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a b s t r a c t

Wegive here new lower bounds on the size of a largest induced forest in planar graphswith
high girth. This is equivalent to upper bounds on the size of a smallest feedback vertex set.
In particular, we prove that a planar graphwith girth g and sizem has a feedback vertex set
of size atmost 4m

3g , improving the trivial bound of 2m
g . We also prove that every 2-connected

graph with maximum degree 3 and order n has a feedback vertex set of size at most n+2
3 .

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In this article we only consider finite simple graphs.
Let G be a graph. A feedback vertex set or decycling set S of G is a subset of the vertices of G such that removing the vertices

of S from G yields an acyclic graph. Thus S is a feedback vertex set of G if and only if the graph induced by V (G)\S in G is an
induced forest of G. The feedback vertex set decision problem (given a graph G and an integer k, decide whether there is
a decycling set of G of size k) is known to be NP-complete, even restricted to the case of planar graphs, bipartite graphs or
perfect graphs [10]. It is thus legitimate to seek bounds for the size of a decycling set or an induced forest. The smallest size
of a decycling set of G is called the decycling number of G, and the highest order of an induced forest of G is called the forest
number of G, denoted respectively by φ(G) and a(G). Note that the sum of the decycling number and the forest number of G
is equal to the order of G (i.e. |V (G)| = a(G) + φ(G)).

Mainly, the community focuses on the following challenging conjecture due to Albertson and Berman [2]:

Conjecture 1 (Albertson and Berman [2]). Every planar graph G of order n admits an induced forest of order at least n
2 , that is

a(G) ≥
n
2 .

Conjecture 1, if true, would be tight (for n ≥ 3 multiple of 4) because of the disjoint union of complete graphs on four
vertices (Akiyama and Watanabe [1] gave examples showing that the conjecture differs from the optimal by at most one
half for all n), and would imply that every planar graph has an independent set on at least a quarter of its vertices, the only

✩ This research was partially supported by ANR EGOS project, under contract ANR-12-JS02-002-01.
∗ Corresponding author.

E-mail addresses: francois.dross@ens-lyon.fr (F. Dross), mickael.montassier@lirmm.fr (M. Montassier), alexandre.pinlou@lirmm.fr (A. Pinlou).

http://dx.doi.org/10.1016/j.dam.2016.06.011
0166-218X/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2016.06.011
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2016.06.011&domain=pdf
mailto:francois.dross@ens-lyon.fr
mailto:mickael.montassier@lirmm.fr
mailto:alexandre.pinlou@lirmm.fr
http://dx.doi.org/10.1016/j.dam.2016.06.011


100 F. Dross et al. / Discrete Applied Mathematics 214 (2016) 99–107

Fig. 1. An outerplanar graph Gwith a(G) =
2|V (G)|

3 .

Fig. 2. The cube Q admits an induced forest on five of its vertices, but no induced forest on six or more of its vertices, i.e. a(Q ) = 5.

known proof of which relies on the Four-Color Theorem. The best known lower bound to date for the forest number of a
planar graph is due to Borodin and is a consequence of the acyclic 5-colorability of planar graphs [6].We recall that an acyclic
k-coloring is a proper vertex coloring using k colors such that the graph induced by the vertices of any two color classes is a
forest. From Borodin’s result one can obtain the following theorem:

Theorem 2 (Borodin [6]). Every planar graph of order n admits an induced forest of order at least 2n
5 .

Hosono [9] showed the following theorem and showed that the bound is tight.

Theorem 3 (Hosono [9]). Every outerplanar graph of order n admits an induced forest of order at least 2n
3 .

The tightness of the bound is shown by the example in Fig. 1.
Akiyama and Watanabe [1], and Albertson and Haas [3] independently raised the following conjecture:

Conjecture 4 (AkiyamaandWatanabe [1], and Albertson andHaas [3]). Every bipartite planar graph of order n admits an induced
forest of order at least 5n

8 .

This conjecture, if true, would be tight for n multiple of 8: for example, if G is the disjoint union of k cubes, then we
have a(G) = 5k and G has order 8k (see Fig. 2). Motivated by Conjecture 4, Alon [4] proved the following theorem using
probabilistic methods:

Theorem 5 (Alon [4]). There exist some absolute constants b > 0 and b′ > 0 such that:

• For every bipartite graph G with n vertices and average degree at most d (≥1), a(G) ≥ ( 1
2 + e−bd2)n.

• For every d ≥ 1 and all sufficiently large n, there exists a bipartite graph with n vertices and average degree at most d such
that a(G) ≤ ( 1

2 + e−b′
√
d)n.

The lower bound was later improved by Conlon et al. [7] to a(G) ≥ (1/2 + e−b′′d)n for a constant b′′.
Conjecture 4 also led to research on lower bounds of the forest number of triangle-free planar graphs (as a superclass of

bipartite planar graphs). Alon et al. [5] proved the following theorem and a corollary:

Theorem 6 (Alon et al. [5]). Every triangle-free graph of order n and size m admits an induced forest of order at least n −
m
4 .

