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Let M be an additive abelian group. An M -strong-oriented coloring of an oriented graph G is a mapping ϕ from
V (G) to M such that ϕ(u) 6= ϕ(v) whenever −→uv is an arc in G and ϕ(v)− ϕ(u) 6= −(ϕ(t)− ϕ(z)) whenever −→uv
and
−→
zt are two arcs in G. The strong oriented chromatic number of an oriented graph is the minimal order of a group

M such that G has an M -strong-oriented coloring. This notion was introduced by Nešetřil and Raspaud [Ann. Inst.
Fourier, 49(3):1037-1056, 1999].

We prove that the strong oriented chromatic number of oriented planar graphs without cycles of lengths 4 to 12 (resp.
4 or 6) is at most 7 (resp. 19). Moreover, for all i ≥ 4, we construct outerplanar graphs without cycles of lengths 4 to
i whose oriented chromatic number is 7.

Keywords: Oriented graph, strong oriented coloring, discharging procedure, maximum average degree.

1 Introduction
Oriented graphs are directed graphs without loops nor opposite arcs. For two adjacent vertices u and v, we
denote by−→uv the arc from u to v or simply uv whenever its orientation is not relevant (therefore, uv = −→uv
or uv = −→vu).

An oriented k-coloring of an oriented graph G is a mapping ϕ from V (G) to a set of k colors such that
(1) ϕ(u) 6= ϕ(v) whenever −→uv is an arc in G, and (2) ϕ(u) 6= ϕ(x) whenever −→uv and −→wx are two arcs in
G with ϕ(v) = ϕ(w). The oriented chromatic number of an oriented graph, denoted by χo(G), is defined
as the smallest k such that G admits an oriented k-coloring.

Let G and H be two oriented graphs. A homomorphism from G to H is a mapping ϕ : V (G)→ V (H)
that preserves the arcs:

−−−−−−→
ϕ(x)ϕ(y) ∈ A(H) whenever −→xy ∈ A(G).

An oriented k-coloring of G can be equivalently defined as a homomorphism from G to H , where H
is an oriented graph of order k. Then, the oriented chromatic number χo(G) of G can be defined as the
smallest order of an oriented graph H such that G admits a homomorphism to H .
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The notion of oriented coloring can be extended to undirected graphs saying that the oriented chro-
matic number χo(G) of an undirected graph G is the maximum oriented chromatic number taken over all
orientations of G.

The problem of bounding the oriented chromatic number has already been investigated for various
graph classes: graphs with bounded maximum average degree [4], graphs with bounded degree [7], graphs
with bounded treewidth [13, 14], and graph subdivisions [15].

Nešetřil and Raspaud [10] introduced the strong oriented chromatic number. Let M be an additive
abelian group. A strong oriented coloring of an oriented graph G is a mapping ϕ from V (G) to M such
that (1) ϕ(u) 6= ϕ(v) whenever −→uv is an arc in G and (2) ϕ(v) − ϕ(u) 6= −(ϕ(t) − ϕ(z)) whenever −→uv
and
−→
zt are two arcs inG (this last condition will be called the no-opposite value condition). We say thatG

has a M -strong-oriented coloring. The strong oriented chromatic number of an oriented graph, denoted
by χs(G), is the minimal order of a group M , such that G has M -strong-oriented coloring.

A strong oriented coloring of an oriented graph G can be equivalently defined as a homomorphism
ϕ from G to H , where H is an oriented graph with k vertices labeled by the k elements of an abelian
additive group M , such that for any pair of arcs −→uv and

−→
zt of A(G), ϕ(v) − ϕ(u) 6= −(ϕ(t) − ϕ(z)).

Then, the strong oriented chromatic number of G can be defined as the smallest order of an additive
abelian group M such that G admits a homomorphism to H labeled by the elements of M satisfying the
no-opposite value condition. Analogously, the strong oriented chromatic number of an undirected graph
G is the maximum strong oriented chromatic number taken over all the orientations of G.

Therefore, any strong oriented coloring of G is an oriented coloring of G; hence, χo(G) ≤ χs(G).

Let M be an additive group and let S ⊂M be a set of group elements. The Cayley digraph associated
with (M,S), denoted by C(M,S), is then defined as follows:

V (C(M,S)) = M and A(C(M,S)) = {(g, g + s) ; g ∈M, s ∈ S}.

If the set S are group generators of M , then C(M,S) is connected.
Assuming that M is abelian and S∩−S = ∅, then C(M,S) is oriented (neither loops nor opposite arcs),

and for any pair (g1, g1 + s1) and (g2, g2 + s2) of arcs of C(M,S), g1 + s1− g1 6= −(g2 + s2− g2). Thus,
finding a strong oriented k-coloring of an oriented graph G may be viewed as finding a homomorphism
from G to an oriented Cayley graph C(M,S) of order k, for some abelian group M with S ⊂ M and
S ∩ −S = ∅.

Let H be an oriented graph. In the following, we say that an oriented graph G admits an H-coloring
whenever there exists a homomorphism from G to H . In the undirected case, we say that an undirected
graph G admits an H-coloring when every orientation of G admits a homomorphism to H .

Strong oriented coloring of planar graphs was recently studied. Sámal [12] proved that every oriented
planar graph admits a strong oriented coloring with at most 672 colors. Marshall [8] improved this result
and proved the following:

Theorem 1.1 [8] Let G be an oriented planar graph. Then χs(G) ≤ 271.
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Borodin et al. [3, 4] studied the relationship between the strong oriented chromatic number and the
maximum average degree of a graph, where the maximum average degree, denoted by mad(G) is:

mad(G) = max
{

2|A(H)|
|V (H)| ; H ⊆ G

}
They considered homomorphisms to oriented Cayley graphs and proved that:

Theorem 1.2 [3, 4] Let G be a graph.

1. If mad(G) < 12
5 and G has girth at least 5, then χs(G) ≤ 5 [3].

2. If mad(G) < 11
4 and G has girth at least 5, then χs(G) ≤ 7 [4].

3. If mad(G) < 3, then χs(G) ≤ 11 [4].

4. If mad(G) < 10
3 , then χs(G) ≤ 19 [4].

The girth of a graph G is the length of a shortest cycle of G. When considering planar graphs, the
maximum average degree and the girth are linked by the following well-known relation:

Claim 1.3 [4] Let G be a planar graph with girth g. Then, mad(G) < 2 + 4
g−2 .

Corollary 1.4 follows from the previous claim.

Corollary 1.4 [3, 4] Let G be a planar graph.

1. If G has girth at least 12, then χs(G) ≤ 5 [3].

2. If G has girth at least 8, then χs(G) ≤ 7 [4].

3. If G has girth at least 6, then χs(G) ≤ 11 [4].

4. If G has girth at least 5, then χs(G) ≤ 19 [4].

The following two theorems give upper bounds for planar graphs with girth 7 and 4, respectively. The
proofs of these results do not use arguments on the maximum average degree.

Hence, Borodin and Ivanova [1] recently improved the previous result:

Theorem 1.5 [1] Let G be a planar graph with girth at least 7. Then χs(G) ≤ 7.

