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1. INTRODUCTION

Graph homomorphisms and proper graph colorings are closely related. Indeed, the ho-
momorphisms ϕ : G → Kk are the k-colorings of G. This explains that homomorphisms
of G to H are usually called H-colorings of G (we also say G is H-colorable) and that
the vertices of such graphs H are called colors. The chromatic number of G is defined as
the minimum number of colors k such that G admits a k-coloring; it can be equivalently
defined as the minimum order of a graph H such that G → H.

In this article, we propose to study homomorphisms of 2-edge-colored graphs. They
have been already studied as a way of extending classical results in graph coloring such
as Hadwigers conjecture. Guenin [5] introduced the notion of switching homomorphism
for its relation with a well-known conjecture of Seymour. In 2012, this notion has been
further developed by Naserasr et al. [8] as this theory captures a number of well-known
conjectures that can be reformulated using the definition of switching homomorphism.
In this article, we study 2-edge-colored graph homomorphism and switching homomor-
phism for themselves.

A 2-edge-colored graph (G, s) is a simple graph G with a signature s : E(G) →
{−1, +1} assigning a negative or positive sign to every edge of G. In the figures, negative
edges are drawn with dashed edges. Figure 1a gives an example of 2-edge-colored graph.
Switching a vertex v of a 2-edge-colored graph (G, s) corresponds to giving the opposite
sign to the edges incident to v. Given a 2-edge-colored graph (G, s) and a set of vertices
X ⊆ V (G), the graph obtained from (G, s) by switching every vertex in X is denoted by
(G, s(X )). Let ∂(X ) denote the edge cut between X and G \ X . Notice that (G, s(X )) is
also obtained by changing the sign of all the edges in ∂(X ).

Two 2-edge-colored graphs (G, s1) and (G, s2) are switching equivalent if we can
obtain (G, s1) from (G, s2) by switching a set of vertices of (G, s2), that is, s2 = s(X )

1 with
X ⊆ V (G). If (G, s1) and (G, s2) are switching equivalent, we write (G, s1) ∼ (G, s2).
Figure 1 gives an example of switching equivalent 2-edge-colored graphs where the
surrounded vertices belong to X . We use the notation (G) for a 2-edge-colored graph
when its signature is not relevant or is clear from the context, whereas G refers to the
underlying simple graph of (G).

Given two graphs (G, s) and (H, t), ϕ is a 2-edge-colored homomorphism of (G, s) to
(H, t) if ϕ : V (G) → V (H) is a mapping such that every edge of (G, s) is mapped to an
edge of the same sign in (H, t). Given two graphs (G, s1) and (H, t1), we say that there
is a switching homomorphism ϕ of (G, s1) to (H, t1) if there exist (G, s2) ∼ (G, s1) and
(H, t2) ∼ (H, t1) such that ϕ is a 2-edge-colored homomorphism of (G, s2) to (H, t2).

Lemma 1.1. If (G, s) admits a switching homomorphism to (H, t), then there exists
(G, s′) ∼ (G, s) such that (G, s′) admits a 2-edge-colored homomorphism to (H, t).

Proof. Since (G, s) admits a switching homomorphism to (H, t), this implies
that there exist (G, s′′) ∼ (G, s), (H, t ′) ∼ (H, t), and a 2-edge-colored homomor-
phism ϕ of (G, s′′) to (H, t ′). Let X ⊆ V (H) be such that (H, t ′) = (H, t (X )). Let
Y = {v ∈ V (G) | ϕ(v) ∈ X}. Let (G, s′) = (G, s′′(Y )). For every uv ∈ E(G) we have

� s′(uv) = −s′′(uv) ⇐⇒ uv ∈ ∂(Y ) by the switching of Y .
� t(ϕ(u)ϕ(v)) = −t ′(ϕ(u)ϕ(v)) ⇐⇒ ϕ(u)ϕ(v) ∈ ∂(X ) by the switching of X .
� uv ∈ ∂(Y ) ⇐⇒ ϕ(u)ϕ(v) ∈ ∂(X ) by the definition of Y .
� s′′(uv) = t ′(ϕ(u)ϕ(v)) by the definition of ϕ.
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(a) (b)

FIGURE 1. Two switching equivalent 2-edge-colored graphs.

Then we deduce that s′(uv) = t(ϕ(u)ϕ(v)), which means that ϕ is a 2-edge-colored
homomorphism of (G, s′) to (H, t). �

The above lemma implies that, in order to prove the existence of a switching homo-
morphism of (G, s) to (H, t), there is no need to switch (H, t).

The 2-edge-colored chromatic number χ2(G, s) of the graph (G, s) is the minimum
order (number of vertices) of a graph (H, t) such that (G, s) admits a 2-edge-colored
homomorphism to (H, t). Similarly, we define χsw(G, s) as the minimum order of a
graph (H, t) such that (G, s) admits a switching homomorphism to (H, t). Equivalently,
χsw(G, s) = min{χ2(G, s′) | (G, s′) ∼ (G, s)}.

The 2-edge-colored chromatic number χ2(G) of a simple graph G is defined as the
maximum χ2(G) = max{χ2(G, s)} over all signatures. The 2-edge-colored chromatic
number χ2(C) of a class of simple graphs C is defined as χ2(C) = max{χ2(G) | G ∈ C}.
Similarly, χsw(G) = max{χsw(G, s)} and χsw(C) = max{χsw(G) | G ∈ C}.

We use the following notations. The set of positive (resp. negative) neighbors of a
vertex v in a 2-edge-colored graph is denoted by N+(v) (resp. N−(v)). A vertex of degree
k (resp. at least k, at most k) is called a k-vertex (resp. �k-vertex, �k-vertex). A path
(resp. a cycle) containing k edges is called a k-path (resp. a k-cycle).

In this article, we study 2-edge-colored and switching homomorphisms of outerplanar
and planar graphs of given girth. The girth of a graph is the length of a shortest cycle. We
denote by Pg (resp. Og) the class of planar graphs (resp. outerplanar graphs) with girth
at least g. So P3 is simply the class of planar graphs.

In Section 2, we introduce and study the properties of several families of target graphs,
namely the antitwinned graph AT (G, s), the 2-edge-colored Zielonka graph SZk, the
2-edge-colored Paley graph SPq, and the 2-edge-colored Tromp–Paley graph Tr(SPq).
We consider 2-edge-colored homomorphisms of planar graphs and outerplanar graphs
in Section 3 and we provide lower and upper bounds on the 2-edge-colored chromatic
number. In particular, we prove that 12 � χ2(P4) � 50. This improves the previous
known upper bound of 80 that holds for planar graphs. Table I summarizes the current
knowledge of lower and upper bounds for the 2-edge-colored chromatic number of planar
graphs with given girth, including the results in this article.

