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Abstract

A homomorphism from an oriented graph G to an oriented graph H is a mapping
ϕ from the set of vertices of G to the set of vertices of H such that

−−−−−−→
ϕ(u)ϕ(v) is an

arc in H whenever −→uv is an arc in G. The oriented chromatic index of an oriented
graph G is the minimum number of vertices in an oriented graph H such that there
exists a homomorphism from the line digraph LD(G) of G to H (Recall that LD(G)
is given by V (LD(G)) = A(G) and −→ab ∈ A(LD(G)) whenever a = −→uv and b = −→vw).
We prove that every oriented subcubic graph has oriented chromatic index at most
7 and construct a subcubic graph with oriented chromatic index 6.

Keywords: Graph coloring, oriented graph coloring, arc-coloring, subcubic graphs.

1 Introduction

We consider finite simple oriented graphs, that is digraphs with no opposite arcs. For an
oriented graph G, we denote by V (G) its set of vertices and by A(G) its set of arcs.

In [2], Courcelle introduced the notion of vertex-coloring of oriented graphs as follows:
an oriented k-vertex-coloring of an oriented graph G is a mapping ϕ from V (G) to a set
of k colors such that (i) ϕ(u) 6= ϕ(v) whenever −→uv is an arc in G, and (ii) ϕ(u) 6= ϕ(x)
whenever −→uv and −→wx are two arcs in G with ϕ(v) = ϕ(w). The oriented chromatic number
of an oriented graph G, denoted by χo(G), is defined as the smallest k such that G admits
an oriented k-vertex-coloring.

Let H and H ′ be two oriented graphs. A homomorphism from H to H ′ is a mapping

ϕ from V (H) to V (H ′) that preserves the arcs:
−−−−−−→
ϕ(u)ϕ(v) ∈ A(H ′) whenever −→uv ∈ A(H).

An oriented k-vertex-coloring of G can be equivalently defined as a homomorphism ϕ from
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G to H , where H is an oriented graph of order k. The existence of such a homomorphism
from G to H is denoted by G→ H . The graph H will be called color-graph and its vertices
will be called colors, and we will say that G is H-colorable. The oriented chromatic number
can be then equivalently defined as the smallest order of an oriented graph H such that
G→ H .

Oriented vertex-colorings have been studied by several authors in the last past years
(see e.g. [1, 3, 5] or [7] for an overview).

One can define oriented arc-colorings of oriented graphs in a natural way by saying
that, as in the undirected case, an oriented arc-coloring of an oriented graph G is an
oriented vertex-coloring of the line digraph LD(G) of G (Recall that LD(G) is given by

V (LD(G)) = A(G) and
−→
ab ∈ A(LD(G)) whenever a = −→uv and b = −→vw). We will say that

an oriented graph G is H-arc-colorable if there exists a homomorphism ϕ from LD(G)
to H and ϕ is then an H-arc-coloring or simply an arc-coloring of G. Therefore, an
oriented arc-coloring ϕ of G must satisfy (i) ϕ(−→uv) 6= ϕ(−→vw) whenever −→uv and −→vw are
two consecutive arcs in G, and (ii) ϕ(−→vw) 6= ϕ(−→xy) whenever −→uv,−→vw,−→xy,−→yz ∈ A(G) with
ϕ(−→uv) = ϕ(−→yz). The oriented chromatic index of G, denoted by χ′

o(G), is defined as the
smallest order of an oriented graph H such that LD(G)→ H .

The notion of oriented chromatic index can be extended to undirected graphs as fol-
lows. The oriented chromatic index χ′

o(G) of an undirected graph G is the maximum of
the oriented chromatic indexes taken over all the orientations of G (an orientation of an
undirected graph G is obtained by giving one of the two possible orientations to every
edge of G).

In this paper, we are interested in oriented arc-coloring of subcubic graphs, that is
graphs with maximum degree at most 3.