Moreover, the class of triangle-free planar graphs was studied by Ochem [11], and by Borodin and
Ivanova [2]:

Theorem 1.6 [2] Let G be a triangle-free planar graph. Then χs(G) ≤ 47.

Notice that, for general graphs, the oriented chromatic number is not bounded when the maximum
average degree tends to 4 [4]. Therefore, Theorem 1.6 cannot be obtained via the maximum average
degree since triangle-free planar graphs have maximum average degree arbitrarily close to 4.
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The best known upper bounds on the strong oriented chromatic number of planar graphs and triangle-
free planar graphs are respectively 271 and 47. It seems that triangles play an important role for this
invariant. In this paper, we study the strong oriented chromatic number of planar graphs without cycles of
lengths 4 to i for a some i ≥ 4. These graph classes appear in Steinberg’s conjecture [6]. The aim of this
study is to check whether triangles have a significant influence on the strong oriented chromatic number
of planar graphs.

Notice that the best known upper bounds on the strong oriented chromatic number of planar graphs
with girth 5, 6, and 12 are obtained via the maximum average degree. Therefore, to get bounds on the
strong oriented chromatic number of planar graphs without cycles of lengths 4 to i, i ≥ 4, it is natural to
determine the maximum average degree of these classes. The following two lemmas give tight bounds on
the maximum average degree of planar graphs without cycles of lengths 4 to i for all i ≥ 4.

Lemma 1.7

1. If G is a planar graph without cycles of length 4, then mad(G) < 30
7 .

2. For all ε > 0, there exists a planar graph G without cycles of length 4 such that mad(G) > 30
7 − ε.

Lemma 1.8 For all i ≥ 5,

1. If G is a planar graph without cycles of lengths 4 to i, then mad(G) < 3 + 3
i−2 .

2. For all ε > 0, there exists a planar graph G without cycles of lengths 4 to i such that mad(G) >
3 + 3

i−2 − ε.

By Lemma 1.8, every planar graph G without cycles of lengths 4 to 11 has mad(G) < 3 + 3
11−2 = 10

3 .
Consequently, we obtain the following corollary by Theorem 1.2.4:

Corollary 1.9 If G is a planar graph without cycles of lengths 4 to 11, then χs(G) ≤ 19.

Lemmas 1.7.2 and 1.8.2 show that, for every i ≥ 4, there exist planar graphs G without cycles of
lengths 4 to i such that mad(G) > 3. Thus, Theorem 1.2 cannot provide an upper bound less than 19. In
the remainder, we improve Corollary 1.9 and prove the following theorems:

Theorem 1.10 Let G be planar graph without cycles of lengths 4 to 12. Then, χs(G) ≤ 7.

Theorem 1.11 For all i ≥ 4, there exists an outerplanar graph G without cycles of lengths 4 to i such
that χo(G) ≥ 7.

Theorem 1.12 Let G be planar graph without cycles of lengths 4 or 6. Then, χs(G) ≤ 19.

In the next section, we prove Lemmas 1.7 and 1.8. In Section 3, we introduce the Cayley tournaments
QR7 and QR19 and some of their properties. Section 4 is dedicated to the proof of Theorem 1.10; we
prove that every oriented planar graph without cycles of lengths 4 to 12 has a homomorphism to the
Cayley graph QR7. In Section 5, we prove Theorem 1.11 which shows that Theorem 1.10 is tight in
some way. Section 6 is dedicated to the proof of Theorem 1.12; we show that every oriented planar graph
without cycles of lengths 4 or 6 has a homomorphism to the Cayley graph QR19. In Section 7, we give
some concluding remarks and state recent related results.
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In the following, V (G), A(G), and F (G) denote respectively the sets of vertices, edges/arcs, and faces
of a plane graph G. For a vertex v, we denote by d−(v) the indegree of v, by d+(v) its outdegree, and
by d(v) its degree. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp. ≥k-vertex,
≤k-vertex). The size of a face f , denoted by d(f), is the number of edges on its boundary walk, where
each cut-edge is counted twice. A face of size l (resp. at least l, at most l) is called a l-face (resp. ≥l-face,
≤l-face).

2 Proofs of Lemmas 1.7 and 1.8
In this section, we give the proofs of Lemmas 1.7 and 1.8 which characterize the maximum average degree
of planar graphs without cycles of lengths 4 to i for all i ≥ 4.

Proof of Lemma 1.7:

1. Observe that we can rewrite Euler’s formula |V (G)| − |A(G)|+ |F (G)| = 2 as follows:∑
v∈V (G)

(7d(v)− 30) +
∑

f∈F (G)

(8d(f)− 30) = −60 (1)

We define the weight function ω by ω(f) = 8d(f) − 30 for each face f in F (G). Now, we
redistribute the weights according to the following discharging rule: every ≥5-face gives 2 to each
adjacent 3-face. Let f be a face of F (G) and let ω∗(f) denote its weight after discharging. If
d(f) = 3, then ω∗(f) = ω(f) + 3 × 2 = 0. If d(f) ≥ 5, then ω∗(f) ≥ ω(f) − 2d(f) =
6d(f)− 30 ≥ 0. Since the total sum of weights is fixed by the discharging rule, we have:∑

f∈F (G)

(8d(f)− 30) =
∑

f∈F (G)

ω(f) =
∑

f∈F (H)

ω∗(f) ≥ 0

By Equation 1, we have
∑

v∈V (G)

(7d(v) − 30) < 0, which implies that mad(G) < 30
7 , since each

subgraph of G is a planar graph without cycles of length 4.

2. We now prove that the upper bound proved above is tight. For all ε > 0, we construct a planar graph
Gk without cycles of length 4 such that mad(Gk) > 30

7 − ε.
Let H be the graph of Fig. 1(a). This graph is planar and has no cycles of length 4. Let Gk be the
graph obtained by tiling the plane with k × k copies of H (k lines and k columns); see Fig. 1(b).

We easily check that, for all k ≥ 1, Gk is planar and has no cycles of length 4. The graph Gk

contains k2 copies of H and each copy contains 31 vertices and 54 edges. We can then compute
that |V (Gk)| = 21k2 + 12k − 2 and |A(Gk)| = 45k2 + 12k − 3.Thus,

mad(Gk) ≥ 2|A(Gk)|
|V (Gk)| =

2(45k2 + 12k − 3)
21k2 + 12k − 2

=
30
7
− 192k + 29

147k2 + 84k − 14

This allows us to conclude:

∀ ε > 0, ∃ k ≥ 1 : mad(Gk) >
30
7
− ε.
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(a) The graph H . (b) The graph Gk .

Fig. 1: Tiling the plane to obtain a planar graph Gk without cycles of length 4 such that mad(Gk) > 30
7
− ε.

2

Proof of Lemma 1.8:

1. Let G be a counterexample to Lemma 1.8.1 which is minimal according to the subgraph order. In
particular, G is a planar graph without cycles of lengths 4 to i with maximum average degree at
least 3 + 3

i−2 . Moreover, by minimality, G contains neither 1-vertices nor two adjacent 2-vertices.
Let G′ be the graph obtained from G by removing every 2-vertex incident to a 3-face. Let n, n2,
n3, and n4 denote respectively the number of vertices, 2-vertices, 3-vertices, and ≥4-vertices of G′.
An edge in G′ is said to be free if it is not incident to a 3-face in G′. Let m, m3, and mi denote
respectively the number of edges, edges incident to a 3-face, and free edges of G′. Let f , f3, and fi

denote respectively the number of faces, 3-faces, and ≥(i+ 1)-faces of G′.