We obtain results on switching homomorphisms of planar graphs and outerplanar
graphs of given girth in Section 4. We finally conclude in Section 5.
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TABLE I. Bounds on the 2-edge-colored chromatic number of planar graphs

Girth Lower bound Upper bound Target References

g = 3 20 80 SZ5 [1, 7]
g = 4 12 50 AT (SP25) Th. 3.6, Th. 3.11
g = 5 8 20 Tr (SP9) Th. 3.12, [7]
6 � g � 7 8 12 Tr (SP5) Th. 3.12, [7]
8 � g � 12 5 8 SP9 \ {0} [7]
g � 13 5 5 SP5 [3]

2. TARGET GRAPHS

Given a class of simple graphs C, we say that a 2-edge-colored graph (H) is C-universal if
every 2-edge-colored graph (G) such that G ∈ C admits a 2-edge-colored homomorphism
to (H).

In this section, our goal is not only to find target graphs that will give the required upper
bounds of our results in Sections 3 and 4. We describe several families of target graphs that
may be C-universal, for some classes C, and we determine their properties. We consider
below antitwinned graphs, the 2-edge-colored Zielonka graph SZk, the 2-edge-colored
Paley graph, and the 2-edge-colored Tromp–Paley graph.

We say that a 2-edge-colored graph (G, s) is

� vertex-transitive if for every two vertices u and v, there exists a 2-edge-colored
automorphism mapping u to v.

� arc-transitive if for every vertices u1, u2, v1, and v2 such that u1u2 and v1v2 are
edges of the same sign, there exists a 2-edge-colored automorphism mapping u1

to v1 and u2 to v2.
� triangle-transitive if for every vertices u1, u2, u3, v1, v2, and v3 such that u1u2u3

and v1v2v3 are triangles satisfying s(u1u2) = s(v1v2), s(u2u3) = s(v2v3), and
s(u3u1) = s(v3v1), there exists a 2-edge-colored automorphism mapping u1 to
v1, u2 to v2, and u3 to v3.

A. Antitwinned Graphs

In a 2-edge-colored graph, two distinct vertices u and v are twins if N+(u) = N+(v) and
N−(u) = N−(v). Also, u and v are antitwins if N+(u) = N−(v) and N−(u) = N+(v).
Note that twins (resp. antitwins) are necessarily nonadjacent. Moreover, if u has two
antitwins v1 and v2, then v1 and v2 are twins. A 2-edge-colored graph is twin-free if it
contains neither a pair of twins nor a pair of antitwins.

Let (G, s) be a 2-edge-colored graph and let (G+1) and (G−1) be two copies of (G).
The vertex corresponding to u ∈ V (G) in (Gi) is denoted by ui. We define the graph
AT (G, s) = (H, t) on 2|V (G)| vertices as follows:

� V (H) = V (G+1) ∪ V (G−1)
� E(H) = {

uiv j : uv ∈ E(G), i ∈ {−1, +1} , j ∈ {−1, +1}}
� t(uiv j) = i × j × s(uv)
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FIGURE 2. The graph AT (G, s).

Figure 2 illustrates the construction of the graph AT (G, s).
We say that a 2-edge-colored graph H is antitwinned if and only if every vertex has a

unique antitwin.

Observation 2.1. A 2-edge-colored graph H is antitwinned if and only if H is isomor-
phic to AT (G, s) such that (G, s) is a twin-free 2-edge-colored graph.

Given a twin-free 2-edge-colored graph (G, s), we denote by atw : V (AT (G, s)) →
V (AT (G, s)) the fixed-point-free involution that maps every vertex ui to its unique
antitwin, that is, atw(ui) = u−i. Note that atw is an automorphism of AT (G, s).

Lemma 2.2. A graph (G, s) admits a switching homomorphism to a twin-free graph
(H, t) if and only if (G, s) admits a 2-edge-colored homomorphism to the antitwinned
graph AT (H, t).

Proof. Brewster and Graves [4], Theorem 12] obtained a general result on m-edge-
colored graphs, which gives the following in the case m = 2: a graph (G, s) admits a
switching homomorphism to a graph (H, t) if and only if AT (G, s) admits a 2-edge-
colored homomorphism to AT (H, t).

Notice that AT (G, s) admits a 2-edge-colored homomorphism to AT (H, t) if and only
if (G, s) admits a 2-edge-colored homomorphism to AT (H, t). This implies that (G, s)
admits a switching homomorphism to a graph (H, t) if and only if (G, s) admits a
2-edge-colored homomorphism to AT (H, t).

Finally, we can conclude by using Observation 2.1. �

Corollary 2.3. If (G, s) admits a 2-edge-colored homomorphism to an antitwinned
graph T , then (G, s′) admits a 2-edge-colored homomorphism to T for every (G, s′) ∼
(G, s).

B. The 2-Edge-Colored Zielonka Graph SZk

The Zielonka graph Zk is an oriented graph introduced by Zielonka [14] in the theory
of bounded timestamp systems. Raspaud and Sopena [11] have used Zk in the context
of oriented homomorphism. Alon and Marshall [1] have adapted this construction to
m-edge-colored graphs in order to obtain bounds on the m-edge-colored chromatic num-
ber of graphs having an acyclic k-coloring. Let us describe the construction of the
2-edge-colored Zielonka graph SZk corresponding to the case m = 2. Every vertex is of
the form (i; α1, α2, . . . , αk), where 1 � i � k, α j ∈ {−1, +1} for j �= i, and αi = 0. Thus,
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FIGURE 3. The 2-edge-colored graph SP5.

|V (SZk)| = k · 2k−1. For i �= j, there is an edge between the vertices (i; α1, α2, . . . , αk)

and ( j; β1, β2, . . . , βk) and the sign of this edge is the product α j × βi.

Proposition 2.4. The graph SZk is antitwinned.

Proof. We denote by s the signature of SZk. By definition of an antitwinned graph,
we have to show that every vertex of SZk has a unique antitwin. To prove that the antitwin
of the vertex u = (i; α1, α2, . . . , αk) is the vertex u′ = (i; −α1, −α2, . . . , −αk), we check
that for every edge uv, the edge u′v exists and that s(u′v) = −s(uv). If uv is an edge, then
v = ( j; β1, β2, . . . , βk) for some j �= i and thus s(u′v) = (−α j) × βi = −(α j × βi) =
−s(uv). �

C. The 2-Edge-Colored Paley Graph SPq

In the remainder of this section, q is any prime power such that q ≡ 1 (mod 4). We
denote by Fq the unique (up to isomorphism) finite field of order q. Let g be a generator
of the multiplicative group F

∗
q and let sq : F

∗
q → {−1, +1} be the function square defined

as sq(v) = +1 if and only if v is a square of Fq. Note that g is necessarily a nonsquare,
so that

sq(gt ) = (−1)t . (1)

The Paley graph Pq is the undirected graph with vertex set V (Pq) = Fq and edge
set E(Pq) = {xy | sq(y − x) = +1}. Since −1 is a square in Fq, sq(x − y) = sq(y − x)

and therefore the definition of an edge is consistent. A Paley graph is vertex-transitive,
arc-transitive, and self-complementary [12], that is, it is isomorphic to its complement.