Oriented vertex-coloring of subcubic graphs has been first studied in [4] where it was
proved that every oriented subcubic graph admits an oriented 16-vertex-coloring. In 1996,
Sopena and Vignal improved this result:

Theorem 1 [6] Every oriented subcubic graph admits an oriented 11-vertex-coloring.

It is not difficult to see that every oriented graph having an oriented k-vertex-coloring
admits a k-arc-coloring (from a k-vertex-coloring f , we obtain a k-arc-coloring g by setting
g(−→uv) = f(u) for every arc −→uv). Therefore, every oriented subcubic graph admits an
oriented 11-arc-coloring.

We improve this bound and prove the following

Theorem 2 Every oriented subcubic graph admits an oriented 7-arc-coloring.

More precisely, we shall show that every oriented subcubic graph admits a homomor-
phism to QR7, a tournament on 7 vertices described in section 3.

Note that Sopena conjectured that every oriented connected subcubic graph admits
an oriented 7-vertex-coloring [4].
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This paper is organized as follows. In the next section, we introduce the main definitions
and notation. In section 3, we described the tournament QR7 and give some properties
of this graph. Finally, Section 4 is dedicated to the proof of Theorem 2.

2 Definitions and notation

In the rest of the paper, oriented graphs will be simply called graphs. For a graph G
and a vertex v of G, we denote by d−

G(v) the indegree of v, by d+
G(v) its outdegree and

by dG(v) its degree. A vertex of degree k (resp. at most k, at least k) will be called a
k-vertex (resp. ≤k-vertex, ≥k-vertex). A source vertex (or simply a source) is a vertex
v with d−(v) = 0 and a sink vertex (or simply a sink) is a vertex v with d+(v) = 0. A
source (resp. sink) of degree k will be called a k-source (resp. a k-sink).

We denote by N+
G (v), N−

G (v) and NG(v) respectively the set of successors of v, the
set of predecessors of v and the set of neighbors of v in G. The maximum degree and
minimum degree of a graph G are respectively denoted by ∆(G) and δ(G).

We denote by −→uv the arc from u to v or simply uv whenever its orientation is not
relevant (therefore uv = −→uv or uv = −→vu).

For a graph G and a vertex v of V (G), we denote by G \ v the graph obtained from G
by removing v together with the set of its incident arcs; similarly, for an arc a of A(G),
G \ a denotes the graph obtained from G by removing a. These two notions are extended
to sets in a standard way: for a set of vertices V ′, G\V ′ denotes the graph obtained from
G by successively removing all vertices of V ′ and their incident arcs, and for a set of arcs
A′, G \ A′ denotes the graph obtained from G by removing all arcs of A′.

Let G be an oriented graph and f be an oriented arc-coloring of G. For a given vertex
v of G, we denote by C+

f (v) and C−
f (v) the outgoing color set of v (i.e. the set of colors

of the arcs outgoing from v) and the incoming color set of v (i.e. the set of colors of the
arcs incoming to v), respectively.

The drawing conventions for a configuration are the following: a vertex whose neigh-
bors are totally specified will be black (i.e. vertex of fixed degree), whereas a vertex whose
neighbors are partially specified will be white. Moreover, an edge will represent an arc
with any of its two possible orientations.

3 Some properties of the tournament QR7

For a prime p ≡ 3 (mod 4), the Paley tournament QRp is defined as the oriented graph
whose vertices are the integers modulo p and such that −→uv is an arc if and only if v − u
is a non-zero quadratic residue of p.