Corollary 7 (Alon et al. [5]). Every triangle-free cubic graph of order n admits an induced forest of order at least 5n
8 .

Theorem 6 is tight because of the union of cycles of length 4.
The girth of a graph is the length of a shortest cycle. A forest has infinite girth. In a planar graph with girth at least g ,

order n, and size m with at least one cycle, the number of faces is at most 2m/g (since all the faces’ boundaries have length
at least g). Then, by Euler’s formula, 2m/g ≥ m− n+ 2, and thusm ≤ (g/(g − 2))(n− 2). In particular, triangle-free planar
graphs of order n ≥ 3 have size at most 2n− 4. As a consequence of Theorem 6, for a triangle-free planar graph G of order n,
a(G) ≥ n/2. Salavatipour proved a better lower bound [13]: a(G) ≥

17n+24
32 . In a companion paper, the authors strengthen

this bound as follows:

Theorem 8 ([8]). Every triangle-free planar graph of order n ≥ 1 admits an induced forest of order at least 6n+7
11 .
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Fig. 3. The dodecahedron D admits an induced forest on fourteen of its vertices, but no induced forest on fifteen or more of its vertices, i.e. a(D) = 14.

Fig. 4. Examples showing that Conjecture 12 does not extend to non-planar graphs for g = 5, 6, 7.

Kowalik et al. [11] made the following conjecture on planar graphs of girth at least 5:

Conjecture 9 (Kowalik et al. [11]). Every planar graph with girth at least 5 and order n admits an induced forest of order at least
7n/10.

This conjecture, if true, would be tight for n multiple of 20, as shown by the example of the union of dodecahedrons,
given by Kowalik et al. [11] (see Fig. 3).

A first step toward Conjecture 9 was done in a companion paper [8]; moreover a generalization for higher girth was
given:

Theorem 10 ([8]). Every planar graph with girth at least 5 and order n ≥ 1 admits an induced forest of order at least 44n+50
69 .

Theorem 11 ([8]). Every planar graph with girth at least g ≥ 5 and order n ≥ 1 admits an induced forest of order at least
n −

(5n−10)g
23(g−2) .

For planar graphs with given girth, we conjecture the following:

Conjecture 12. Let G be a planar graph of size m and girth g. There exists a feedback vertex set S of G of size at most m
g .

Note that Conjecture 12 is true for g = 4 even for non-planar graphs by Theorem 6. However, it is false for non-planar
graphs for g = 5, 6, 7, as shown in Fig. 4. If Conjecture 12 is true, then it is tight for m multiple of g due to the union of
disjoint cycles of length g . It is easy to prove that G admits a feedback vertex set of size at most 2m

g (removing a vertex that
is in the boundary of at least two faces decreases the number of faces by one, and this can be applied recursively).

The main result of this paper is a first non-trivial step toward Conjecture 12:

Theorem 13. Let G be a planar graph of size m and girth g. There exists a feedback vertex set S of G of size at most 4m
3g .

Theorem 13 is the best result so far for g ≥ 7, and gives a(G) ≥
(3g−10)n+8

3(g−2) using m ≤ (n − 2) g
g−2 (Theorem 11 is better

for g = 6). We summarize the previous results in Table 1.
For comparison, Speekenmeyer [14] proved that every subcubic connected (but not necessarily planar) graph of size m

and girth g has a feedback vertex set of size at most g+1
6g−3m+

g−1
2g−1 . Liu and Zhao [12] improved this bound to g

6(g−1)m+
g−3
2g−2

for most graphs of this class.
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Table 1
Lower bounds on the forest numbers for planar graphs with
given girth.

Planar graph with girth g Forest number

4 6n+7
11

5 44n+50
69

6 31n+30
46

g ≥ 7 (3g−10)n+8
3(g−2)

Theorem 13 will be proven in Section 3. For this, we will use Theorem 14 (proven in Section 2) that is of independent
interest. Let C2,3− be the family of 2-connected graphs of maximum degree at most 3. Note that graphs in C2,3− need not be
planar.

Theorem 14. Every graph in C2,3− of order n has a feedback vertex set of size at most n+2
3 .