A strongly regular graph with parameters (n, k, λ, μ) is a k-regular graph G with n
vertices such that (1) every two adjacent vertices have λ common neighbors and (2) every
two nonadjacent vertices have μ common neighbors. Paley graphs Pq are known to be
strongly regular graphs with parameters (q,

q−1
2 ,

q−5
4 ,

q−1
4 ).

We define the 2-edge-colored Paley graph SPq = (Kq, s) as the complete graph on
q vertices such that V (SPq) = Fq and s(uv) = sq(u − v). That is, SPq is obtained from
the Paley graph Pq by replacing nonedges by negative edges. Figure 3 represents the
2-edge-colored Paley graph SP5.
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G−1
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∞−1
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v+1
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FIGURE 4. The 2-edge-colored graph Tr (G).

An antiautomorphism of a 2-edge-colored graph (G, s) is a permutation ρ of V (G)

such that for every edge uv, ρ(u)ρ(v) is an edge and s(ρ(u)ρ(v)) = −s(uv). Then (G)

is antiautomorphic if it admits an antiautomorphism.
Since Pq is vertex-transitive, arc-transitive, and self-complementary, SPq is vertex-

transitive, arc-transitive, and antiautomorphic.

D. The 2-Edge-Colored Tromp–Paley Graph Tr (SPq )

Given an oriented graph
−→
G , Tromp [13] proposed a construction of an oriented graph

Tr(G) called the Tromp graph. We adapt this construction to 2-edge-colored graphs as
follows.

Given a 2-edge-colored graph (G), we denote by (G•) the graph obtained from (G)

by adding a universal vertex, denoted by ∞, that is positively linked to all the vertices
of (G).

The Tromp 2-edge-colored graph Tr(G) of (G) is then defined as the 2-edge-colored
graph AT (G•). By construction, Tr(G) is obtained from two copies (G+1) and (G−1) of
(G) and the vertices ∞+1 and ∞−1 (see Figure 4).

Given a 2-edge-colored graph (G, s), let Tr(G) be the Tromp graph of (G) with
signature s′. Let uiv j ∈ Tr(G) such that u �= ∞. If v �= ∞, then

s′(uiv j) = i × j × s(uv). (2)

Otherwise

s′(ui∞ j) = i × j. (3)

Lemma 2.5. If (G) is antiautomorphic, then AT (G) and Tr(G) are antiautomorphic.

Proof. Let s be the signature of G and s′ be the signature of Tr(G). Let ρ be an
antiautomorphism of (G). We define the mapping γ : V (Tr(G)) → V (Tr(G)) as:

γ : ui →
{∞−i if u = ∞

(ρ(u))i if u �= ∞.

Let us check that γ maps every edge uiv j ∈ E(Tr(G)) to an edge of opposite sign. If
u, v �= ∞, then γ maps uiv j to ρ(u)iρ(v) j and we have by (2):

s′(ρ(u)iρ(v) j) = i × j × s(ρ(u)ρ(v)) = i × j × (−s(uv)) = −s′(uiv j).
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If u �= ∞ and v = ∞, then γ maps ui∞ j to ρ(u)i∞− j and we have by (3):

s′(ρ(u)i∞− j) = i × (− j) = −(i × j) = −s′(ui∞ j).

Since the restriction of γ to V (AT (G)) is well defined, the same proof applies to
AT (G). �

In the remainder of this section, we focus on the Tromp–Paley graph Tr(SPq) obtained
by applying the Tromp construction to the 2-edge-colored Paley graph SPq. It has 2q + 2
vertices denoted ui such that u ∈ {0, 1 = g0, g, g2, . . . , gq−2,∞} and i ∈ {−1, +1} (recall
that g is a generator of the multiplicative group F

∗
q). We denote by s the signature of SPq

and by s′ the signature of Tr(SPq). Note that if uiv j ∈ Tr(SPq), u �= ∞, and v �= ∞, then
s′(uiv j) = i × j × sq(u − v) by (2) since s(uv) = sq(u − v).

The graph Tr(SPq) has remarkable symmetries and some useful properties given below.

Lemma 2.6. The 2-edge-colored graph Tr(SPq) is vertex-transitive.

Proof. To prove that Tr(SPq) is vertex-transitive, we show that every vertex u can
be mapped to ∞+1. Recall that SPq is vertex-transitive and arc-transitive. Moreover, for
every vertex wi ∈ V (Tr(SPq)), either w = ∞, w = 0, or w = gt for some t.

If ϕ is an automorphism of SPq, we define the corresponding automorphism γϕ of
Tr(SPq) as:

γϕ : ui →
{

ui if u = ∞
(ϕ(u))i if u �= ∞.

We also define the mapping γ∞ : V (Tr(SPq)) → V (Tr(SPq)) as:

γ∞ : ui →

⎧⎪⎪⎨
⎪⎪⎩

∞i if u = 0

0i if u = ∞
g−t

i×(−1)t if u = gt .

Let us check that γ∞ is an automorphism of Tr(SPq), that is, that for every edge uiv j, we
have γ∞(ui)γ∞(v j) ∈ E(Tr(SPq)) and s′(γ∞(ui)γ∞(v j)) = s′(uiv j).

If u = gt and v = gr, then

s′(γ∞(ui)γ∞(v j)) = s′(g−t
i×(−1)t g−r

j×(−1)r

)
= i × (−1)t × j × (−1)r × sq(g−t − g−r) by (2)

= i × j × sq(gt+r) × sq(g−t − g−r) by (1)

= i × j × sq(gt+r(g−t − g−r))

= i × j × sq(gr − gt )

= i × j × sq(gt − gr)

= s′(gt
ig

r
j) by (2)

= s′(uiv j).

If u = gt and v = 0, then
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s′(γ∞(ui)γ∞(v j)) = s′(g−t
i×(−1)t ∞ j

)
= i × (−1)t × j by (3)

= i × j × sq(gt ) by (1)

= i × j × sq(gt − 0)

= s′(gt
i0 j) by (2)

= s′(uiv j).

If u = gt and v = ∞, then

s′(γ∞(ui)γ∞(v j)) = s′(g−t
i×(−1)t 0 j

)
= i × (−1)t × j × sq(g−t − 0) by (2)

= i × (−1)t × j × (−1)−t by (1)

= i × j

= s′(gt
i∞ j

)
by (3)

= s′(uiv j).

If u = 0 and v = ∞, then

s′(γ∞(ui)γ∞(v j)) = s′(∞i0 j)

= i × j by (3)

= s′(0i∞ j) by (3)

= s′(uiv j).

