V | d(v) ≥ k − M}, B = Cw and α =
1
ϵ
, we have |B| > α|A|. So by Lemma 4, there is

a subset C ′
w of Cw such that, for U ′ the neighbors of C ′

w in U , the subgraph D′ induced in D by C ′
w ∪ U ′

satisfies ∀u ∈ U ′, dD′(u) ≥
1
ϵ
.
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Fig. 5. Discharging rules R1 , R2 , and R3 for Theorem 1.

Let S ′
w (resp. T ′) be the set of vertices of Sw (resp. T ) that belong to an element of C ′

w .
We color by minimality G \ (S ′

w ∪ T ′). Note that every vertex v of S ′
w , belonging to V2, is adjacent to

exactly one vertex u of degree at least k−M , and that all its other neighbors v1, . . . , vd(u)−1 are vertices
of T whose other neighbors w1, . . . , wd(u)−1 are in V1. Since the element C of C ′

w ⊆ Cw to which v
belongs is a connected component of G[V1 ∪ T ], all the vi’s and wi’s belong to C ∈ C ′

w . Consequently,
for every i, we have vi ∈ T ′ and wi ∈ S ′

w . Thus v has at most k + 1 − dD′(u) constraints, hence v has
at least dD′(u) colors available. To color the vertices of S ′

w , it is sufficient to list-color the edges of D′,
where every edge is assigned the same list of colors as the vertex of S ′

w it is in bijection with.
By definition of Cw and since C ′

w ⊆ Cw , every element of C ′
w contains at most 1

ϵ
vertices of V2, so

it has degree at most 1
ϵ
in D thus in D′. Moreover, every vertex of U ′ has degree at least 1

ϵ
in D′. Thus

for every edge (u, v) of D′, with u ∈ U and v ∈ C ′
w , we have max(dD′(u), dD′(v)) = dD′(u). So D′ is a

bipartite multigraph whose every edge has a list assignment of size at least max(dD′(u), dD′(v)). We
apply Theorem 2 to color the vertices of S ′

w .
It then remains to color the vertices of T ′. These are vertices of degree 2 whose both neighbors are

in S ′
w . But all the vertices of S ′

w are of degree at most M . So the vertices of T ′ have at most 2 × M ≤ k
constraints, and we can color the vertices of T ′, a contradiction. �

2.4. Discharging rules

We introduce four discharging rules R1, R2, R3 and Rg (‘g ’ stands for ‘global’), as follows (see Fig. 5).
Wewill use them in the casewhere the initialweight of a vertex v is d(v)−3+ϵ. Theweight of a subset
of vertices is the sumof theweights of the vertices it contains. During the discharging process, a subset
of vertices (here, a weak component) may receive some charge: the question of which vertices in that
subset actually receive this charge is of no importance. Indeed, we later consider only the weight of
the component, and do not care for the details inside.

Here each connected component ofG[T∪V1] (and in particular eachweak component ofG) behaves
as a single entity. For any vertex x,

• Rule R1 is when d(x) = 2 and its two neighbors a and b are such that d(a) = 2 and d(b) ≥ M , and
the other neighbor c of a is not in V1. Then x gives ϵ

2 to a.
• Rule R2 is when 3 ≤ d(x) ≤ M − 1 and x ∉ V1. If x has a neighbor a of degree 2 whose other

neighbor is y,
– Rule R2.1 is when d(y) = 2. Then x gives 1 −

3ϵ
2 to a.

– Rule R2.2 is when 3 ≤ d(y) < M . If y ∉ V1, then x gives 1−ϵ
2 to a. If y ∈ V1, then x gives 1− ϵ to a.

• Rule R3 is whenM ≤ d(x). Then x gives 1 −
ϵ
2 to each of its neighbors.

• Rule Rg states that every vertex of degree at least k−M gives an additional 1
ϵ
to an initially empty

common pot, and every weak component of G of strength less than 1
ϵ
receives 1 from this pot.
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We use these discharging rules to prove the following lemma:

Lemma 6. Graph G satisfiesmad(G) ≥ 3 − ϵ.

Proof. We attribute to each vertex v a weight equal to d(v) − 3 + ϵ, and apply discharging rules R1,
R2, R3 and Rg . We show that all the vertices of G \ (T ∪ V1) have a non-negative weight in the end, and
that each connected component of G[T ∪ V1] has a non-negative total weight.

By Lemma 5, the common pot has a non-negative value, and Rule Rg is valid.
Let x be a vertex of G \ (T ∪ V1). By Configuration (C1), we have d(x) ≥ 2.

1. d(x) = 2.
The vertex x has an initial weight of −1 + ϵ. We prove that it receives at least 1 − ϵ. Let u1 and
u2 be its two neighbors. We consider two cases depending on whether one of them is of degree at
least M .
(a) d(u1) ≥ M or d(u2) ≥ M .

Consider w.l.o.g. that d(u1) ≥ M . By R3, vertex u1 gives 1−
ϵ
2 to x. The vertex x gives at most ϵ

2
to u2 by R1. So x receives at least 1 − ϵ.