Theorem 14 is tight for the complete graph on 4 vertices. Moreover, consider any 3-regular graph G, and consider the
graph H obtained from G by replacing each vertex by a triangle (as the cube connected cycles obtained from the hypercube).
Graph H has 3|V (G)| vertices, and cannot have a feedback vertex set of less than |V (G)| vertices, since a feedback vertex set
of H contains at least one vertex of each added triangle. Hence there is a graph of order n without a feedback vertex set of
size less than n

3 for an arbitrary large n.
Finally, if we replace the 2-connectedness condition by simply connected, then 3n

8 +
1
4 becomes a tight bound [5]. One

can observe that without connectedness condition, the disjoint union of complete graphs on four vertices has a smallest
feedback vertex set of size n

2 .
Notation. Consider a graph G = (V , E). For a set S ⊆ V , let G − S be the graph obtained from G by removing the vertices of
S and all the edges that are incident to a vertex of S. If x ∈ V , then we denote G − {x} by G − x. For a set S of vertices such
that S ∩ V = ∅, let G + S be the graph constructed from G by adding the vertices of S. If x ∉ V , then we denote G + {x}
by G + x. For a set F of pairs of vertices of G such that F ∩ E = ∅, let G + F be the graph constructed from G by adding the
edges of F . If e is a pair of vertices of G and e ∉ E, then we denote G+ {e} by G+ e. For a setW ⊆ V , we denote by G[W ] the
subgraph of G induced by W . We call a vertex of degree d, at least d, and at most d, a d-vertex, a d+-vertex, and a d−-vertex
respectively. Similarly, we call a cycle of length ℓ, at least ℓ, and at most ℓ a ℓ-cycle, a ℓ+-cycle, and a ℓ−-cycle respectively,
and by extension a face of length ℓ, at least ℓ, and at most ℓ a ℓ-face, a ℓ+-face, and a ℓ−-face respectively. For a face f of a
plane graph G, we denote the boundary of f by G[f ]. We say that two faces are adjacent if their boundaries share (at least) an
edge. We say that two cycles are adjacent if they share at least an edge. An edge cut-set of a graph G is a minimal set of edges
F such that G\F is disconnected. If an edge cut-set is a singleton, then its element is a cut edge. A vertex cut-set of a graph G
is a set X of vertices of G such that G\X is disconnected. If a vertex cut-set is a singleton, then its element is a cut vertex.

2. Proof of Theorem 14

We recall that G = (V , E) is called k-connected if |V | > k and G − X is connected for every set X ⊆ V with |X | < k. Also
G = (V , E) is called k-edge connected if |V | > 1 and the deletion of any set of at most (k − 1) edges leads to a connected
graph.

Let us consider H = (V , E) a counter-example to Theorem 14 of minimum order, and let n = |V | ≥ 3 be the order of H .
Let us prove some lemmas on the structure of H .

Lemma 15. Graph H is cubic.

Proof. Suppose there is a vertex v of degree at most 2 in H . As H is 2-connected, v has degree 2. Let u and w be the two
neighbors of v in H . Suppose uw ∉ E. Let H ′

= H − v + uw. Since u and w have degree at least 2 (H is 2-connected),
|V (H ′)| ≥ 3. Then graphH ′ is inC2,3− sinceH is. Byminimality ofH ,H ′ has a feedback vertex set S of size |S| ≤

n−1+2
3 ≤

n+2
3 ,

and S is also a feedback vertex set of H , a contradiction. Therefore uw ∈ E. If both u and w have degree 2, then H = C3 and
H admits a feedback vertex set of size 1 ≤

n+2
3 =

5
3 , a contradiction. If one of u and w has degree 2 and the other one has

degree 3, then H is not 2-connected, a contradiction. Therefore both u and w have degree 3. Note that more generally, we
proved that there are no two adjacent vertices of degree 2 in H . Let u′ and w′ be the third neighbors of u and w respectively.
If u′

= w′, then V = {u, v, w, u′
} (H is 2-connected), and H admits a feedback vertex set of size 1 ≤

n+2
3 = 2 ({u} for

example), a contradiction. Thus u′ and w′ are distinct. Suppose u′w′
∈ E. Let H ′

= H − {u, v, w}. If |V (H ′)| < 3, then u′ and
w′ are adjacent vertices of degree 2 in H and we fall into a previous case. Therefore |V (H ′)| ≥ 3. Then graph H ′ is in C2,3−

since H is. By minimality of H , H ′ has a feedback vertex set S ′ of size |S ′
| ≤

n−3+2
3 . The set S = S ′

∪ {u} is a feedback vertex
set of H of size |S| ≤

n−3+2
3 + 1 =

n+2
3 , a contradiction. Therefore u′w′

∉ E. Let H ′
= H − {u, v, w} + u′w′. Graph H ′ is in

C2,3− since H is. By minimality of H , H ′ has a feedback vertex set S ′ of size |S ′
| ≤

n−3+2
3 . The set S = S ′

∪ {u} is a feedback
vertex set of H of size |S| ≤

n−3+2
3 + 1 =

n+2
3 , a contradiction. �
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In the following, we will use the fact that H is cubic without referring to Lemma 15.

Lemma 16. There are no adjacent triangles in H.