For instance, let us consider the tournament QR7 with V (QR7) = {0, 1, . . . , 6} and−→uv ∈ A(QR7) whenever v − u ≡ r (mod 7) for r ∈ {1, 2, 4}.
This graph has the two following useful properties [1]:

(P1) Every vertex of QR7 has three successors and three predecessors.
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Figure 1: Two special cycles

(P2) For every two distinct vertices u and v, there exists four vertices w1, w2, w3 and w4

such that:

• −−→uw1 ∈ A(QR7) and −−→vw1 ∈ A(QR7);

• −−→uw2 ∈ A(QR7) and −−→w2v ∈ A(QR7);

• −−→w3u ∈ A(QR7) and −−→w3v ∈ A(QR7);

• −−→w4u ∈ A(QR7) and −−→vw4 ∈ A(QR7).

4 Proof of Theorem 2

Let G be an oriented subcubic graph and C be a cycle in G (C is a subgraph of G). A
vertex u of C is a transitive vertex of C if d+

C(u) = d−
C(u) = 1 (therefore 2 ≤ dG(u) ≤ 3).

A cycle C in G is a special cycle if and only if:

(1) every non-transitive vertex of C is a 2-source or a 2-sink in G;

(2) C has either exactly 1 transitive vertex or exactly 2 transitive vertices, and in this
case, both transitive vertices have the same orientation on C.

Figure 1 shows two special cycles; the first one has exactly 1 transitive vertex while
the second has exactly 2 transitive vertices oriented in the same direction. Vertices si, s′j
and tk are respectively the sinks, sources, and transitive vertices of the special cycles.

Remark 3 Every 2-source (resp. 2-sink) in a special cycle C is necessarily adjacent to a
2-sink (resp. 2-source). This directly follows from the fact that C does not contain two
transitive vertices oriented in opposite direction.

We shall denote by SSG(C) the set of 2-sources and 2-sinks of the cycle C in G.

Remark 4 Note that a special cycle may only be connected to the rest of the graph by
its transitive vertices (see Figure 2 for an example).
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Figure 2: Graphs with a special cycle

A QR7-arc-coloring f of an oriented subcubic graph G is good if and only if :

• for every 2-source u, |C+
f (u)| = 1,

• for every 2-sink v, |C−
f (v)| = 1.

Note that if a subcubic graph G admits a good QR7-arc-coloring, then for every 2-
vertex v of G, |C+

f (v)| ≤ 1 and |C−
f (v)| ≤ 1.

We first prove the following:

Theorem 5 Every oriented subcubic graph with no special cycle admits a good QR7-arc-
coloring.

We define a partial order ≺ on the set of all graphs. Let n2(G) be the number of
≥2-vertices of G. For any two graphs G1 and G2, G1 ≺ G2 if and only if at least one of
the following conditions holds:

• G1 is a proper subgraph of G2;

• n2(G1) < n2(G2).

Note that this partial order is well-defined, since if G1 is a proper subgraph of G2, then
n2(G1) ≤ n2(G2). The partial order ≺ is thus a partial linear extension of the subgraph
poset.

In the rest of this section, let H a be counter-example to Theorem 5 which is minimal
with respect to ≺.

We shall show in the following lemmas that H does not contain some configurations.
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In all the proofs which follow, we shall proceed similarly. We suppose that H con-
tains some configurations and, for each of them, we consider a reduction H ′ of H with
no special cycle such that H ′ ≺ H . Therefore, due to the minimality of H , there exists a
good QR7-arc-coloring f of H ′. The coloring f is a partial good QR7-arc-coloring of H ,
that is an arc-coloring of some subset S of A(H) and we show how to extend it to a good
QR7-arc-coloring of H . This proves that H cannot contain such configurations.

We will extensively use the following proposition:

Proposition 6 Let
−→
G be an oriented graph which admits a good QR7-arc-coloring. Let←−

G be the graph obtained from
−→
G by giving to every arc its opposite direction. Then,

←−
G

admits a good QR7-arc-coloring.