In G′, a 2-vertex is incident to two free edges. Moreover, a 3-vertex is incident to at least one
free edge, since otherwise G′ would contain a cycle of length 4. We thus have

2n2 + n3 ≤ 2mi (2)

By definition:
n = n2 + n3 + n4 (3)

m3 +mi = m (4)
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f = f3 + fi (5)

Since G′ contains no cycle of length 4, we have:

3f3 = m3 (6)

Considering the sum of vertex degrees in G′, we have:

2n2 + 3n3 + 4n4 ≤ 2m (7)

Considering the sum of face degrees in G′, we have:

3f3 + (i+ 1)fi ≤ 2m (8)

Considering the Euler’s formula for G′, we have:

m+ 2 = n+ f (9)

Let s denotes the number of 2-vertices incident to a triangle in G. This means that G contains
n + s vertices and m + 2s edges. By minimality of G, the maximum average degree of G equals
its average degree and is at least 3 + 3

i−2 . We thus have:(
3 +

3
i− 2

)
(n+ s) ≤ 2(m+ 2s) (10)

If w is a 2-vertex incident to a triangle uvw in G, then uv is a free edge in G′. Moreover, if uv is
a free edge in G′, there exists at most one 2-vertex w such that uvw is a triangle in G (G does not
contain cycles of length 4). We thus have:

s ≤ mi (11)

The combination 3× (2) + 12× (3) + 2(i− 2)× (4) + 6(i+ 1)× (5) + 2(i− 2)× (6) + 3× (7) +
6× (8) + 6(i+ 1)× (9) + 2(i− 2)× (10) + 2(i− 5)× (11) gives 12(i+ 1) ≤ 0. This contradiction
proves Lemma 1.8.1.

2. We now prove that the upper bound proved above is tight. For all ε > 0 and for all i ≥ 5, we
construct a planar graph G′k without cycles of lengths 4 to i such that mad(G′k) > 3 + 3

i−2 − ε.
Let H ′ be the graph obtained from two chains of intersecting triangles, one of length

⌊
i−5
2

⌋
and the

other of length
⌈

i−5
2

⌉
, arranged as depicted in Fig. 2(a). For all i ≥ 5, this graph is planar and has

no cycles of lengths 4 to i. Let G′k be the graph obtained by tiling the plane with k × k copies of
H ′ (k lines and k columns); see Fig. 2(b).

We easily check that, for all i ≥ 5 and for all k ≥ 1, the graph G′k is planar and has no cycles of
lengths 4 to i. The graph G′k contains k2 copies of H ′ and each copy contains 2(i+ 1) vertices and
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triangles
intersecting




triangles

intersecting

⌊
i−5

2

⌋⌈
i−5

2

⌉

(a) The graph H′. (b) The graph G′k .

Fig. 2: Tiling the plane to obtain a planar graph G′k without cycles of lengths 4 to i, i ≥ 5, such that mad(G′k) >
3 + 3

i−2
− ε.

3i+ 1 edges. We can then compute that |V (G′k)| = 2ik2− 4k2 + 6k and |A(G′k)| = 3ik2− 3k2 +
k − 2. Thus,

mad(G′k) ≥ 2|A(G′k)|
|V (G′k)| =

6ik2 − 6k2 + 2k − 4
2ik2 − 4k2 + 6k

= 3 +
3

i− 2
− 8ik − 7k + 2i− 4
k(i− 2)(ik − 2k + 3)

This allows us to conclude:

∀ i ≥ 5, ∀ ε > 0, ∃ k ≥ 1 : mad(G′k) > 3 +
3

i− 2
− ε.

2

3 Some properties of the tournaments QR7 and QR19

In this section, we define the tournaments QR7 and QR19, and give some properties that we use in next
sections to prove Theorems 1.10 and 1.12.

Recall that the circulant graph G = C(p ; c1, c2, . . . , cd) is defined by V (G) = {0, 1, . . . , p− 1} and−→uv ∈ A(G) if and only if v ≡ u+ ci (mod p) for some i, 1 ≤ i ≤ d. If p ≡ 3 (mod 4) is a prime power
and the ci’s are the non zero quadratic residues modulo p, then d = p−1

2 and QRp = C(p; c1, . . . , cd) is
a Paley tournament.

Property 3.1 Let p ≡ 3 (mod 4), Fp = Z
pZ and S = {x2 ; x ∈ Fp \ {0}} be the non zero squares of Fp.

Then S ∩ −S = ∅.
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x

u3u2u1

Fig. 3: x is a (0, 1, 1)-successor of (u1, u2, u3)

Proof: Since p ≡ 3 (mod 4), −1 is not a square modulo p. Indeed, if it were, −1 = x2 and so by
Fermat’s little theorem: (−1)

(p−1)
2 = xp−1 = 1. But (−1)

(p−1)
2 = −1.

Then, let a, b ∈ Fp such that a2 + b2 = 0. If a 6= 0 or b 6= 0, then ( b
a )2 = −1 or (a

b )2 = −1, which is
a contradiction. Therefore, a = b = 0. 2

Therefore, such a Paley tournament QRp is clearly the Cayley graph C(M,S) with M = Fp = Z
pZ and

S = {x2 ; x ∈ Fp \ {0}}.
Another important property is that the QRp tournaments are arc-transitive [5], which means that for

every two arcs −→uv and −→xy, there exists an automorphism mapping −→uv to −→xy.
For instance, let us consider the tournaments QR7 = C(7 ; 1, 2, 4) and QR19 = C(19 ; 1, 4, 5, 6, 7, 9,

11, 16, 17), which are Paley tournaments on 7 and 19 vertices, respectively.

An orientation vector of length n is an n-tuple α = (α1, α2, . . . , αn) in {0, 1}n.
Let G be an oriented graph and let U = (u1, u2, . . . , un) be a sequence of distinct vertices of G. For

an orientation vector α, a vertex v of G is said to be an α-successor of U if for every i, 1 ≤ i ≤ n, −→vui is
an arc in G if αi = 0 and −→uiv is an arc in G otherwise (see Fig. 3 for an example).

We shall say that an oriented graph G satisfies Property Pn,k if for any sequence U of n pairwise
distinct vertices of G and any orientation vector α of length n, there exists at least k vertices in G which
are α-successors of U .

The tournaments QR7 and QR19 have the following properties:

Property 3.2 [4] The tournament QR7 satisfies Properties P1,3 and P2,1.

Property 3.3 [4] The tournament QR19 satisfies Properties P1,9, P2,4, and P3,1.