Proof. Assume that there are two triangles xyz and xyz ′ sharing an edge xy in H . If zz ′
∈ E, then H = K4 (H is connected),

which contradicts the fact that H is a counter-example to Theorem 14. Therefore zz ′
∉ E. Let v be the neighbor of z distinct

from x and y. Observe that vz ′
∉ E, since H is cubic and 2-connected. Let H ′

= H − {x, y, z} + vz ′. Graph H ′ is in C2,3− since
H is. By minimality of H , H ′ has a feedback vertex set S ′ of size |S ′

| ≤
n−3+2

3 . The set S = S ′
∪ {x} is a feedback vertex set of

H of size |S| ≤
n−3+2

3 + 1 =
n+2
3 , a contradiction. �

Lemma 17. There is no triangle that shares an edge with a 4-cycle in H.

Proof. By Lemma 16, there is no triangle that shares two edges with a 4-cycle in H . Assume that there are a triangle xyw
and a 4-cycle vzxy that share the edge xy.

Suppose first that there is a vertex z ′ adjacent to v and w. If zz ′
∈ E, then V = {v, w, x, y, z, z ′

} (H is connected), i.e. H is
the prism, and {y, z} is a feedback vertex set ofH , thusH is not a counter-example to Theorem 14, a contradiction. Therefore
zz ′

∉ E. Let z ′′ be the third neighbor of z ′. Let H ′
= H − {x, w, y} + zz ′′. Graph H ′ is in C2,3− since H is. By minimality of

H , H ′ admits a feedback vertex set S ′ of size at most |S ′
| ≤

n−3+2
3 . The set S = S ′

∪ {y} is a feedback vertex set of H of size
|S| ≤

n−3+2
3 + 1 =

n+2
3 , a contradiction.

Therefore there is no vertex adjacent to v and w. Let w′ be the neighbor of w distinct from x and y. By Lemma 16,
w′

∉ {v, z}. Let H ′′
= H − {x, y, w} + vw′. Graph H ′′ is in C2,3− . By minimality of H , H ′′ admits a feedback vertex set

S ′′ of size at most |S ′′
| ≤

n−3+2
3 . The set S = S ′′

∪ {x} is a feedback vertex set of H of size |S| ≤
n−3+2

3 + 1 =
n+2
3 , a

contradiction. �

Lemma 18. There are no two 4-cycles that share two edges in H.

Proof. Let uvwx and vwxy be two 4-cycles of H . Let u′, w′ and y′ be the third neighbors of u, w and y respectively. By
Lemma 16, they are distinct from the vertices defined previously. If u′

= w′
= y′, then H = K3,3 admits a feedback vertex

set of size 2 ≤
6+2
3 =

n+2
3 (for example {u, y}), a contradiction.

Suppose u′
≠ w′

≠ y′
≠ u′. Let H ′

= H − {u, v, w, y} + {u′x, w′x, y′x}. If H ′ is not 2-connected, then w.l.o.g. x separates
u′ and w′ in H ′, and thus u separates u′ and w′ in H , a contradiction. Therefore H ′ is in C2,3− . By minimality of H , H ′ admits a
feedback vertex set S ′ of size atmost n−4+2

3 . The set S = S ′
∪{v} is a feedback vertex set ofH of size |S ′

|+1 ≤
n−4+2

3 +1 ≤
n+2
3 ,

a contradiction.
Thus w.l.o.g., u′

= y′
≠ w′. Let z be the neighbor of u′ distinct from u and y. Observe that z is distinct from w′ since H is

cubic and 2-connected. Let H ′
= H − {u, v, w, x, y, u′

} if zw′
∈ E and H ′

= H − {u, v, w, x, y, u′
} + zw′ otherwise. Graph

H ′ is in C2,3− since H is. By minimality of H , H ′ admits a feedback vertex set S ′ of size at most n−6+2
3 . The set S = S ′

∪ {v, x}
is a feedback vertex set of H of size |S ′

| + 2 ≤
n−6+2

3 + 2 ≤
n+2
3 , a contradiction. �

The following lemma is folklore, but here is a proof for the sake of completeness.

Lemma 19. For every k ∈ {1, 2, 3}, a graph with maximum degree at most 3 is k-connected if and only if it is k-edge-connected.

Proof. Let G be a graph with maximum degree at most 3. One can easily check that the result holds for the complete graph
on at most four vertices.

Suppose now that G is not complete. Let Cv be a vertex cut-set of G and Ce be a edge cut-set of G, both of minimum size.
If we show that |Cv| = |Ce|, then the lemma holds.