Proof : Let f be a good QR7-arc-coloring of
−→
G . Consider the coloring f ′ : V (QR7) →

A(
←−
G ) defined by f ′(−→uv) = 6− f(−→vu).
It is easy to see that for every arc −→uv ∈ A(QR7), we have −→xy ∈ A(QR7) for x = 6− v

and y = 6 − u. Moreover, the two incident arcs to a 2-source (or a 2-sink) will get the
same color by f ′ since they got the same color by f . �

Therefore, when considering good QR7-arc-coloring of an oriented graph G, we may
assume that one arc in G has a given orientation.

The following remark will be extensively used in the following lemmas :

Remark 7 Let G be a graph with no special cycle and A ⊆ A(G) be an arc set. If the
graph G′ = G \ A contains a special cycle C, then at least one of the vertices incident
to A is a 2-source or a 2-sink in G′ and belongs to V (C), since otherwise C would be a
special cycle in G.

Lemma 8 The graph H is connected.

Proof : Suppose that H = H1 ] H2 (disjoint union). We have H1 ≺ H and H2 ≺ H .
The graphs H1 and H2 contain no special cycle and then, by minimality of H , H1 and
H2 admits good QR7-arc-colorings f1 and f2 respectively that can easily be extended to
a good QR7-arc-coloring f = f1 ∪ f2 of H . �

Lemma 9 The graph H contains no 3-source and no 3-sink.

Proof : By Proposition 6, we just have to consider the 3-source case. Let u be a 3-source
in H and H ′ be the graph obtained from H by splitting u into three 1-vertices u1, u2, u3.
We have H ′ ≺ H since n2(H

′) = n2(H)− 1. Any good QR7-arc-coloring of H ′ is clearly
a good QR7-arc-coloring of H . �

Lemma 10 The graph H contains no 1-vertex.
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Proof : Let u1 be a 1-vertex in H , v be its neighbor and NH(v) = {ui, 1 ≤ i ≤ dH(v)}.
By Proposition 6, we may assume −→u1v ∈ A(H). We consider three subcases.

1. dH(v) = 1.

By Lemma 8, H = −→u1v and obviously, H admits a good QR7-arc-coloring.

2. dH(v) = 2.

Let H ′ = H \u1; we have H ′ ≺ H and H ′ contains no special cycle by remark 7. By
minimality of H , H ′ admits a good QR7-arc-coloring f that can easily be extended
to H : if v is a 2-sink, we set f(−→u1v) = f(−→u2v); otherwise, we have three available
colors for f(−→u1v) by Property (P1).

3. dH(v) = 3.

Let H ′ = H \ u1; we have H ′ ≺ H .

If H ′ contains no special cycle then, by minimality of H , H ′ admits a good QR7-
arc-coloring f such that |C+

f (v)| ≤ 1. The coloring f can then be extended to H
since we have three available colors to set f(−→u1v) by property (P1).

If H ′ contains a special cycle C, v ∈ C and v is a 2-source in H ′ by Remark 7
and Lemma 9. We may assume w.l.o.g. that u2 is a 2-sink by Remark 3. Let
NH(u2) = {v, x} and H ′′ = H \ {−→vu2,−→u1v}. We have H ′′ ≺ H and H ′′ contains no
special cycle by Remark 7. By minimality of H , H ′′ admits a good QR7-arc-coloring
f that can be extended to H : we set f(−→vu2) = f(−→xu2), and we have at least one
available color for f(−→u1v) by Property (P2).

�

Recall that a bridge in a graph G is an edge whose removal increases the number of
components of G.

Lemma 11 The graph H contains no bridge.

Proof : Suppose that H contains a bridge uv. Let H \uv = H1]H2. For i = 1, 2, consider
H ′

i = Hi+uv. By Lemma 10, uv is not a dangling arc in H . Moreover H ′
i ≺ H for i = 1, 2.

Clearly, the graphs H ′
1 and H ′

2 have no special cycle and therefore, by minimality of H ,
they admit good QR7-arc-colorings f1 and f2 respectively. By cyclically permuting the
colors of f2 if necessary, we may assume that f1(uv) = f2(uv). The mapping f = f1 ∪ f2

is then clearly a good QR7-arc-coloring of H . �

Lemma 12 The graph H contains no 2-sink adjacent to a 2-source.