(b) d(u1) < M and d(u2) < M .
Assume that u1 or u2 is of degree 2. Consider w.l.o.g. that d(u1) = 2. Then u1 belongs to V1 by
definition, and the other neighbor of u1 is of degree at least M . Since u1 ∈ V1 and x ∉ T , then
u2 ∉ V1 and we haveM ≥ d(u2) ≥ 3. By R1 and R2.1, vertex u1 gives ϵ

2 to x, and u2 gives 1−
3ϵ
2 .

So x receives 1− ϵ and gives no weight away. If both u1 and u2 have degree at least three, then
since x ∉ T , at most one of u1 and u2 is in V1 and R2.2 applies. So vertices u1 and u2 give a total
of 1 − ϵ to x, and x gives no weight away.

2. 3 ≤ d(x) ≤ M − 1.
The vertex x has an initial weight of d(x)−3+ ϵ ≥ ϵ. Let u1, . . . , uq denote its neighbors of degree
2whose other neighbor is of degree atmostM−1, where u1, . . . , up denote its neighbors of degree
2 whose other neighbor belongs to V1 (note that pmay be equal to 0 when x has no such neighbor,
and that qmay be equal to p). We consider two cases depending on q.
(a) q ≤ d(x) − 3.

Then x gives at most (d(x) − 3) × (1 − ϵ) ≤ d(x) − 3 + ϵ by R2.
(b) q ≥ d(x) − 2.

Then, by Configuration (C3), vertex x has a neighbor v with d(v) ≥
k−M+2

2 ≥ M (recall that
k ≥ 3 × M). By Rule R3, vertex x receives 1 −

ϵ
2 from v. We consider two cases depending on

p.
i. p ≤ d(x)−3. By Rule R2, x gives atmost (d(x)−3)×(1−ϵ)+2×

1−ϵ
2 ≤ d(x)−3+ϵ+(1−

ϵ
2 ).

ii. p ≥ d(x) − 2. Since x ∉ V1, we have p = q = d(x) − 2. By Rule R2, x gives at most
(d(x) − 2) × (1 − ϵ) ≤ d(x) − 3 + ϵ + (1 −

ϵ
2 ).

3. M ≤ d(x) ≤ k − M − 1.
By Rule R3, vertex x gives at most d(x) × (1 −

ϵ
2 ). SinceM =

6
ϵ
, we have d(x) ×

ϵ
2 ≥ 3 ≥ 3 − ϵ, so

x has a non-negative final weight.
4. k − M ≤ d(x).

By Rules R3 and Rg , vertex x gives at most 1
ϵ

+ d(x) × (1 −
ϵ
2 ). Since k ≥

3
ϵ2
, M =

6
ϵ
and ϵ ≤

1
20 ,

we have d(x) ×
ϵ
2 ≥ ( 3

ϵ2
−

6
ϵ
) ×

ϵ
2 =

3
2ϵ − 3 ≥

1
ϵ

+ 10 − 3 ≥
1
ϵ

+ 3 − ϵ, so x has a non-negative
final weight.

Therefore, every vertex of G \ (T ∪ V1) has a non-negative final weight. It remains to consider
vertices of G[T ∪ V1]. Let C be a connected component of G[T ∪ V1]. Let s be the strength of C . Note
that s ≥ 1.

If s = 1, then C consists of a single vertex u of degree 2 in G and that is adjacent to a vertex v of
degree at least k − M and 1-linked to a vertex w of degree less than M . Thus, by R1 and R3, vertex u
has an initial weight of −1+ ϵ, receives 1−

ϵ
2 from v, and gives ϵ

2 to its neighbor of degree 2: its final
weight is 0. We assume from now on that s ≥ 2.

No vertex of C gives weight. Indeed, a vertex of C can only send charge according to R1 since all
the other rules are for vertices of degree at least M or vertices of degree at least 3 but not in V1. If a
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vertex x of C sends some charge according to R1, then d(x) = 2 and its two neighbors a and b are such
that d(b) ≥ M and d(a) = 2, where the other neighbor c of a is not in V1. Since d(b) ≥ M , we have
b ∉ V1 and x ∉ T , so x ∈ V1. Then, since V1 is a stable set by Lemma 3, we have a ∉ V1, and s = 1, a
contradiction with our assumption.

We denote by N(C) the set of vertices that do not belong to C but are adjacent to a vertex in
C . Since every vertex in C ∩ V1 has a neighbor of degree at least k − M (thus not in C), and the
vertices in C ∩ V1 that are not in V2 have a neighbor of degree 2 < k − M that is not in C , we have

v∈V1∩C dN(C)(v) ≥ s+ |C ∩ (V1 \ V2)|. Also, every vertex u in C ∩ V1 receives 1−
ϵ
2 from its neighbor

of degree at least k − M . Thus the weightW of C (without taking Rg into account) is as follows.