Let V1 and V2 be the vertex sets of the two connected components of G − Ce. We have V1 ∪ V2 = V (G). By minimality
of |Ce|, every edge of Ce has an endvertex in V1 and the other one in V2. Suppose every vertex of V1 is adjacent to every
vertex of V2 in G. We have |Ce| = |V1| |V2| ≥ |V1| + |V2| − 1 = |V (G)| − 1. Moreover, for any vertex in G, the set
of the edges incident to this vertex is an edge cut-set of G. Therefore, since G is not complete, by minimality of Ce,
|Ce| ≤ |V (G)| − 2, a contradiction. Therefore there are two vertices v1 ∈ V1 and v2 ∈ V2 such that v1v2 ∉ E(G). Let
C ′

v = {x ≠ v1|∃y ∈ V2, xy ∈ Ce} ∪ {y|v1y ∈ Ce}. Note that |C ′
v| = |{x ≠ v1|∃y ∈ V2, xy ∈ Ce}| + |{y|v1y ∈ Ce}| ≤ |Ce|.

For each edge in Ce, one of the endvertices of this edge is in C ′
v . As neither v1 nor v2 is in C ′

v , C
′
v separates v1 from v2 in G.

Therefore |Cv| ≤ |C ′
v|, and thus |Cv| ≤ |Ce|.

LetW1 andW2 be the vertex sets of two connected components of G−Cv . Let x ∈ Cv . Since x has degree at most 3, x has at
most one neighbor inW1 or at most one neighbor inW2, and it has at least one neighbor inW1 and one inW2 by minimality
of Cv . Let yx be the neighbor of x that is inW1 if there is only one neighbor of x inW1, and the neighbor of x inW2 otherwise,
and ex = xyx. Observe that this defines a unique edge ex for every x ∈ Cv . Let C ′

e = {ex|x ∈ Cv}. Assume C ′
e does not separate

W1 andW2. There are v1 ∈ W1 and v2 ∈ W2 such that there is a path P from v1 to v2 in H −C ′
e. Let us consider v1 and v2 such

that P has minimal length. Then there are w1 and w2 in Cv such that v1w1 ∈ E(P) and v2w2 ∈ E(P). If w1 = w2, then either
v1w1 ∈ C ′

e or v2w2 ∈ C ′
e, a contradiction. Ifw1 ≠ w2, thenw1 has a neighbor in V (G)\(W1 ∪W2), so it has only one neighbor

in W1, that is v1, so v1w1 ∈ C ′
e, a contradiction. Therefore C ′

e separates W1 and W2. We have |C ′
e| = |Cv|, thus |Ce| ≤ |Cv|.

Finally, since |Cv| ≤ |Ce|, |Cv| = |Ce|. �
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Lemma 20. Graph H is 3-connected.

Proof. Suppose by contradiction that H is not 3-connected. By Lemma 15, |V (H)| ≥ 4. By hypothesis and Lemma 19, H is
2-edge-connected but not 3-edge-connected. Let {e, f } be an edge cut-set of H that induces two connected components V1
and V2 such that |V1| is minimum.

We will now prove the two following properties:

• Pe: The deletion of any edge in H[V1] preserves the 2-edge connectivity of H .
By contradiction, suppose there is an edge e′ that has both of its endvertices in V1 such thatH−e′ is not 2-edge-connected
(but connected since H is 2-edge-connected). Let f ′ be a cut edge of H − e′. If f ′ has at least one of its endvertices in V1,
then one of the connected components ofH−{e′, f ′

} is strictly included in V1, a contradictionwith theminimality of |V1|.
Therefore, f ′ has both of its endvertices in V2. Neither e nor f is a cut edge of H − e′, otherwise we fall into the previous
case. Thus e′ is not a cut edge of H[V1]. In particular, there is a path in H\{f ′, e′

} that connects the two endvertices of e′.
However, e′ is a cut edge of H\f ′, a contradiction.

• Pv: For every vertex v in V1 that has all of its neighbors in V1, H − v is 2-edge-connected, and thus 2-connected by
Lemma 19.
Suppose there is a vertex v ∈ V1 that is not incident to an edge of {e, f } such that H − v is not 2-edge-connected. Let f ′

be a cut edge of H − v. As vertex v has degree 3, there is an edge e′ incident to v such that H − {e′, f ′
} is disconnected.

As v is not incident to an edge of {e, f }, e′ has both of its endvertices in V1, a contradiction with Pe.

Let v ∈ V1 and u ∈ V2 be the endpoints of e. Let w and x be the two neighbors of v distinct from u. Vertices w and x are
in V1, otherwise w.l.o.g. f = vw, and vx is a cut edge of H , a contradiction.

Let us show that wx ∉ E. By contradiction assume that wx ∈ E. Let w′ be the neighbor of w distinct from v and x, and
x′ be the neighbor of x distinct from v and w. By Lemmas 16 and 17, w′, x′ and u are distinct and pairwise not adjacent.
Moreover, if w′

∉ V1 or x′
∉ V1, say w′

∉ V1, then f = ww′, and thus xx′ is a cut edge of H , a contradiction. Hence v, w, x, w′

and x′ are all in V1, and thus, by Pv , H − w is 2-connected. Let H ′
= H − {v, w, x} + ux′. Graph H ′ is in C2,3− . By minimality

of H , H ′ admits a feedback vertex set S ′ of size at most n−3+2
3 . The set S = S ′

∪ {w} is a feedback vertex set of H of size
|S ′

| + 1 ≤
n−3+2

3 + 1 ≤
n+2
3 , a contradiction.