Proof : Suppose that H contains a 2-sink v adjacent to a 2-source w. Let N(v) = {u, w}
and N(w) = {v, x}. Since H contains no special cycle, u and x are distinct vertices and−→xu /∈ A(H).
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Figure 3: Configurations of Lemma 14

Let H ′ be the graph obtained from H \ {v, w} by adding −→ux (if it did not already
belong to A(H)). We have H ′ ≺ H since n2(H

′) ≤ n2(H) − 2. Since the vertices u
and x are neither 3-sources nor 3-sinks in H by Lemma 9, they are neither 2-sources
nor 2-sinks in H ′ and therefore, by Remark 7, H ′ contains no special cycle. Hence, by
minimality of H , H ′ admits a good QR7-arc-coloring f ′ that can be extended to H by
setting f(−→uv) = f(−→wv) = f(−→wx) = f(−→ux). �

Lemma 13 Every 2-source (resp. 2-sink) of H is adjacent to a vertex v with d+(v) = 2
(resp. d−(v) = 2).

Proof : Suppose that H contains a 2-source u adjacent to two vertices v and w such
that d+(v) 6= 2 and d+(w) 6= 2 (by Proposition 6, it is enough to consider this case).
Let H ′ = H \ u; by hypothesis and by Lemmas 9 and 12, the vertices v and w are such
that d+

H′(v) = d−
H′(v) = d+

H′(w) = d−
H′(w) = 1. Therefore, the graph H ′ contains no

special cycle by Remark 7. By minimality of H , H ′ admits a good QR7-arc-coloring f
that can be extended to H in such a way that f(−→uu1) = f(−→uu2) thanks to Property (P2). �

Recall that we denote by SSG(C) the set of 2-sources and 2-sinks of the cycle C in G.

Lemma 14 Let u be a vertex of H and H ′ = H \ u. Then H ′ does not contain a special
cycle C with |NH(u) ∩ SSH′(C)| = 1.

Proof : Let v1 ∈ N(u) and w.l.o.g., suppose that H ′ = H \ u contains a special cycle C
such that NH(u) ∩ SSH′(C) = {v1}; by Remark 7, v1 is a 2-source or a 2-sink in H ′ and
by Proposition 6 we may assume w.l.o.g. that v1 is a 2-source.

By Remark 3, v1 is adjacent to a 2-sink v2. By Lemma 12, the only pair of adjacent
2-source and 2-sink in H ′ is v1, v2. Therefore, we have 3 ≤ |C| ≤ 4. Let V (C) =
{v1, v2, v3, v4} and v3 = v4 if |C| = 3. Moreover v3 and v4 are necessarily two transitive
vertices of C. Furthermore, we have −→yv3 ∈ A(H) by Lemma 13 and −→uv1 ∈ A(H) by
Lemma 9. Then, we have only two possible configurations, depicted in Figure 3.
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• If |C| = 3 (see Figure 3(a)), consider H ′
1 = H \−−→v1v2. This graph contains no special

cycle by Remark 7 and we have H ′
1 ≺ H . By minimality of H , H ′

1 admits a good
QR7-arc-coloring f that can be extended to H : we first erase f(−−→v1v3); then, we can
set f(−−→v1v2) = f(−−→v3v2) thanks to Property (P2) and then we have one available color
for f(−−→v1v3) by Property (P2) since f(−→uv1) 6= f(−−→v3v2).

• If |C| = 4 (see Figure 3(b)), consider the graph H ′
2 = H \ v2. We have H ′

2 ≺ H .

– If H ′
2 contains no special cycle, by minimality of H , H ′

2 admits a good QR7-
arc-coloring f that can be extended to H in such a way that f(−−→v3v2) = f(−−→v1v2)
thanks to Property (P2) since f(−−→v4v3) = f(−→yv3).