Given a vertex u ∈ SPq, we can choose ϕ so that ϕ(u) = 0. Thus, γϕ(ui) = 0i for every
u �= ∞. Also, γ∞(0i) = ∞i and atw(∞−1) = ∞+1. Hence, we can map every vertex
of Tr(SPq) to ∞+1 by combining the automorphisms γϕ, γ∞, and atw. So Tr(SPq) is
vertex-transitive. �

Lemma 2.7. Tr(SPq) is triangle-transitive.

Proof. There are four types of triangles (a, b, c) according to the number of positive
edges in their signature. Without loss of generality, the edges incident to c have the same
sign β and we denote by α the sign of ab. Thus, every type of triangle is characterized by
a couple (α, β) ∈ {−1, +1}2. We have to prove that for every two triangles of the same
type, there exists an automorphism of Tr(SPq) that maps one triangle to the other.

We first prove that every triangle (a, b, c) of type (+1, β) maps to the triangle
0+11+1∞β . By Lemma 2.6, Tr(SPq) is vertex-transitive, so there exists an automor-
phism ϕ that maps c to ∞β . Every edge of sign β incident to ∞β has its other extremity
in SP+1

q . Thus, ϕ maps the edge ab to a positive edge u+1v+1 in SP+1
q . Since SPq is

arc-transitive, we can finally map u+1v+1 to 0+11+1.
Let Tr(SPq) be obtained from Tr(SPq) by changing the sign of every edge. Since

SPq is antiautomorphic, Tr(SPq) is also antiautomorphic by Lemma 2.5. So Tr(SPq) is
isomorphic to Tr(SPq). Let us fix β ∈ {−1, +1} and let T1 and T2 be two triangles of
type (−1, β) in Tr(SPq). So T1 and T2 are triangles of type (+1, −β) in Tr(SPq). By
the previous case, there exists an automorphism that maps T1 to T2 in Tr(SPq). This
automorphism also maps T1 to T2 in Tr(SPq). �
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E. Coloring Properties of Target Graphs

A sign vector of size k is a k-tuple α = (α1, α2, . . . , αk) ∈ {−1, +1}k. The negation of
α is the sign vector −α = (−α1,−α2, . . . ,−αk). Given a sequence of k distinct vertices
Xk = (v1, v2, . . . , vk) of a 2-edge-colored graph (G, s) that induces a clique in G, an
α-neighbor of Xk is a vertex u ∈ V (G) such that s(viu) = αi for 1 � i � k. The set of
α-neighbors of Xk is denoted by Nα(Xk). Thus, the notion of α-neighbor generalizes to
sequences of vertices the notions of positive and negative neighbors of a vertex.

Consider the 2-edge-colored graph SP5 depicted in Figure 3. For example, given
α = (+1, −1) and X = (0, 3), the vertex 1 is an α-neighbor of X , the vertex 2 is a
(−α)-neighbor of X , and thus Nα(X ) = {1} and N−α(X ) = {2}.

A 2-edge-colored graph (G) has property Pk,l if |Nα(Xk)| � l for every sequence Xk

of k distinct vertices inducing a clique in G and for every sign vector α of size k.

Lemma 2.8. If SPq has property Pn−1,k, then Tr(SPq) has property Pn,k.

Proof. Suppose that SPq has property Pn−1,k and let α = (α1, . . . , αn−1, αn) be
a given sign vector. Let X = (x1, . . . , xn−1, xn) be a sequence of n distinct vertices
inducing a clique of Tr(SPq). We have to prove that X admits k α-neighbors. By
Lemma 2.6, Tr(SPq) is vertex-transitive and we assume without loss of generality that
xn = ∞+1. Notice that N−α(X ) = {atw(v) ‖ v ∈ N−α(X )}. So |N−α(X )| = |Nα(X )|
and we also assume without loss of generality that αn = +1. Since X is a clique,
we have xi /∈ {∞+1,∞−1} for 1 � i � n − 1. We define Y = (y1, . . . , yn−1) such that
yi = xi if xi ∈ SP+1

q and yi = atw(xi) if xi ∈ SP−1
q . Hence, the vertices in Y belong to

SP+1
q . We define β = (β1, . . . , βn−1) such that, for 1 � i � n − 1, βi = αi if and only if

xi = yi. By Property Pn−1,k of SPq, there exist k β-neighbors v1, v2, . . . , vk of Y in SP+1
q .

The vi’s are positive neighbors of ∞+1, so they are (β1, . . . , βn−1, +1)-neighbors of
(y1, . . . , yn−1,∞+1). Hence X has k α-neighbors. �

Lemma 2.9. If (G) is a 2-edge-colored graph and Tr(G) has property Pn,k, then AT (G)

has property Pn,k−1.

Proof. Recall that AT (G) is obtained from two isomorphic copies of (G) and then
Tr(G) is obtained from AT (G) by adding the antitwin vertices ∞+1 and ∞−1. Let X be a
sequence of n distinct vertices inducing a clique in AT (G). Since Tr(G) has property Pn,k,
then Nα(X ) contains k vertices of Tr(G) for every sign vector α of length n. However,
Nα(X ) cannot contain both ∞+1 and ∞−1, since they are antitwins. So X has at least
k − 1α-neighbors in AT (G), which means that AT (G) has property Pn,k−1. �

Lemma 2.10.

(1) SPq has properties P1,(q−1)/2 and P2,(q−5)/4.
(2) Tr(SPq) has properties P1,q, P2,(q−1)/2, and P3,(q−5)/4.
(3) AT (SPq) has properties P1,q−1, P2,(q−3)/2, and P3,max(0,(q−9)/4).

Proof.

(1) These properties follow from the fact that the 2-edge-colored Paley graph SPq is
built from the Paley graph Pq, which is self-complementary, arc-transitive, and
strongly regular with parameters (q,

q−1
2 ,

q−5
4 ,

q−1
4 ).
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(2) Tr(SPq) has property P1,q since it is vertex-transitive by Lemma 2.6 and the vertex
∞+1 has q positive and q negative neighbors. The other properties follow from
Lemma 2.10.(2.10) and Lemma 2.8. �

(3) These properties follow from Lemma 2.10.(2.10) and Lemma 2.9.

3. RESULTS ON 2-EDGE-COLORED HOMOMORPHISMS

This section is devoted to 2-edge-colored homomorphisms of planar graphs and outer-
planar graphs. Recall that a graph (H) is C-universal if every 2-edge-colored graph (G)

of the class C admits a 2-edge-colored homomorphism to (H).
An acyclic k-coloring is a proper vertex-coloring such that every cycle has at least

three colors. In other words, the graph induced by every two color classes is a forest. Let
Ak be the class of graphs that admit a k-acyclic coloring.

In 1998, Alon and Marshall [1] proved the following (the 2-edge-colored graph SZk

has k · 2k−1 vertices and has been considered in Section 2.2):

Theorem 3.1 ([1]). SZk is Ak-universal. Thus χ2(Ak) � k · 2k−1.