Let w0 and w1 be the two neighbors of w distinct from v. If w0 or w1 is in V2, say w0 ∈ V2, then ww0 = f , and {vx, ww1}

is an edge cut-set of H , contradicting the minimality of |V1|. Therefore w0 and w1 are in V1.
Let us show that w0w1 ∉ E. By contradiction assume that w0w1 ∈ E. Let w′

0 be the neighbor of w0 distinct from w and
w1, and w′

1 be the neighbor of w1 distinct from w and w0. By Lemmas 16 and 17, w′

0 and w′

1 are distinct and not adjacent.
Vertices v, w, w0 and w1 are all in V1, thus, by Pv , H − w is 2-connected. Let H ′

= H − {w, w0, w1} + w′

0w
′

1. Graph H ′ is in
C2,3− . By minimality of H , H ′ admits a feedback vertex set S ′ of size at most n−3+2

3 . The set S = S ′
∪ {w} is a feedback vertex

set of H of size |S ′
| + 1 ≤

n−3+2
3 + 1 ≤

n+2
3 , a contradiction.

Let w00 and w01 be the two neighbors of w0 distinct from w. Let us show that w00w01 ∉ E. By contradiction assume that
w00w01 ∈ E. By Lemma 17, w00, w01 ≠ x. Let w′

00 be the neighbor of w00 distinct from w0 and w01, and w′

01 be the neighbor
of w01 distinct from w0 and w00. By Lemmas 16 and 17, w′

00 and w′

01 are distinct and not adjacent. Suppose w00 or w01 is
in V2, say w00 ∈ V2. Then w0w00 = f , and e, f is not an edge cut-set of H (since w0w00w01 is a triangle), a contradiction.
Therefore w, w0, w00 and w01 are in V1, and thus, by Pv , H − w0 is 2-connected. Let H ′

= H − {w0, w00, w01} + w′

00w
′

01.
Graph H ′ is in C2,3− . By minimality of H , H ′ admits a feedback vertex set S ′ of size at most n−3+2

3 . The set S = S ′
∪ {w0} is a

feedback vertex set of H of size |S ′
| + 1 ≤

n−3+2
3 + 1 ≤

n+2
3 , a contradiction.

Letw10 andw11 be the twoneighbors ofw1 distinct fromw. By symmetry,w10w11 ∉ E. Suppose {w00, w01} = {w10, w11};
say w00 = w10 and w01 = w11. Lemma 18 leads to a contradiction. Therefore the pairs {w00, w01} and {w10, w11} are not
equal. As v, w, w0 and w1 are in V1, by Pv , H − w is 2-connected. Let H ′

= H − {w, w0, w1} + {w00w01, w10w11}. Graph H ′

is in C2,3− . By minimality of H , H ′ admits a feedback vertex set S ′ of size at most n−3+2
3 . The set S = S ′

∪ {w} is a feedback
vertex set of H of size |S ′

| + 1 ≤
n−3+2

3 + 1 ≤
n+2
3 , a contradiction, which completes the proof. �

Lemma 21. There is no triangle in H.

Proof. Suppose there is a triangle uvw in H . Let u′, v′ and w′ be the third neighbor of u, v and w respectively. By Lemmas 16
and 17, u′, v′ and w′ are distinct and non-adjacent. Let H ′

= H − {u, v, w} + u′v′. Observe that by Lemma 20, H − w is
2-connected. Therefore H ′ is in C2,3− . By minimality of H , H ′ admits a feedback vertex set S ′ of size at most n−3+2

3 . The set
S = S ′

∪ {w} is a feedback vertex set of H of size |S ′
| + 1 ≤

n−3+2
3 + 1 ≤

n+2
3 , a contradiction. �

Let v be a vertex of H , and x and y be two neighbors of v. They are not adjacent by Lemma 21. Let x0, x1, y0 and y1 the
two other neighbors of x and y respectively. Vertices x0 and x1 are not adjacent by Lemma 21, and similarly y0 and y1 are
not adjacent. The pairs {x0, x1} and {y0, y1} are distinct by Lemma 18. Let H ′

= H − {v, x, y} + {x0x1, y0y1}. By Lemma 20,
H ′ is in C2,3− . By minimality of H , H ′ admits a feedback vertex set S ′ of size at most n−3+2

3 . The set S = S ′
∪ {v} is a feedback

vertex set of H of size |S ′
| + 1 ≤

n−3+2
3 + 1 ≤

n+2
3 , a contradiction. That completes the proof of Theorem 14.
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3. Proof of Theorem 13

Let g ≥ 3 be a fixed integer. For G a planar graph, ω : E(G) → N a weight function, and F ⊆ E(G), we denote


e∈F ω(e)
by ω(F), and


e∈E(G) ω(e) by ω(G). We will prove the following claim:

Claim 22. Let G be a planar graph, and ω : E(G) → N a weight function such that for each cycle C of G, ω(C) ≥ g. There exists
a feedback vertex set S of G of size at most 4ω(G)

3g .