– Suppose now that H ′
2 contains a special cycle C ′. By Remark 7, v3 belong to

C ′ and by Remark 3, y is a 2-sink. By Lemma 12, the only pair of adjacent
2-source and 2-sink in H ′ is v3, y, and therefore |C ′| is a special cycle of length
3 or 4. Suppose first that {u, v1, v4, v3, y} ⊆ V (C ′); we thus have u = y, that
is a contradiction since by hypothesis NH(u) ∩ SSH′(C) = {v1} 6= {v1, v3}.
Therefore V (C ′) = {y, v3, v4, z}, and then −→zv4 ∈ A(H). If |C ′| = 3, we have
y = z and in this case, the graph H contains a bridge −→uv1 that is forbidden by
Lemma 11. Therefore, we have |C ′| = 4 and z is a transitive vertex of C ′.
Consider in this case the graph H ′

3 = H \v4. This graph contains no special cy-
cle since the vertices v1 and v3 are two transitive 2-vertices oriented in opposite
directions. We have H ′

3 ≺ H and therefore, by minimality of H , there exists
a good QR7-arc-coloring f of H ′

3 such that C−
f (v1) = {c1}, C−

f (v2) = {c2} and

C+
f (y) = C−

f (z) = {c3}. The mapping f can be extended to H as follows:
we can set f(−−→v4v3) = c4 /∈ {c1, c3} thanks to Property (P1). Then, by Prop-
erty (P2), we have one available color for f(−−→v1v4) since c1 6= c4 and one available
color for f(−→zv4) since c3 6= c4.

�

Lemma 15 The graph H does not contain two adjacent 2-vertices.

Proof : Suppose that H contains two adjacent 2-vertices v and w. Let N(v) = {u, w}
and N(w) = {v, x} and H ′ = H \ v. By Lemma Remark 7 and 14, H contains no special
cycle. We have H ′ ≺ H and by minimality of H , H ′ admits a good QR7-arc-coloring f .

We shall consider two cases depending on the orientation of the arcs incident to v and
w (by Proposition 6, we may assume that −→uv ∈ A(H)).

1. v is a 2-sink and w is a transitive vertex.
By Lemma 12, u is not a 2-source in H . We have |C−

f (u)| ≤ 1 and then, we can set
f(−→uv) = f(−→wv) thanks to Property (P2).

2. v and w are transitive vertices.
By the previous case, u is not a 2-source. We have |C−

f (u)| ≤ 1. Thanks to
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Figure 4: Configurations of Lemma 16

Property (P1), we can set f(−→uv) 6= f(−→wx) and finally, we have one available color
for f(−→vw) by Property (P2) since f(−→uv) 6= f(−→wx).

�

Lemma 16 The graph H contains no 2-vertex.

Proof : Suppose that H contains a 2-vertex u and let N(u) = {u1, u2}. The vertices
u1 and u2 are 3-vertices by Lemma 15. By Proposition 6, we may assume w.l.o.g. that−→uu1 ∈ A(H). Let H ′

1 = H \ u; we have H ′
1 ≺ H .

If H ′
1 contains no special cycle, then by minimality of H , H ′

1 admits a good QR7-arc-
coloring f of H ′

1 that can be extended to H as follows. If u is a 2-source , we can set
f(−→uu1) = f(−→uu2) thanks to Property (P2) since |C+

f (u1)| ≤ 1 and |C+
f (u2)| ≤ 1. If u is a

transitive vertex, we can set f(−→uu1) /∈ C−
f (u2) thanks to Property (P1) and then we have

one available color for f(−→u2u) by Property (P2).
Suppose now that H ′

1 contains a special cycle C. By Lemma 14, u1 and u2 belongs to
C and at least one of them is a 2-source or a 2-sink.