Huemer et al. [6] then proved that this bound cannot be improved:

Theorem 3.2 ([6]). For every k � 1, there exists a graph Gk ∈ Ak such that χ2(Gk) =
k · 2k−1. Thus χ2(Ak) = k · 2k−1.

Borodin [2] proved that every planar graph admits an acyclic 5-coloring. Thus, Alon
and Marshall deduced the following from Theorem 3.1:

Corollary 3.3 ([1]). SZ5 is P3-universal. Thus χ2(P3) � 80.

In this same context, Borodin et al. [3] and Montejano et al. [7] obtained the following
results:

Theorem 3.4 ([3, 7]).

(1) Tr(SP9) is P5-universal. Thus χ2(P5) � 20 [7].
(2) Tr(SP5) is P6-universal. Thus χ2(P6) � 12 [7].
(3) SP9 \ {0} is P8-universal. Thus χ2(P8) � 8 [7].
(4) SP5 is P13-universal. Thus χ2(P13) � 5 [3].

In this section, we obtain antitwinned target graphs for triangle-free outerplanar graphs
(Theorem 3.5) and triangle-free planar graphs (Theorem 3.6). The latter result gives a
new upper bound on the 2-edge-colored chromatic number. Then, we give properties that
must be satisfied by the target graphs for outerplanar graphs (Theorem 3.8) and planar
graphs (Theorem 3.10). Finally, we obtain new lower bounds on the 2-edge-colored
chromatic number of triangle-free planar graphs (Theorem 3.11) and planar graphs with
girth at least 7 (Theorem 3.12).

Theorem 3.5. AT (SP5 \ {0}) is O4-universal.

Proof. Assume by contradiction that (H) is a minimal counterexample to the result,
that is, (H) is in O4, (H) does not map to AT (SP5 \ {0}), and every proper subgraph of
(H) maps to AT (SP5 \ {0}).

Suppose that H contains a �1-vertex u. By minimality, the graph (H ′) = (H \ {u})
admits a 2-edge-colored homomorphism to AT (SP5 \ {0}). Since every vertex of
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AT (SP5 \ {0}) is incident to a positive and a negative edge, we can extend the 2-edge-
colored homomorphism to (H), a contradiction.

Suppose that H contains two adjacent 2-vertices u and v. By minimality, the graph
(H ′) = (H \ {u, v}) admits a 2-edge-colored homomorphism to AT (SP5 \ {0}). We have
checked that for every pair of (not necessarily distinct) vertices x and y of AT (SP5 \ {0}),
the eight possible 2-edge-colored 3-paths exist. Therefore, we can extend the 2-edge-
colored homomorphism to (H), a contradiction.

Pinlou and Sopena [10] have shown that every outerplanar graph with girth at least k and
minimum degree at least 2 contains a face of length l � k with at least (l − 2) consecutive
2-vertices. Therefore, H is not a triangle-free outerplanar graph. This contradiction
completes the proof. �
Theorem 3.6. AT (SP25) is P4-universal. Thus χ2(P4) � 50.

Let n3(G) be the number of �3-vertices in the graph G. Let us define the partial order .
Given two graphs G1 and G2, we have G1G2 if and only if one of the following conditions
holds:

� n3(G1) < n3(G2).
� n3(G1) = n3(G2) and |V (G1)| + |E(G1)| < |V (G2)| + |E(G2)|.

Note that the partial order is well defined and is an extension of the partial ordering by
minors.

Let (H) be a 2-edge-colored graph that does not admit a homomorphism to the 2-edge-
colored graph AT (SP25) and such that its underlying graph H is a triangle-free planar
graph that is minimal with respect to . In the following, H is given with its embedding
in the plane. A weak 7-vertex u in H is a 7-vertex adjacent to four 2-vertices v1, . . . , v4

and three �3-vertices w1, w2, w3 such that v1, w1, v2, w2, v3, w3, and v4 are clockwise
consecutive.

Lemma 3.7. The graph H does not contain the following configurations:

(C1) a �1-vertex;
(C2) a k-vertex adjacent to k 2-vertices for 2 � k � 49;
(C3) a k-vertex adjacent to (k − 1) 2-vertices for 2 � k � 24;
(C4) a k-vertex adjacent to (k − 2) 2-vertices for 3 � k � 12;
(C5) a 3-vertex;
(C6) a k-vertex adjacent to (k − 3) 2-vertices for 4 � k � 6;
(C7) two vertices u and v linked by two distinct 2-paths, both paths having a 2-vertex

as internal vertex;
(C8) a 4-face wxyz such that x is 2-vertex, w and y are weak 7-vertices, and z is a

k-vertex adjacent to (k − 4) 2-vertices for 4 � k � 9.

Proof. Configurations C2–C8 are depicted in Figures 5 and 6. The drawing conven-
tions for a configuration Ck contained in a graph H are as follows. The neighbors of a
white vertex in H are exactly its neighbors in Ck, whereas a black vertex may have other
neighbors in H. Two or more black vertices in Ck may coincide in a single vertex in H,
provided they do not share a common white neighbor.

For each configuration, we suppose that H contains the configuration and we consider
a 2-edge-colored triangle-free planar graph (H ′) such that . We only argue that for config-
uration C5. For every other configuration, H ′ is a minor of H and thus . By minimality of
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FIGURE 6. Configurations C5–C8.

H, (H ′) admits a 2-edge-colored homomorphism f to AT (SP25). We modify and extend
f to obtain a 2-edge-colored homomorphism of (H) to AT (SP25), contradicting the fact
that (H) is a counterexample.

By Lemma 2.10, AT (SP25) satisfies P1,24, P2,11, and P3,4.

Proof of configuration C1. Trivial.

Proof of configuration C2. Suppose that H contains the configuration depicted in
Figure 5a and f is a 2-edge-colored homomorphism of (H ′) = (H) \ {v, v1, . . . , vk} to
AT (SP25). For every i, if the edges vvi and viv′

i have the same sign (resp. different signs),
then v must get a color distinct from atw( f (v′

i)) (resp. f (v′
i)). So, each v′

i forbids at most
one color for v. Thus there remains an available color for v. Then we extend f to the
vertices vi using property P2,11 if f (v′

i) �= f (v) or P1,24 if f (v′
i) = f (v).

Proof of configuration C3. Suppose that H contains the configuration depicted in
Figure 5 b and f is a 2-edge-colored homomorphism of (H ′) = (H) \ {v, v2, . . . , vk} to
AT (SP25). As shown in the proof of Configuration C2, each v′

i forbids at most one color
for v. So, we have at most 23 forbidden colors for v and by property P1,24, there remains
at least one available color for v. Then we extend f to the vertices vi (2 � i � k) using
property P2,11.