Observe that fixing ω constant equal to 1 in Claim 22 yields Theorem 13. Let us consider any embedding of the graph G
in the plane.

Let G be a 2-connected plane graph. Three faces f0, f1 and f2 of G are said to bemergeable if:

1. there exists a vertex v that is in the boundary of f0, f1 and f2.
2. w.l.o.g. f0 and f1 (resp f1 and f2) have at least one common edge in their boundary.

Given threemergeable faces f0, f1 and f2, themerge of f0, f1 and f2 consists in removing the edges belonging to the boundary
of two faces among f0, f1 and f2 as well as the vertices that end up being isolated. The common vertex v of f0, f1 and f2 is
called the crucial vertex of the merge. A merge is nice if the sum of the weights of the edges removed is at least 3g

4 . Observe
that a merge cannot decrease the minimum weight of a cycle in G, since we only delete vertices and edges. See Fig. 5 for an
example of the merge of three faces.

Lemma 23. Let G be a 2-connected plane graph, and let G′ be a graph obtained from G by applying a merge with the crucial
vertex v. If S ′ is a feedback vertex set of G′, then S ′

∪ {v} is a feedback vertex set of G.

Proof. Let C be a cycle of G that contains an edge e ∈ E(G)\E(G′). Edge e is in the boundary of two of the faces that are
merged, say f0 and f1. Cycle C separates f0 and f1. Therefore it contains all the vertices of V (G[f0]) ∩ V (G[f1]). In particular, it
contains v.

Therefore each cycle of G is either entirely in G′, or it contains v. Thus as V (G′)\S ′ induces a forest in G′, V (G)\(S ′
∪ {v})

induces a forest in G. �

Lemma 24. Let G be a 2-connected plane graph, and G′ be obtained fromG by applying a nicemerge. If graph G′ satisfies Claim 22,
then graph G also satisfies Claim 22.

Proof. Let v be the crucial vertex of the merge. We have ω(G′) ≤ ω(G) −
3g
4 . Since G′ verifies Claim 22, there exists a

feedback vertex set S ′ of G′ such that |S ′
| ≤

4ω(G′)

3g ≤
4ω(G)

3g −1. Then S = S ′
∪{v} is a feedback vertex set of G (by Lemma 23),

and |S| ≤
4ω(G)

3g − 1 + 1 =
4ω(G)

3g , which completes the proof. �

Let us assume by contradiction that there are couples (G, ω) that do not satisfy Claim 22. Among all counterexamples
(G, ω) to Claim 22 minimizing ω(G), we consider a couple (G, ω) minimizing


v∈V (G)(max{0.5, d(v) − 2.5}).

Lemma 25. Graph G is 2-connected.

Proof. By contradiction, assume G is not 2-connected. Graph G has at least 2 vertices, otherwise it would satisfy Claim 22.
Let S be a minimal vertex cut-set of G. We have |S| ≤ 1. Let V1 and V2 be non-empty sets of vertices separated by S.

Letω1 = ω(G[V1 ∪ S]) andω2 = ω(G[V2 ∪ S]). By minimality of (G, ω), there exist S1 ⊆ V1 ∪ S and S2 ⊆ V2 ∪ S which are
feedback vertex sets of G[V1 ∪ S] and G[V2 ∪ S] respectively, such that |S1| ≤

4ω1
3g and |S2| ≤

4ω2
3g . Now S1 ∪ S2 is a feedback

vertex set of G, and |S1 ∪ S2| ≤
4ω1
3g +

4ω2
3g =

4ω(G)

3g . Thus G satisfies Claim 22, a contradiction. �

Lemma 26. No nice merges can be done in G.

Proof. It follows from Lemma 24 and the minimality of (G, ω). �

Lemma 27. Every face in G has at least three 3+-vertices in its boundary.