Let us give an example; saying that QR7 has Property P2,1 means that for any pair of distinct vertices
(x, y) of QR7 and any orientation vector α of length two (four possible orientation vectors), we have
at least one α-successor of (x, y). For instance, for x = 0 and y = 1, we can check that there exists
one (0, 0)-successor (Fig. 4(a)), one (1, 0)-successor (Fig. 4(b)), one (1, 1)-successor (Fig. 4(c)) and two
(0, 1)-successors (Fig. 4(d)) of (x, y).

In the remainder of this section, we will consider some other properties of QR7.
For a given vertex v of an oriented graph G, we denote by Γ+(v) (resp. Γ−(v)) the set of outgoing

neighbors of v (Γ+(v) = {u ∈ V ; −→vu ∈ A(G)}) (resp. the set of incoming neighbors of v (Γ−(v) =
{u ∈ V ; −→uv ∈ A(G)})). For a subset S of vertices of G, we define:

Γ+(S) =
⋃
v∈S

Γ+(v) and Γ−(S) =
⋃
v∈S

Γ−(v)
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6

0 1

(a)

4

0 1

(b)

2

0 1

(c)

3 / 5

0 1

(d)

Fig. 4: Example of Property P2,1 of QR7

For a given oriented graph G, we will denote by ΩG(k) the largest number n such that for all sets
S ⊆ V (G) of size k, |Γ+(S)| ≥ n and |Γ−(S)| ≥ n.

By a case analysis, we have the following property:

Property 3.4

1. ΩQR7(1) = 3;

2. ΩQR7(2) = 5;

3. ΩQR7(k) = 6 for 3 ≤ k ≤ 4;

4. ΩQR7(k) = 7 for 5 ≤ k ≤ 7.

Let us consider the following definition.

Definition 3.5 Let G be an oriented graph. Let W ⊆ V (G) and x1, x2, . . . , xn, y1, y2, . . . , ym ∈ W
be n + m vertices. Let γ be a QR7-coloring of G \ W . γ is called (k1, k2, . . . , kn | l1, l2, . . . , lm)-
extendable to (x1, x2, . . . , xn | y1, y2, . . . , ym) in G if there exist r = k1 × k2 × . . .× kn QR7-colorings
γ1, γ2, . . . , γr of G extending γ such that

1. for all 1 ≤ j ≤ n, |{γi(xj); 1 ≤ i ≤ r}| = kj ,

2. the r n-tuples (γi(x1), γi(x2), . . . , γi(xn)) are distinct,

3. for all 1 ≤ j ≤ m, |{γi(yj); 1 ≤ i ≤ r}| ≤ lj .

The kj colors for xj will be called choices since, for each 1 ≤ j ≤ n, we can independently choose
a color for each xj among the kj available colors, and then take the corresponding QR7-coloring γi

accordingly.
The lj colors for yj will be called possibilities since, for each 1 ≤ j ≤ m, our only knowledge is that

yj will have a color taken among at most lj colors.
Whenever we do not have informations about possibilities for some vertices, we will say that γ is

(k1, k2, . . . , kn)-extendable to (x1, x2, . . . , xn) in G.

The drawing conventions for a configuration C contained in a graph G are the following. If u and v
are two vertices of C, then they are adjacent in G if and only if they are adjacent in C. Moreover, the
neighbors of a white vertex inG are exactly its neighbors inC, whereas a black vertex may have neighbors
outside of C. Two or more black vertices in C may coincide in a single vertex in G, provided they do
not share a common white neighbor. Finally, an edge will represent an arc with any of its two possible
orientations.
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w

v

u

(a)

w

v

u

(b)

Fig. 5: Configurations of Properties 3.6 and 3.10.

Property 3.6 Let G be an oriented graph containing the configuration (a) of Fig. 5, let W ⊂ V (G) and
let u, v, w ∈W (u and w are non-adjacent). Let γ be a QR7-coloring of G \W . If γ is (k, l)-extendable
to (u,w) in G \ {v}, then it is (ΩQR7(l) + ΩQR7(k)− 7 | k, l)-extendable to (v | u,w) in G.

Proof: The k choices of colors for u allow ΩQR7(k) distinct colors for v, while the l choices of colors of
w allow ΩQR7(l) distinct colors for v. By the Pigeon Hole Principle, we have at least n = ΩQR7(k) +
ΩQR7(l)− 7 choices to color v in G while u and w have k and l possibilities, respectively. 2

A quick case study shows that the field F7 has the following property:

Property 3.7 Let S = {x2 ; x ∈ F7 \{0}} = {1, 2, 4}. For any two distinct couples (s1, s′1) and (s2, s′2)
of S, we have s1 − s′1 6= s2 − s′2.

Property 3.7 allows us to prove the following:

Property 3.8 Let x, y ∈ F7 with x 6= y and let s1, s2, s3, s4 ∈ S = {x2 ; x ∈ F7\{0}} such that s1 6= s2
and s3 6= s4. Then |{x+ s1, x+ s2, y + s3, y + s4}| ≥ 3 and |{x− s1, x− s2, y − s3, y − s4}| ≥ 3.

Proof: Suppose that |{x + s1, x + s2, y + s3, y + s4}| < 3. Since s1 6= s2 and s3 6= s4, we have
x + s1 6= x + s2 and y + s3 6= y + s4. Therefore, we may assume w.l.o.g. that x + s1 = y + s3 and
x+ s2 = y + s4, which implies that s3 − s1 = s4 − s2, that is a contradiction by Property 3.7.

The same argument allows us to prove that |{x− s1, x− s2, y − s3, y − s4}| ≥ 3. 2

A careful case study of QR7 gives the following:

Property 3.9 Let x, y, z be three distinct vertices of QR7 such that −→xy ∈ A(QR7) and −→xz ∈ A(QR7).
For any orientation vector α = (α1, α2) ∈ {0, 1}2, there exist at least two distinct vertices y′ and z′ such
that y′ is an α-successor of (x, y) and z′ is an α-successor of (x, z).

Property 3.10 Let G be an oriented graph containing the configuration (b) of Fig. 5, let W ⊆ V (G),
and let u, v, w ∈W (u and w are adjacent). Let γ be aQR7-coloring ofG\W . If γ is (2 | 1)-extendable
(resp. (5 | 3)-extendable) to (u | w) inG\{v}, then γ is (2 | 2, 1)-extendable (resp. (3 | 5, 3)-extendable)
to (v | u,w) in G.

Proof: Let G′ = G \ {v} and we may assume w.l.o.g. that −→wu ∈ A(G).