Proof of configuration C4. Suppose that H contains the configuration depicted
in Figure 5c and f is a 2-edge-colored homomorphism of (H ′) = (H) \ {v3, . . . , vk} to
AT (SP25). As shown in the proof of Configuration C2, each v′

i forbids at most one color
for v. So, we have at most 10 forbidden colors for v and by property P2,11 applied to
f (v1), f (v2) this remains at least one available color in order to recolor v. Then we extend
f to the vertices vi (3 � i � k) using property P2,11.

Proof of configuration C5. Suppose that H contains the configuration depicted in
Figure 6 a. Let (H ′) be the graph obtained from (H) by deleting the vertex v and by adding,
for every 1 � i < j � 3, a new vertex vi j and the edges vivi j and vi jv j. Each of the six
edges vivi j gets the sign αi of the edge viv in (H). Since configuration C4 is forbidden in
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H, v1, v2, and v3 are �3-vertices. We have since n3(H ′) < n3(H). Clearly, H ′ is triangle-
free. Hence, there exists a 2-edge-colored homomorphism f of (H ′) to AT (SP25). By P3,4,
we can find an α-neighbor u of ( f (v1), f (v2), f (v3)) in AT (SP25) with α = (α1, α2, α3).
Now fix f (v) = u. Note that f restricted to V (H) is a homomorphism of (H) to AT (SP25).

Proof of configuration C6. Suppose that H contains the configuration depicted in
Figure 6b and f is a 2-edge-colored homomorphism of (H ′) = (H) \ {v4, . . . , vk} to
AT (SP25). As shown in the proof of Configuration C2, each v′

i forbids at most one color
for v. So, we have at most three forbidden colors for v and by property P3,4 applied to
f (v1), f (v2), f (v3), there remains at least one available color for v. Then we extend f to
the vertices vi (4 � i � k) using property P2,11.

Proof of configuration C7. Suppose that H contains the configuration depicted in
Figure 6c.

If u and w have no common neighbor other than v1 and v2, then we consider the graph
(H ′) obtained from (H) \ {v1, v2} by adding the positive edge uw.

If u and w have at least one other common neighbor v3, then consider the graph (H ′)
obtained from (H) \ {v1, v2} by adding a vertex v adjacent to u and w such that uv is
negative and the sign of vw is the product of the signs of uv3 and v3w. Therefore, we have
at least two 2-paths linking u and w, one whose both edges have the same sign and one
whose edges have different signs.

In both cases, H ′ is triangle-free, planar, and is a minor of H, so that (H ′) admits a
2-edge-colored homomorphism f to AT (SP25). Also, in both cases, f (u) and f (w) form
an edge in AT (SP25) since f (u) �= f (w) and f (u) �= f (atw(w)). Thus, the homomor-
phism of (H) \ {v1, v2} induced by f can be extended to (H) using property P2,11.

Proof of configuration C8. Suppose that H contains the configuration depicted in
Figure 6d. By Corollary 2.3, (H) admits a 2-edge-colored homomorphism to AT (SP25)

if and only if every 2-edge colored graph that is switching equivalent to (H) admits
a 2-edge-colored homomorphism to AT (SP25). So, by switching a subset of vertices
in {a, b, c, c1, c2}, we can assume that the edges da, ab, bc, cc1, and cc2 are positive.
Consider a 2-edge-colored homomorphism f of (H ′) = (H \ {d}) to AT (SP25). The
edge dc in (H) has to be negative, since otherwise f would be extendable to (H) by
setting f (d) = f (b). Also, we must have f (c) = f (a), since otherwise we could color
d using property P2,11. In the remainder of the proof, we show that we can modify f
such that f (c) �= f (a). For 1 � i � 3, let ki denote the color that is forbidden for c by
wi, that is, ki = f (wi) if the edges of the 2-path linking c and wi have distinct signs and
ki = atw( f (wi)) otherwise.

First, we rule out the cases in which f (c1), f (c2), and f (b) have at least five common
positive neighbors, since this allows to choose for c a color that is not in {k1, k2, k3, f (a)}.
If f (c1), f (c2), and f (b) are not pairwise distinct, then they have at least 11 common pos-
itive neighbors by property P2,11. So we assume that f (c1), f (c2), and f (b) are distinct.
We define the sequence X = ( f (c1), f (c2), f (b)) and the sign vector α = (+1, +1, +1).
Recall that AT (SP25) contains two copies SP+1

25 and SP−1
25 of SP25. We consider the graph

Tr(SP25) obtained by adding the antitwin vertices ∞+1 and ∞−1 to AT (SP25). Using
the triangle-transitivity of Tr(SP25), a quick computer check shows that X has five α-
neighbors in Tr(SP25) if X induces a triangle with three positive edges and X has six
α-neighbors otherwise. Notice that ∞+1 and ∞−1 cannot be both α-neighbors of X .
Thus, if X does not induce three positive edges, then X has at least five α-neighbors in
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TABLE II. Sets of the form (0+1, 1+1, β+1) having exactly four
(+1,+1,+1)-neighbors in AT (SP25)

(0+1, 1+1, 2+1) 3+1, 4+1, (1 + 2
√

2)−1, (1 + 3
√

2)−1

(0+1, 1+1, 3+1) 2+1, 4+1, (3 + √
2)−1, (3 + 4

√
2)−1

(0+1, 1+1, 4+1) 2+1, 3+1, (2
√

2)−1, (3
√

2)−1

(0+1, 1+1, (3 + 2
√

2)+1) (3 + √
2)−1, (3

√
2)−1, (1 + 3

√
2)−1, (3 + 4

√
2)−1

(0+1, 1+1, (3 + 3
√

2)+1) (3 + √
2)−1, (2

√
2)−1, (1 + 2

√
2)−1, (3 + 4

√
2)−1

AT (SP25). Also, if X is not contained in one copy of SP25 of the subgraph AT (SP25), then
neither ∞+1 nor ∞−1 is an α-neighbor of X and thus X has at least five α-neighbors in
AT (SP25).