W ≥


v∈C

(d(v) − 3 + ϵ) + s ×


1 −

ϵ

2


≥


v∈T∩C

(d(v) − 3 + ϵ) +


v∈V1∩C

(d(v) − 3 + ϵ) + s ×


1 −

ϵ

2


≥


v∈T∩C

(−1 + ϵ) +


v∈V1∩C

dC (v) +


v∈V1∩C

dN(C)(v) +


v∈V1∩C

(−3 + ϵ) + s ×


1 −

ϵ

2


≥


v∈T∩C

(−1 + ϵ) +


v∈V1∩C

dC (v) + (s + |C ∩ (V1 \ V2)|) + s × (−3 + ϵ) + s ×


1 −

ϵ

2


.

Remember that the vertex set of C is the union of V1 ∩ C and T ∩ C , which are stable sets. Also, the
two neighbors of a vertex in T belong to C , so


v∈V1∩C dC (v) =


v∈T∩C dC (v) = 2|T ∩ C |. Since C is

a connected component, we have |T ∩ C | ≥ |V ∩ C | − 1 = s − 1. Then,

W ≥ |T ∩ C | × (−1 + ϵ) + 2|T ∩ C | + |N(C) \ U| + s ×


−1 +

ϵ

2


≥


−1 − ϵ +

3ϵs
2


+ |N(C) \ U|.

We consider three cases depending on whether C is weak and s < 1
ϵ
.

1. C is a weak component of G and s < 1
ϵ
.

By Rg , component C receives an extra weight of 1. Thus, its final weight is 1+W ≥ 1+ (−1− ϵ +
3ϵs
2 ) = −ϵ +

3ϵs
2 > 0.

2. C is a weak component of G and s ≥
1
ϵ
.

Then the final weight of C is W ≥ −1 − ϵ +
3ϵs
2 ≥ −1 − ϵ +

3ϵ
2×ϵ

≥ 0.
3. C is not a weak component of G.

There is at least a vertex v in (V1∩C)\V2. Then the final weight of C isW ≥ (−1−ϵ+
3ϵs
2 )+1 ≥ 0.

Consequently, after application of the discharging rules, every vertex v of G \ {V1 ∪ T } has a non-
negative final weight, and every connected component C of G[V1 ∪ T ] has a non-negative final total
weight, meaning that


v∈G(d(v) − 3+ ϵ) ≥ 0. Therefore, mad(G) ≥ 3− ϵ. This completes the proof

of Lemma 6, and thus of Theorem 1. �

3. List injective coloring

A list injective k-coloring of a graph is a (not necessarily proper) list k-coloring of its vertices such
that two verticeswith a commonneighbor are of different color, or, in otherwords, such that no vertex
has twoneighborswith the same color.We denote byχ i

ℓ(G) theminimum k such that a graphG admits
a list injective k-coloring. Note that the proof for Theorem 1 also work, with close to no alteration, for
list injective coloringwith one color less. Indeed, the discharging part does not depend on the problem
considered, and the configuration part can easily be checked to work also for this as, though one less
color is available, every critical vertex has at least one less constraint since already colored neighbors
do not count anymore. There is no reason to think that this would be the case for any discharging
proof about list coloring of the square, but it happens to be the case most often.
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We thus obtain the following theorem.

Theorem 3. There exists a function f such that for any ϵ > 0, every graph G with mad(G) < 3 − ϵ and
∆(G) ≥ f (ϵ) satisfies χ i

ℓ(G) = ∆(G).

Theorem 3 is optimal in the same sense as Theorem 1 by the graph family described in Fig. 1.

4. Conclusion

For any C ≥ 1, we asked for the supremum M(C) such that any graph G with mad(G) < M(C)
and sufficiently large ∆(G) (depending only on mad(G)) satisfies χ2

ℓ (G) ≤ ∆(G) + C . It was already
known [3] that limC→∞ M(C) = 4. We proved here that M(1) = 3, and conjectured that M(C) =
4C+2
C+1 .

It might be a good approach to try, for every fixed C , to adapt the same proof outline. However,
rather than prove incremental results, it would be more interesting to look for a general proof that
would work for every C , or maybe only for every large enough C .

The proof that limC→∞ M(C) = 4 [3] is quite short and simple. However, finding the exact value
of M(C) might still be difficult for large C . Indeed, the proof does not even involve lower bounds on
∆(G).

This leads to a similar question (with no constraint on ∆(G)).

Question 2. What is, for any C ≥ 1, the maximum m(C) such that any graph G with mad(G) < m(C)
satisfies χ2

ℓ (G) ≤ ∆(G) + C?

Obviously, we have m(C) ≤ M(C) < 4 for every C . Our proof that limC→∞ M(C) = 4 was
actually a proof that limC→∞ m(C) = 4. Note that m(1) = m(2) = 2, as a cycle C5 of length five
has mad(C5) = 2, ∆(C5) = 2 and χ2(C5) = 5, while any graph G with mad(G) < 2 is a forest and
thus satisfies χ2

ℓ (G) = ∆(G) + 1. So there is a significant gap for C = 1, 2. What about general C?
Does there exist some C for whichm(C) = M(C)?
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