1. Suppose that γ is (2 | 1)-extendable to (u | w) in G′. In other words, there exist at least two QR7-
colorings γ1 and γ2 of G′ extending γ such that γ1(u) 6= γ2(u) and γ1(w) = γ2(w). Therefore,
γ1(u) and γ2(u) are two distinct successors of γ1(w) in QR7. By Property 3.9, we have at least
two choices to color v in G while u and w have 2 and 1 possibilities, respectively.
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xv

y

w zu

Fig. 6: Configuration of Property 3.11

2. Suppose now that γ is (5 | 3)-extendable to (u | w) in G′. In other words, there exist at least five
QR7-colorings γ1, . . . , γ5 of G′ extending γ such that γi(u)′s are pairwise distinct and |{γi(w);
1 ≤ i ≤ 5}| = 3 (which is the worst case). Let γi(u) = ui and {γi(w); 1 ≤ i ≤ 5} =
{w1, w2, w3}. The color ui is a successor of γi(w) in QR7 for 1 ≤ i ≤ 5. W.l.o.g, if there
exist j, k, l ∈ [1, 5] with j 6= k 6= l 6= j such that γj(w) = γk(w) = γl(w) = w1, then uj , uk, ul

are the three successors of w1 in QR7 and by Property 3.9, we have at least three choices to color v
while u and w have 5 and 3 possibilities, respectively; thus γ is (3 | 5, 3)-extendable to (v | u,w)
in G. If it is not, by the Pigeon Hole Principle, we may assume w.l.o.g. that u1 and u2 are both
successors of w1 in QR7 and u3 and u4 are both successors of w2 in QR7. By Property 3.9, for
any orientation vector α ∈ {0, 1}2, there exist s1, s2, s3, s4 ∈ S = {1, 2, 4} such that w1 + s1
(resp. w1 + s2, w2 + s3, w2 + s4) is an α-successor of (w1, u1) (resp. (w1, u2), (w2, u3) and
(w2, u4)) such that w1 + s1 6= w1 + s2 and w2 + s3 6= w2 + s4. Therefore, by Property 3.8,
|{w1 + s1, w1 + s2, w2 + s3, w2 + s4}| ≥ 3 and we have at least three choices to color v in G while
u and w have 5 and 3 possibilities, respectively; thus γ is (3 | 5, 3)-extendable to (v | u,w) in G.

2

Property 3.11 Let G be an oriented graph containing the configuration depicted on Fig. 6 and let γ be a
QR7-coloring of G \ {v, w, x, y}. Then, γ is (3)-extendable to (y) in G.

Proof: By Property 3.4, γ is (3, 3)-extendable to (u, x) in G \ {w, y}. Then, by Property 3.6, γ is
(5 | 3)-extendable to (w | u) in G \ {y}. Finally, by Property 3.10, γ is (3)-extendable to (y) in G. 2

We will extensively use these previous properties in the next two sections to prove Theorems 1.10
and 1.12.

4 Proof of Theorem 1.10
In this section, we prove that every oriented planar graph without cycles of lengths 4 to 12 has a homo-
morphism to the Cayley graph QR7.

Let H be a counterexample to Theorem 1.10 of minimum order. We will show that in the following
claim, H does not contain some configurations. For each of them, we consider a reduction H ′ such that
|V (H ′)| < |V (H)|. By minimality of H , there exists a QR7-coloring of H ′ and we show how to extend
it to a QR7-coloring of H . Finally, a discharging procedure will complete the proof.
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(b)
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y x6 x7 x8

x2 x3 v

(d)

w

x10 z

x2 x3 vu x1

x4

x5

x6

x7

y x8 x9

(e)

Fig. 7: Forbidden configurations of Theorem 1.10.

4.1 Structural properties of H

Claim 4.1 The counterexample H does not contain the following:

(C1) 1-vertices;

(C2) two adjacent 2-vertices;

(C3) a 3-face incident to a 2-vertex;

(C4) a 3-face incident to two 3-vertices, each of them adjacent to a 2-vertex;

(C5) the configuration depicted in Fig. 7(d);

(C6) the configuration depicted in Fig. 7(e).

Proof:

(C1) Trivial.

(C2) Consider Configuration (a) depicted in Fig. 7. Any QR7-coloring γ of H \ {x} can be modified
such that γ(v) 6= γ(w) thanks to Property P1,3. This modified coloring can be extended to H by
Property P2,1.
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(C3) Consider Configuration (b) depicted in Fig. 7. Any QR7-coloring γ of H \ {x} satisfies γ(u1) 6=
γ(u2), and can be extended to H by Property P2,1.

(C4) Consider Configuration (c) depicted in Fig. 7. Let γ be a QR7-coloring of H \ {v, w, y, z}. By
Property P1,3, we have two available colors to color the vertex v such that γ(v) 6= γ(x) in H \
{w, y, z}. We choose the one such that by Property P2,1, we can color the vertex y with a color
γ(y) 6= γ(t) in H \ {w, z}. By Property P2,1, we can finally extend γ to a QR7-coloring of H .

(C5) Consider Configuration (d) depicted in Fig. 7. Let γ be a QR7-coloring of H \ {x1, . . . , x8}. By
Property 3.11, γ is (3, 3)-extendable to (x4, x5) in H \ {x4x5}. By Property 3.4, the three choices
of x4 forbid at most one color for x5 and therefore, there exist at least two couples of colors to color
x4 and x5, i.e. there exist at least two QR7-coloring of G extending γ.

(C6) Consider Configuration (e) depicted in Fig. 7. Let γ be a QR7-coloring of H \ {x1, . . . , x10}.
By Property 3.11, γ is (3, 3)-extendable to (x4, x7) in H \ {x5, x6}. Then, by Property 3.6, γ is
(3, 2)-extendable to (x4, x6) in H \ {x5}. Then by Property 3.10, γ is (3, 2)-extendable to (x4, x5)
in H \ {x4x5}. By Property 3.4, the three choices of x4 forbid at most one color for x5 and
therefore, there exists at least one couple of colors to color x4 and x5, i.e. there exists at least one
QR7-coloring of G extending γ.

2

4.2 Discharging procedure
Lemma 4.2 Let H be a connected plane graph. Then the following holds:∑

v∈V (H)

(11d(v)− 26) +
∑

f∈F (H)

(2d(f)− 26) = −52 (12)

Proof: Euler’s formula |V (G)| − |A(G)| + |F (G)| = 2 can be rewritten as (22|A(G)| − 26|V (G)|) +
(4|A(G)| − 26|F (G)|) = −52. This identity and the relation

∑
v∈V d(v) =

∑
f∈F d(f) = 2|A(G)|

complete the proof. 2

v
light 3-face

w

u

Fig. 8: A light 3-face

A 3-face f incident to vertices u, v, and w is light if each of u, v, and w
has degree 3, and one of u, v, and w, say w, is adjacent to a 2-vertex. We
say w is weak, and u and v are light; see Fig. 8.

We define the weight function ω by ω(x) = 11 · d(x)− 26 if x ∈ V (H)
and ω(x) = 2 · d(x) − 26 if x ∈ F (H). It follows from Identity (12)
that the total sum of weights is equal to −52. In what follows, we will de-
fine discharging rules (R1) and (R2) and redistribute weights accordingly.
Once the discharging is finished, a new weight function ω∗ is produced.
However, the total sum of weights is fixed by the discharging rules. Nev-
ertheless, we can show that ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). This
leads to the following obvious contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) ≤
∑

x∈V (H)∪F (H)

ω(x) = −52 < 0
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That demonstrates that no such counterexample can exist.

≥4-vertex

light 3-vertex

0.5 2

3-face

9

Fig. 9: Rule (R1)

7.5

5

light 3-face

7.5

2

Fig. 10: Rule (R2.1)

The discharging rules are defined as follows:

(R1) Let v be a ≥4-vertex. (see Fig. 9)

(R1.1) v gives 1
2 to each adjacent light 3-vertex.