So X is contained in one copy of SP25, say SP+1
25 . We represent the field F25 by the

numbers x + y
√

2, where x and y are integers modulo 5. Without loss of generality,
we can assume that f (c1) = 0+1 and f (c2) = 1+1 since f (c1) f (c2) is a positive edge
and SP25 is arc-transitive. Moreover, X induces three positive edges, so f (b) = β+1,
where β is in the set B of positive neighbors of 0 and 1 in SP25. We thus have β ∈
B = {2, 3, 4, 3 + 2

√
2, 3 + 3

√
2}. Table II gives the suitable sequences and their four

α-neighbors in AT (SP25).
We are now ready to modify f . We decolor the vertices a, b, and c. By property P2,11,

there exist at least two colors for b that are distinct from the colors forbidden by the k
vertices v1, . . . , vk−4, a1, a2, c1, c2. By previous discussions, these two colors are β+1 and
β ′

+1 with
{
β, β ′} ⊂ B. Let us first set f (b) = β+1. By property P3,4, we can color a such

that f (a) is distinct from the colors forbidden by u1, u2, and u3. Since f is not extendable
to c and d, the four α-neighbors of (0+1, 1+1, β+1) are k1, k2, k3, and f (a). In particular,
k1, k2, and k3 are α-neighbors of (0+1, 1+1, β+1). Now we set f (b) = β ′

+1 and obtain that
k1, k2, and k3 are α-neighbors of (0+1, 1+1, β

′
+1) as well. This is a contradiction, since

no two distinct sequences in Table II have three common α-neighbors. �
Proof of Theorem 3.6. Let (H) be a counterexample that is minimal with respect to

. By Lemma 3.7, H does not contain any of the configurations C1–C8. It remains to show
that every triangle-free planar graph contains at least one of these configurations. This
has been already done using a discharging procedure in the proof of Theorem 2 in [9],
where slightly weaker configurations were used. �

Montejano et al. [7] proved that SP9 is O3-universal. They also construct an outerplanar
graph G such that χ2(G) = 9, so that χ2(O3) = 9. We precise their result as follows:

Theorem 3.8. The only O3-universal graph of order 9 is SP9.

We say that a 2-edge-colored path or cycle is alternating if it has an even number of
edges and if every two consecutive edges have different signs. Let (P) be the alternating
6-path.

Observation 3.9. χ2(P) = 4. Moreover, if (P) maps to a graph (T4) with four vertices,
then (T4) contains no monochromatic triangle.

Indeed, if (P) maps to a graph T4 with four vertices, then (T4) must contain an
alternating 4-cycle. So (T4) cannot contain a monochromatic triangle.
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Proof of Theorem 3.8. Let (H) be the outerplanar graph consisting in a universal
vertex u positively linked to every vertex of a copy (Pp) of (P) and negatively linked
to every vertex of a copy (Pn) of (P). So |V (H)| = 15. By Observation 3.9, every
homomorphic image of (H) uses at least four colors for the vertices of (Pp), at least four
other colors for the vertices of (Pn), and an additional color for u. Therefore χ2(H) � 9.

Let (G) be the outerplanar graph obtained from 16 copies (H0), (H1), . . . , (H15) of
(H) as follows: we identify each of the 15 vertices of (H0) with the vertex u of a copy
(Hi). Consider a graph (T9) with nine vertices such that (G) maps to (T9). In every 2-
edge-colored homomorphism of (G) to (T9), each of the nine colors appears on a vertex
of (H0) since χ2(H0) � 9. Since a copy of (H) is attached to every vertex of (H0), every
vertex c of (T9) satisfies |N+(c)| = |N−(c)| = 4. By Observation 3.9, N+(c) and N−(c)

contain no monochromatic triangle.
Let s be the signature of (T9). We denote the vertices of (T9) by vi, j with (i, j) ∈ Z

2
3.

Since (G) contains positive triangles, (H) necessarily contains a positive triangle. Without
loss of generality, the edges of the triangle v0,0v0,1v0,2 are positive. Let ∂ denote the
edge cut between the vertices v0, j and the vertices vi, j with i �= 0. Since every vertex
v0, j satisfies |N+(v0, j)| = 4 and s(v0, jv0, j−1) = s(v0, jv0, j+1) = +1, every vertex v0, j is
incident to exactly two positive edges in ∂ . So ∂ contains exactly six positive edges.
Now, every vertex vi, j with i �= 0 must be positively linked to at least one vertex v0, j,
since otherwise N−(vi, j) would contain the monochromatic triangle v0,0v0,1v0,2, which is
forbidden. Since ∂ contains exactly six positive edges, each of the six vertices vi, j with
i �= 0 is incident to exactly one positive edge in ∂ . Without loss of generality, we can
assume that s(v0, jv1, j) = s(v0, jv2, j) = +1 for every j ∈ Z3, and thus that every other
edge in ∂ is negative. Now, the edge v1,0v2,0 must be positive, since otherwise N+(v0,0)

would contain the monochromatic triangle v0,1v1,0v2,0, which is forbidden . By symmetry,
we thus have s(v1, jv2, j) = +1 for every j ∈ Z3. Therefore, assuming that a vertex v of
(T9) belongs to a positive triangle (e.g., v0,0 belongs to v0,0v0,1v0,2) implies that v belongs
to two positive triangles that intersect only at v (e.g., v0,0 also belongs to v0,0v1,0v2,0).
Since we have proved that every vertex v of (T9) belongs to a positive triangle, v belongs
to two positive triangles that intersect only at v.

The set of edges of (T9) whose sign is not yet determined induces K2,2,2. Since
|N+(vi, j)| = 4, this K2,2,2 must contain six positive edges that induce two triangles.
Without loss of generality, these two positive triangles are v1,0v1,1v1,2 and v2,0v2,1v2,2.

Notice that every edge vi, jvi′, j′ of (T9) is positive if and only if i = i′ or j = j′, so (T9)

is SP9. �

Concerning planar graphs, it is known that χ2(P3) � 20 [7, Corollary 9]. The following
result is similar to Theorem 3.8 for planar graphs.

Theorem 3.10. If there exists an antitwinned P3-universal graph of order 20, then that
graph is Tr(SP9).

Proof. Suppose that every 2-edge-colored planar graph maps to an antitwinned
graph (H20). Let (G) be the outerplanar graph considered in the proof of Theorem 3.8.
Then the planar graph (G•) maps to (H20) and the subgraph (G) of (G•) maps to the
positive neighborhood of some vertex v of (H20). Since (H20) is antitwinned, every
vertex has at most nine positive neighbors. Therefore, by Theorem 3.8, the positive
neighborhood of v is isomorphic to SP9. Then the subgraph of (H20) induced by v and
its positive neighborhood is SP•

9 . Since SP•
9 is a clique of order 10, it does not contain a
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FIGURE 7. The graph (G) of Theorem 3.11.

pair of antitwin vertices and thus (H20) is isomorphic to AT (SP•
9 ). By the definition of

2-edge-colored Tromp–Paley graphs, (H20) is isomorphic to Tr(SP9). �
Concerning triangle-free planar graphs, we obtain a new lower bound.

Theorem 3.11. There does not exist a P4-universal graph of order 11. Thus χ2(P4) �
12.

Proof. A vertex u in a 2-edge-colored graph is good if u is contained in a positive
cycle of odd length, in a negative cycle of odd length, and in a 4-cycle upvn such that pu
and pv are positive and nu and nv are negative (these cycles are not necessarily induced).
We have checked, both by hand and by computer, that

(i) no graph with at most five vertices contains a good vertex,
(ii) no graph with six vertices contains six good vertices.