Proof. Let us assume that there is a face f in Gwith atmost two 3+-vertices in its boundary. Face f is adjacent to atmost two
other faces in G. Suppose f is adjacent to exactly one face, say f ′. As G is 2-connected by Lemma 25, G[f ] and G[f ′

] are cycles.
As f is adjacent only to f ′, E(G[f ]) ⊆ E(G[f ′

]), and thus G[f ] = G[f ′
]. So two faces of G have exactly the same boundary, so

G is a cycle, and it satisfies Claim 22, a contradiction.
Thus f is adjacent to exactly two other faces, say f0 and f1. Then E(G[f ]) ⊆ E(G[f0]) ∪ E(G[f1]), and E(G[f ]) ∩ E(G[f0]) ≠

∅ ≠ E(G[f ]) ∩ E(G[f1]). As G[f ] is a cycle, there is a vertex v in V (G[f ]) incident to an edge in E(G[f ]) ∩ E(G[f0]) and to an
edge in E(G[f ]) ∩ E(G[f1]). Merging the faces f , f0 and f1 with crucial vertex v is nice, since we remove all the edges of G[f ]
and ω(f ) ≥ g ≥

3g
4 . This leads to a contradiction with Lemma 26. �
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Fig. 5. The merge of faces f0 , f1 and f2 into f with crucial vertex v.

Fig. 6. The construction of Lemma 28.

Lemma 28. There are no 4+-vertices in G.

Proof. Suppose v is a d-vertex in G with d ≥ 4. Let u0, . . . , ud−1 be the neighbors of v. Let G′
= G − v + {w, w′

} +

{wu0, wu1, ww′, w′u2, . . . , w
′ud−1}, ω(wu0) = ω(vu0), ω(wu1) = ω(vu1), ω(w′u2) = ω(vu2), . . . , ω(w′ud−1) =

ω(vud−1), and ω(ww′) = 0. See Fig. 6 for an illustration of this construction. Clearly, ω(G′) = ω(G). As we removed a d-
vertex, added a 3-vertex and a (d−1)-vertex, and did not change the degree of the other vertices,


v∈V (G′)(max{0.5, d(v)−

2.5}) =


v∈V (G)(max{0.5, d(v) − 2.5}) − 0.5.
It is easy to see that for any cycle C ′ of G′, there is a cycle in G that has the same weight, so ω(C ′) ≥ g .
By minimality of (G, ω), let S ′ be a feedback vertex set of G′ with |S ′

| ≤
4ω(G′)

3 . For any cycle C of G there is a cycle C ′ of
G′ such that C = C ′ or V (C) = (V (C ′)\{w, w′

}) ∪ {v}. If w ∈ S ′ or w′
∈ S ′, then let S = S ′

\{w, w′
} ∪ {v} and otherwise let

S = S ′. Then |S| ≤ |S ′
| ≤

4ω(G′)

3 =
4ω(G)

3 , and S is a feedback vertex set of G, a contradiction. �

Lemma 29. Every cycle has at least three 3-vertices in G.

Proof. Let C be a cycle of G. By Lemma 28, every vertex in V (C) has degree at most 3. Suppose C is a separating cycle. By
Lemma 25, graph G is 2-connected, so at least two vertices of V (C) have a neighbor in the interior of C , and at least two
vertices of V (C) have a neighbor in the exterior of C . Therefore C has at least four 3-vertices. Now if C bounds a face, then
Lemma 27 concludes the proof. �

Lemma 30. Graph G is cubic (i.e. 3-regular).

Proof. Suppose v is a 2−-vertex inG. Vertex v has degree 2 by Lemma25. Letu andw be the twoneighbors of v. By Lemma29,
uw ∉ E(G).

Let G′
= G − v + uw and ω(uw) = ω(uv) + ω(vw). See Fig. 7 for an illustration of this construction. Clearly, ω(G′) =

ω(G). As we removed a 2-vertex and did not change the degree of the other vertices,


v∈V (G′)(max{0.5, d(v) − 2.5}) =
v∈V (G)(max{0.5, d(v) − 2.5}) − 0.5.
Let C ′ be any cycle of G′. If uw ∉ E(C ′), then C ′ is a cycle of G, and so ω(C ′) ≥ g . Otherwise, C = C ′

− uw + v + {uv, vw}

is a cycle of G, and ω(C) = ω(C ′), so ω(C ′) ≥ g .
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Fig. 7. The construction of Lemma 30.

For any cycle C of G there is a cycle C ′ of G′ that contains all the vertices of V (C)\{v}. By minimality of (G, ω), let S ′ be a
feedback vertex set of G′ with |S ′

| ≤
4ω(G′)

3 =
4ω(G)

3 . The set S ′ is a feedback vertex set of G, a contradiction. �

By Lemmas 25 and 30, graph G is a 2-connected cubic graph. By Theorem 14, G admits a feedback vertex set of order at
most |V (G)|+2

3 . Let us denote by n the order of G, bym the size of G and by f the number of faces of G.
By Euler’s formula, we have n − m + f = 2. We have 3n = 2m as G is cubic. Therefore, f = 2 + m − n = 2 +

n
2 ,

i.e. n = 2(f − 2). Therefore G has a feedback vertex set S of size |S| ≤
2f−4+2

3 ≤
2f
3 . As each face has weight at least g , we

have gf ≤ 2ω(G), so |S| ≤
4ω(G)

3g , a contradiction, completing the proof of Theorem 13.
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