(R1.2) v gives 2 to each adjacent 2-vertex.

(R1.3) v gives 9 to each incident 3-face.

(R2) Let v be a 3-vertex.

(R2.1) v is incident to a light 3-face. (see Fig. 10)

(R2.1.1) If v is light, then v gives 15
2 to the incident light

3-face.
(R2.1.2) If v is weak, then v gives 2 to the adjacent 2-vertex

and 5 to the incident light 3-face.

(R2.2) v is incident to 3-face which is not light. (see Fig. 11)

(R2.2.1) If v is adjacent to a 2-vertex then v gives 2 to the
2-vertex and 5 to the incident 3-face.

(R2.2.2) If v is adjacent to a light 3-vertex, then v gives 1
2

to the light 3-vertex and 13
2 to the incident 3-face.

(R2.2.3) In the other cases, v gives 7 to the incident 3-face.

(R2.3) v is not incident to a 3-face. Then v gives 1
2 to each

adjacent light 3-vertex and 2 to each adjacent 2-vertex.
(see Fig. 12)

2

5

not light 3-face

2-vertex

(a) Rule (R2.2.1)

0.5

not light 3-face

light 3-vertex

6.5

(b) Rule (R2.2.2)

nor a light 3-vertex

not light 3-face

7

neither a 2-vertex

(c) Rule (R2.2.3)

Fig. 11: Rule (R2.2)
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0.5

light 3-vertex

2-vertex

2

Fig. 12: Rule (R2.3)

Let v be a k-vertex with k ≥ 2 by (C1).

• If k = 2, then ω(v) = −4. Since two 2-vertices cannot be
adjacent by (C2), v receives 2 from each neighbor by R1.2,
R2.1.2, R2.2.1 and R2.3. Hence, ω∗(v) = 0.

• If k = 3, then ω∗(v) = 7. Suppose first that v is not incident
to a 3-face. By R2.3, v gives at most 3 · 2 and ω∗(v) ≥ 1.
Suppose now that v is incident to a 3-face f . If f is light,
then v is light or weak. If v is light then it receives 1

2 from
its neighbor which is not weak nor light by R1 and R2.3 (this
neighbor exists, since a light 3-vertex cannot be adjacent to two other light 3-vertices by (C5)).
Then v gives at most 15

2 to f by R2.1.1. Hence, ω∗(v) = 7 + 1
2 − 15

2 = 0. If v is weak, by R2.1.2,
it gives 7 and ω∗(v) = 0. If f is not light, v gives 7 by R2.2.1, R2.2.2 and R2.2.3, and ω∗(v) = 0.

• If k ≥ 4, then ω(v) = 11 · k − 26. It is easy to observe that v gives at most 9
2 · k by R1. Hence,

ω∗(v) ≥ 11 · k − 26− 9
2 · k = 13

2 · k − 26 ≥ 0.

Let f be an l-face. If l ≥ 13, then ω(f) = ω∗(f) ≥ 0. Suppose that l = 3; ω(f) = −20. If f is
light, then it receives 15

2 from each incident light 3-vertex and 5 from the incident weak vertex by R2.1.1
and R2.1.2, and ω∗(f) = −20 + 2 · 15

2 + 5 = 0. Suppose that f is not light. By (C3), f is not incident
to a 2-vertex. If f is incident to three 3-vertices, then the vertices on the boundary of f are adjacent to
at most one light 3-vertex by (C6) and to no 2-vertex by (C4); so f receives at least 2 · 7 + 13

2 by R2.2.2
and R2.2.3. Hence, ω∗(v) ≥ 1

2 . Finally, if f is incident to at least one ≥4-vertex (therefore f is not light),
then f receives at least 9 + 5 + 13

2 by (C4), R1.3, R2.2.1, R2.2.2 and R2.2.3. Hence, ω∗(v) ≥ 1
2 .

For all x ∈ V (H) ∪ F (H), ω∗(x) ≥ 0 which completes the proof of Theorem 1.10.

5 Proof of Theorem 1.11

v0

u0

un−2

un−1

un
v1

v2

u1

u2

u3

vn−1

vn−2

vn

Fig. 13: An outerplanar graphHn with-
out cycles of lengths 4 to n such that
χo(Hn) ≥ 6 for all n ≥ 5, n 6≡ 4
(mod 5)).

In this section, we prove that, for all i ≥ 4, there exists an outerpla-
nar graph G without cycle of lengths 4 to i such that χo(G) ≥ 7,
which implies χs(G) ≥ 7. This result shows that the upper bound
of Theorem 1.10 is tight for planar and outerplanar graphs. To get
the required result, we need the two following lemmas.

Lemma 5.1 For all n ≥ 5, n 6≡ 4 (mod 5), we have χo(Hn) ≥ 6
(where Hn is the graph depicted on Fig. 13).

Proof: The graph Hn needs at least 5 colors for any oriented col-
oring: indeed, the vertices un, vn, u0, v0, u1 must have distinct col-
ors. Suppose thatHn admits a 5-oriented-coloring f and let w.l.o.g.
f(un) = 0, f(vn) = 1, f(u0) = 2, f(v0) = 3 et f(u1) = 4. Then,
we have two available colors, namely 0 and 1, to color v1 and u2.
However, f(un) = 0 and f(vn) = 1; so we must set f(v1) = 0
and f(u2) = 1. Then, we have two available colors, namely 2 and
3, to color v2 and u3.
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4

23

0

1

Fig. 14: The tournament T5.

However, f(u0) = 2 and f(v0) = 3; so, we must set f(v2) = 2
and f(u3) = 3. Finally, we have two available colors, namely 0
and 4, to color v3 and u4. However, f(u1) = 4 and f(v1) = 0;
so, we must set f(v3) = 4 and f(u4) = 0. It is then obvious that
any 5-oriented-coloring of Hn is a T5-oriented-coloring (where T5

is the tournament depicted on Fig. 14). Now, we can check that
for any T5-oriented-coloring of Hn, we have f(ui+1) ≡ f(ui) + 2
(mod 5) (subscripts are taken modulo n + 1). Therefore, we have
f(un) ≡ f(u0) + 2n (mod 5), and f(u0) ≡ f(un) + 2 (mod 5).
Thus, 2 + 2n ≡ 0 (mod 5), what implies n ≡ 4 (mod 5), a con-
tradiction. Therefore, χo(Hn) ≥ 6.

2

4

2 3

1

6 5

(a) T 1
6 .

6

2 3

1

5

4

(b) T 2
6 .

4

2 3

1

6 5

(c) T 3
6 .

4

2 3

1

6 5

(d) T 4
6 .

2 3

1

5

4

6

(e) T 5
6 .

Fig. 15: The five non-isomorphic tournaments on six vertices such that for each vertex u, d−(u) ≥ 2 et d+(u) ≥ 2.

Let T 1
6 , T 2

6 , T 3
6 , T 4

6 , T 5
6 be the five tournaments on six vertices depicted on Fig. 15.

Lemma 5.2 Let n be an even integer and H ′n be the outerplanar graph depicted on Fig. 16. Any T 1
6 -

oriented-coloring (resp. T 2
6 , T 3

6 , T 4
6 , T 5

6 ) f of H ′n is such that f(w0) 6= 1.