We consider the plane graph (G) ∈ P4 depicted in Figure 7. If (G) admits a 2-edge-
colored homomorphism h to a graph (H) such that the outer face of (G) maps to a
subgraph (H ′) of (H), then h(c) is good in (H ′). We construct the plane graph (G′) ∈ P4

from 10 copies (G0), (G1), . . . , (G9) of (G) by identifying the vertex c of (Gi) with the
vertex xi of (G0), for 1 � i � 9. The embedding of (G′) is such that the x j’s of each of
the 10 copies are on the outer face. Thus, the outer face of (G′) contains 91 vertices.

Suppose for contradiction that there exists a 2-edge-colored homomorphism of (G′)
to a graph (H) such that the outer face of (G′) maps to a subgraph (H ′) of (H) such that
(H ′) has at most six vertices. Since (G′) contains (G) as a subgraph, (H ′) contains a
good vertex. So (H ′) contains exactly six vertices by (i). Moreover, every vertex on the
outer face of (G0) corresponds to the vertex c of some copy (Gi) of (G). Thus, all the six
vertices of (H ′) must be good. This contradicts (ii). Therefore, if the graph (G′) maps
to some graph (H), then its outer face maps to some subgraph (H ′) of (H) of order at
least 7.

Now, we finish the proof. In a 2-edge-colored graph, two distinct vertices u and v are
friends if |Nα(u, v)| � 2 for every α ∈ {−1, +1}2. Notice that for every homomorphism
h of the graph (F ) depicted in Figure 8, the vertices h(t) and h(b) must be friends in the
target graph. Consider a 2-edge-colored graph (J) ∈ P4 such that χ2(J) = χ2(P4). We
construct (J′) by adding to every vertex u of (J) a copy (G′

u) of (G′) and by connecting
each of the 91 vertices on the outer face of (G′

u) to u using a copy of (F ). Recall that
in every homomorphic image of (G′

u), at least seven distinct colors appear on the outer
face. So, if χ2(P4) = k, then (J′) must map to a 2-edge-colored clique with k vertices
such that every vertex has at least seven friends. We have checked by computer that no
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t
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FIGURE 8. The graph (F ) of Theorem 3.11.

2-edge-colored clique with at most 11 vertices is such that every vertex has at least seven
friends. �

Finally, concerning planar graphs with girth at least 7, the following theorem gives a
new lower bound.

Theorem 3.12. There does not exist a P7-universal graph of order 7. Thus χ2(P7) � 8.

Proof. Consider a 2-edge-colored graph (J) such that J ∈ P7 and χ2(J) = χ2(P7).
We construct (J′) from (J) as follows. For every vertex u in (J) and for every pair
(sc, sp) ∈ {−1, +1}2, we add a 7-cycle whose edges have sign sc and connect u to every
vertex of this 7-cycle using a path with three edges of sign sp.

If χ2(P7) = k, then (J′) must map to a 2-edge-colored clique with k vertices such that
for every vertex u and every sp ∈ {−1, +1}, the graph induced by the vertices reachable
by a walk of three edges of sign sp starting from u contains both a positive and a negative
cycle of odd length. We have checked by computer that no 2-edge-colored clique with at
most seven vertices satisfies this property. �

4. RESULTS ON SWITCHING HOMOMORPHISM

The graph classes considered in Theorems 3.1, 3.4, 3.5, and 3.6 admit a 2-edge-colored
homomorphism to an antitwinned graph. Using Lemma 2.2, we obtain good upper bounds
on χsw for these classes.

Naserasr et al. [8] proved the following.

Theorem 4.1 ([8]). Let G be a graph that admits an acyclic k-coloring. Then χsw(G) �
�k/2� · 2k−1.

By Theorem 3.1, SZk is Ak-universal. By Proposition 2.4 and Lemma 2.2, we obtain
the following improvement of Theorem 4.1.

Theorem 4.2. Let Gk be the graph in Theorem 3.2. For every k � 2, χsw(Gk) =
χsw(Ak) = k · 2k−2.

We also obtain the following results.
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TABLE III. Bounds on χsw

Class Lower bound Upper bound Target

Og, for every g � 4 4 4 SP5 \ {0}
P3 10 40 Half of A5
P4 6 25 SP25
P5 4 10 SP•

9
P6 4 6 SP•

5

Theorem 4.3.

(1) Every outerplanar graph of girth 4 admits a switching homomorphism to SP5 \ {0}.
(2) Let (H) be such that SZ5 = AT (H). Every planar graph admits a switching ho-

momorphism to (H).
(3) Every planar graph of girth 4 admits a switching homomorphism to SP25.
(4) Every planar graph of girth 5 admits a switching homomorphism to SP•

9 .
(5) Every planar graph of girth 6 admits a switching homomorphism to SP•

5 .

Proof. Every statement is of the form “every graph in C admits a switching homo-
morphism to (J).” By Lemma 2.2, it is equivalent to the statement “every graph in C
admits a 2-edge-colored homomorphism to AT (J).”

� Item (1) follows from Theorem 3.5.
� Item (2) follows from Corollary 3.3 (i.e., planar graphs map to SZ5) and Proposi-

tion 2.4 (i.e., SZ5 is antitwinned).
� Item (3) follows from Theorem 3.6.
� Item (4) follows from Theorem 3.4(3.4).
� Item (5) follows from Theorem 3.4(3.4). �

Concerning lower bounds, Naserasr et al. [8] constructed a planar graph G such
that χsw(G) = 10. This result also follows from χ2(P3) � 20 in [7] and Lemma 2.2.
Moreover, we obtain the following from Theorem 3.10 and Lemma 2.2.

Corollary 4.4. If every 2-edge-colored planar graph admits a switching homomor-
phism to a graph of order 10, then that graph is switching equivalent to SP•

9 .

By Theorem 3.11, there exists a bipartite planar graph (G) such that χsw(G) � 6.
Finally, for higher girths, note that χsw(C2k) = 4 for even cycles with exactly one negative
edge. The results discussed in this section are summarized in Table III.

5. CONCLUSION

One of our aims was to introduce and study some relevant target graphs for 2-edge-colored
homomorphism and switching homomorphism. We have considered the graph AT (G),
2-edge-colored Zielonka graph SZk, 2-edge-colored Paley graph SPq, and 2-edge-colored
Tromp–Paley graph Tr(SPq). Theorems 3.8 and 3.10 suggest that these target graphs are
indeed interesting. Theorem 3.10 leads to the following question.
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Open Problem 5.1. Is Tr(SP9)P3-universal ?

This would imply that χ2(P3) = 20 and χsw(P3) = 10. We have checked by computer
that every 4-connected planar triangulation with at most 15 vertices admits a homo-
morphism to Tr(SP9). The restriction to 4-connected triangulations (i.e., triangulations
without separating triangles) is justified by Lemma 2.7. For the 225 nonequivalent sig-
natures of each of the 6,244 4-connected planar triangulations with 15 vertices, our
computer check took 150 CPU-days. Checking 4-connected triangulations with more
vertices would require too much computing power.
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