Proof: Let i ∈ [1, 5]. Suppose that the graph H ′n admits a T i
6-oriented-coloring f such that f(w0) = 1.

Then, it is easy to check that, for all i, 0 ≤ i ≤ n, we have f(wi) = 1 if i is even, and f(wi) = 2
otherwise. Therefore, we have f(wn) = f(w0), that is forbidden. 2
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w3

w0

w2

w1

w0

wn

wn−1

wn−2

Fig. 16: An outerplanar graph H ′n without cycles of lengths 4 to n.

Proof of Theorem 1.11: Let n ≥ 5, n 6≡ 4 (mod 5), and Jn be the outerplanar graph constructed
as follows: we get Hn (depicted in Fig. 13), n + 1 copies of H (depicted in Fig. 17) and we identify

x

Fig. 17: The graph H .

the vertex x of each copy of H to vertices v0, v1, . . . , vn. By Lemma 5.1,
χo(Hn) ≥ 6. Let W = {u1, u2, . . . , un, v0, v1, . . . , vn}. Thus, if
χo(Jn) = 6, the six colors are necessarily used on the vertices of W
of Jn. In addition, since each vertex of W has two successors and two
predecessors with necessarily distinct colors in Jn, each vertex of a tour-
nament T on six vertices such that Jn → T must have at least two dis-
tinct predecessors and at least two distinct successors. There exist fifty-six
non-isomorphic tournaments on six vertices, but only five are such that
d−(u) ≥ 2 and d+(u) ≥ 2 for each vertex u: these are the ones depicted on Fig. 15. Therefore, if
χo(Jn) = 6, then Jn has necessarily a T -oriented-coloring for T ∈ {T 1

6 , T
2
6 , T

3
6 , T

4
6 , T

5
6 }.

u3

u0

un−1

un−2

un

u2

u1

Fig. 18: An outerplanar graph Gn without cycles of lengths 4 to n such that χo(Gn) = 7 for all n ≥ 5, n odd,
n 6≡ 4 (mod 5).
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Let Gn be the outerplanar graph depicted on Fig. 18 constructed as follows. We take Jn, 2n + 2
copies of H ′n and we identify w0 of each copy of H ′n with each vertex of W . Since the six colors are
necessarily used on the vertices of W , Gn 6→ T for all tournaments T of Fig. 15 by Lemma 5.2. We thus
get χo(Gn) ≥ 7. Moreover, Sopena [13] proved that every outerplanar graph has an oriented chromatic
number at most 7. Therefore, χo(Gn) = 7. 2

6 Proof of Theorem 1.12
In this section, we prove that every oriented planar graph without cycles of lengths 4 or 6 has a homomor-
phism to the Cayley graph QR19.

Let us define the partial order�. Let n3(G) be the number of ≥3-vertices in G. For any two graphs G1

and G2, we have G1 ≺ G2 if and only if at least one of the following conditions hold:

• G1 is a proper subgraph of G2.

• n3(G1) < n3(G2).

Note that this partial order is well-defined, since ifG1 is a proper subgraph ofG2, then n3(G1) ≤ n3(G2).
So � is a partial linear extension of the subgraph poset.

Let H be a minimal counterexample to Theorem 1.12 according to ≺.

As in the previous section, we proceed by reduction of configurations and discharging procedure.

6.1 Structural properties of H

Claim 6.1 The counterexample H does not contain:

(C1) a 1-vertex;

(C2) a 2-vertex incident to a 3-face;

(C3) a 2-vertex adjacent to a ≤3-vertex;

(C4) a 3-vertex;

(C5) a 4-vertex adjacent to two 2-vertices;

(C6) a 5-vertex adjacent to three 2-vertices;

(C7) a k-vertex adjacent to (k − 1) 2-vertices with 6 ≤ k ≤ 9.

Proof:

(C1) Trivial.

(C2) Consider Configuration ((a)) depicted in Fig. 19. AnyQR19-coloring γ ofH\{x} satisfies γ(u1) 6=
γ(u2), and can be extended to H by Property P2,4.
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u2

x

u1

(a)

uk

w

1≤ k ≤ 2

u1

v x

(b)

u1

x u3

u2

(c)

4≤ k ≤ 5

uk

uk−1

v1

vk−2

x

u1

uk−2

(d)

6≤ k ≤ 9
uk−1

v1

vk−1

uk x

u1

(e)

Fig. 19: Forbidden configurations of Theorem 1.12.

(C3) Consider Configuration ((b)) depicted in Fig. 19. AnyQR19-coloring γ ofH \{x} can be modified
such that γ(v) 6= γ(w) thanks to Property P2,4. This modified coloring can be extended to H by
Property P2,4.

(C4) Consider Configuration ((c)) depicted in Fig. 19. Notice that u1, u2, and u3 are ≥3-vertices since
Configuration ((b)) is forbidden. If d−(x) = 0 or d+(x) = 0, we can extend any QR19-coloring
of H \ {x} to H by Property P3,1. Now, there remains two equivalent cases: (1) d−(x) = 1 and
d+(x) = 2 or (2) d−(x) = 2 and d+(x) = 1. We only treat Case (1). Let us set Γ−(x) = {u1},
Γ+(x) = {u2, u3}. We now consider the graph H ′ obtained from H \ {x} by adding directed
2-paths joining respectively u1 and u2, and u1 and u3. Notice that if H is a planar graph without
cycles of lengths 4 or 6, then H ′ is a planar graph without cycles of lengths 4 or 6. Moreover
H ′ ≺ H since n3(H ′) = n3(H) − 1. Any QR19-coloring γ of H ′ induces a coloring of H \ {x}
such that γ(u1) 6= γ(u2) and γ(u1) 6= γ(u3), which can be extended to H by Property P3,1.

(C5)-(C6) Consider Configuration ((d)) depicted in Fig. 19. Any QR19-coloring γ of H \ {u1, . . . , uk−2}
can be modified such that γ(x) /∈ {γ(v1), . . . , γ(vk−2)} thanks to Property P2,4. This modified
coloring can be extended to H by Property P2,4.

(C7) Consider Configuration ((e)) depicted in Fig. 19. Any QR19-coloring γ of H \ {u1, . . . , uk−1}
can be modified such that γ(x) /∈ {γ(v1), . . . , γ(vk−1)} thanks to Property P1,9. This modified
coloring can be extended to H by Property P2,4.

2
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6.2 Discharging procedure
Lemma 6.2 Let H be a connected plane graph. Then we have the following:∑

v∈V (H)

(3d(v)− 10) +
∑

f∈F (H)

(2d(f)− 10) = −20 (13)

Proof: Euler’s formula |V (G)| − |A(G)| + |F (G)| = 2 can be rewritten as (6|A(G)| − 10|V (G)|) +
(4|A(G)| − 10|F (G)|) = −20. This identity and the relation

∑
v∈V d(v) =

∑
f∈F d(f) = 2|A(G)|

complete the proof. 2

We define the weight function ω by ω(x) = 3 · d(x) − 10 if x ∈ V (H) and ω(x) = 2 · d(x) − 10 if
x ∈ F (H). It follows from Identity (13) that the total sum of weights is equal to −20. In what follows,
we will define discharging rules (R1) to (R6) and redistribute weights accordingly. Once the discharging
is finished, a new weight function ω∗ is produced. However, the total sum of weights is fixed by the
discharging rule. Nevertheless, we can show that ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). This leads to the
following obvious contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) ≤
∑

x∈V (H)∪F (H)

ω(x) = −20 < 0

That demonstrates that no such counterexample can exist.

A 4-vertex is weak if it is incident to a unique 3-face and adjacent to a unique 2-vertex. The edge
incident to a weak 4-vertex which is not on the boundary of the 3-face and not incident to the 2-vertex is
called special. A special edge can be incident to two weak 4-vertices. Letm3(v) be the number of 3-faces
incident to v. Let m7(v) be the number of ≥7-faces incident to v.

The discharging rules are defined as follows (note that the initial weight of every edge of H is null):

(R1) Every ≥7-face gives 4
7 to each edge on its boundary.

(R2) Every ≥4-vertex gives 16
21 to each incident 3-face.

(R3) Every special edge gives 2
7 to each incident weak 4-vertex.

(R4) Every edge on the boundary of a 3-face f gives 4
7 to f .

(R5) Let v be a 2-vertex.

(R5.1) If m7(v) = 2, then the vertices adjacent to v give each 6
7 to v.

(R5.2) If m7(v) = 1, then the vertices adjacent to v give each 10
7 to v.

(R5.3) If m7(v) = 0, then the vertices adjacent to v give each 2 to v.

(R6) Every edge incident to a 2-vertex v gives the total weight obtained by (R1) to v.
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Let f be an l-face. Then l 6= 4 and l 6= 6 by hypothesis.

• If l = 3, ω(f) = −4. Since there are no 2-vertices incident to a 3-face by (C2) and no 3-vertices by
(C3), f is incident to three ≥4-vertices and receives from each 16

21 by (R2). Moreover, each edge of
its boundary gives 4

7 to it by (R1). Hence, ω∗(f) = −4 + 3 · 16
21 + 3 · 4

7 = 0.

• If l = 5, ω(f) = ω∗(f) = 0.

• If l ≥ 7, ω(f) = 2 · l − 10. By (R1), f gives 4
7 to each edge on its boundary. Hence, ω∗(f) =

2 · l − 10− 4
7 · l = 10

7 · l − 10 ≥ 0.

Let v be a k-vertex. Then k 6= 1 and k 6= 3 by (C1) and (C3).

• If k = 2, then ω(v) = −4. Observe that there are no 1-vertices by (C1), no two adjacent 2-vertices
by (C3), and no 3-vertices by (C4). If m7(v) = 2, then v receives 4 · 4

7 from its incident edges by
(R6) and 2 · 6

7 from its adjacent vertices by (R5.1). Hence, ω∗(v) = −4 + 4 · 4
7 + 2 · 6

7 = 0. If
m7(v) = 1, then v receives 2 · 47 from its incident edges by (R6) and 2 · 107 from its adjacent vertices
by (R5.2). Hence, ω∗(v) = −4 + 2 · 4

7 + 2 · 10
7 = 0. Finally, if m7(v) = 0, then v receives nothing

from its incident edges and 2·2 from its adjacent vertices by (R5.3). Hence, ω∗(v) = −4+2·2 = 0.

• If k = 4, then ω(v) = 2. By (C5), v is adjacent to at most one 2-vertex. First, suppose that v is not
weak. If m3(v) = 2, then v gives 2 · 16

21 by (R2) and ω∗(v) > 0. If v is adjacent to a 2-vertex, it
gives at most 2 by (R5). Finally, suppose that v is weak. Observe that since a 3-face is adjacent to
≥7-faces, then the 2-vertex adjacent to v is incident to at least one ≥7-face. So, v gives at most 10

7
to the adjacent 2-vertex by (R5) and 16

21 to the 3-face by (R2). Now, v receives 2
7 from its incident

special edge by (R3). Finally, ω∗(v) = 2− 10
7 − 16

21 + 2
7 = 2

21 > 0.

• If k = 5, ω(v) = 5. By (C6), v is adjacent to at most two 2-vertices and so ω∗(v) ≥ 5−2·2− 16
21 > 0

by (R2) and (R5).

• If k = 6, ω(v) = 8. By (C7), v is adjacent to at most four 2-vertices. If v is adjacent to at most
three 2-vertices, then ω∗(v) ≥ 8 − 3 · 2 − 16

21 > 0 by (R2) and (R5). Now suppose that v is
adjacent to four 2-vertices. If v is not incident to a 3-face then ω∗(v) ≥ 8 − 4 · 2 = 0 by (R5).
If v is incident to a 3-face, then two of the 2-vertices are incident to at least one ≥7-face. Hence,
ω∗(v) ≥ 8− 2 · 2− 2 · 10

7 − 16
21 > 0 by (R2) and (R5).

• If 7 ≤ k ≤ 9, ω(v) = 3 · k − 10. By (C7), v is adjacent to at most (k − 2) 2-vertices. Hence,
ω∗(v) ≥ 3 · k − 10− (k − 2) · 2− 16

21 = k − 6− 16
21 > 0.

• If k ≥ 10, ω(v) = 3 · k − 10. Hence, ω∗(v) ≥ 3 · k − 10− 2 · k ≥ 0.

Finally, it is easy to observe that the remaining charge on each edge is non-negative.

Thus, we obtain the following contradiction which completes the proof:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) ≤
∑

x∈V (H)∪F (H)

ω(x) = −20 < 0
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7 Concluding remarks
Several papers dealing with the strong oriented chromatic number of planar graphs get upper bounds as
corollaries of results on the maximum average degree. However, allowing triangles increases the max-
imum average degree as shown by Lemma 1.8. Indeed, the maximum average degree of planar graphs
with given girth tends to 2 when the girth grows, whereas the maximum average degree of planar graphs
without cycles of lengths 4 to i tends to 3 when i grows. Therefore, one might expect that the strong
oriented chromatic number would increase together with the maximum average degree. Nevertheless, our
results show that allowing triangles does not increase that much the strong oriented chromatic number.
Consequently, the maximum average degree is not a pertinent parameter to bound the strong oriented
chromatic number of planar graphs without cycles of lengths 4 to i, i ≥ 4. Indeed, the proofs for upper
bounds in this paper do not use the maximum average degree but have to use the planar structure of the
graphs.

In a companion paper [9], we continue this study and prove that χs(G) ≥ 11 (resp. 19, 43) for planar
graphs without cycles of lengths 4 to 9 (resp. without cycles of lengths 4 and 5, without cycles of length
4). The proofs are assisted by computer.

Up to now, we know that for all i ≥ 4, there exist outerplanar graphs G without cycles of lengths 4 to i
with χs(G) = 7. It would be interesting to construct lower bounds for small values of i to determine the
relevance of our upper bounds.

Acknowledgments
We are grateful to the anonymous referees for their helpful comments which improve the presentation of
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