Suppose first that u1 is a 2-source in H ′
1 and u2 is neither a 2-source nor a 2-sink in H ′

1.
Then, since H contains no adjacent 2-vertices by Lemma 15, we have only three possible
configurations depicted in Figures 4(a), 4(b) and 4(c).

Clearly, the configuration of Figure 4(a) admits a good QR7-arc-coloring. The white
vertex of the configuration of Figure 4(b) is a 3-vertex by Lemma 15, but in this case,
the graph contains a bridge, that is forbidden by Lemma 11. The white vertex of the
configuration of Figure 4(c) is of degree two by Lemma 11 and this configuration clearly
admits a good QR7-arc-coloring.
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Therefore, u1 and u2 are either 2-sources or 2-sinks in H ′
1. In this case, since H

contains no adjacent 2-vertices by Lemma 15, we have only three possible configurations
depicted in Figure 4(d), 4(e) and 4(f).

• Figure 4(d): by Lemma 9, we have −→u2u,−→uu1 ∈ A(H). Consider the graph H ′
2 =

H\−−→u1u2; H ′
2 contains no special cycle. Since H ′

2 ≺ H , by minimality of H , H ′
2 admits

a good QR7-arc-coloring f that can be extended to H thanks to Property (P2) since
f(−→u2u) 6= f(−→uu1).

• Figure 4(e): by Lemma 9, we have −→u2u,−→uu1 ∈ A(H). By Lemma 15, u4 is a 3-
vertex. If d−(u4) = 2, this configuration is forbidden by Lemma 13. If d+(u4) = 2,
this configuration is also forbidden by Lemma 13.

• Figure 4(f): by Lemma 9, we have −→uu1,
−→uu2 ∈ A(H). Therefore, by Lemma 13,

d−(u4) = 2. Consider H ′
4 = H \ −−→u1u3; clearly, H ′

4 contains no special cycle. By
minimality of H , H ′

4 admits a good QR7-arc-coloring that can be extended to H as
follows. We first erase f(−−→u2u4) and f(−−→u4u3); then, thanks to Property (P2), we can
set f(−−→u1u3) = f(−−→u4u3). Finally, since f(−→uu2) 6= f(u4u3), we can extend f to a good
QR7-arc-coloring of H thanks to Property (P2).

�

Lemma 17 The graph H contains no 3-vertex.

Proof : By Lemmas 10 and 16, H is a 3-regular graph. Let u be a vertex of H with
neighbors u1, u2 and u3. By Lemma 9, u is neither a 3-source nor a 3-sink and therefore,
by Proposition 6, we may assume w.l.o.g. that d+(u) ≥ d−(u). Let −→u1u,−→uu2,

−→uu3 ∈ A(H).
If H ′

1 = H\u contains no special cycle, by minimality of H , H ′
1 admits a good QR7-arc-

coloring f that can be extended to H as follows. We can set f(−→u1u) /∈ C+
f (u2) ∪ C+

f (u3)
thanks to Property (P1). Then, thanks to Property (P2), we can extend f to a good
QR7-arc-coloring of H .

Suppose now that H ′
1 contains a special cycle C. The graph H ′

1 contains three 2-
vertices. Since a special cycle consists in k pairs of 2-sources and 2-sinks, C contains only
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one pair of adjacent 2-source and 2-sink (w.l.o.g. u1 and u2 respectively). Therefore, we
have only four possible configurations depicted in Figure 5.

Clearly, the configuration of Figure 5(a) admits a good QR7-arc-coloring. The white
vertex of the configuration of Figure 5(c) is a 2-vertex by Lemma 11 and it is easy to check
that there exits a good QR7-arc-coloring of this graph. Consider now the configurations
of Figures 5(b) and 5(d) and let H ′

2 = H \ −−→u1u2. We have H ′
2 ≺ H and clearly, H ′

2 con-
tains no special cycle. Therefore, by minimality of H , H ′

2 admits a good QR7-arc-coloring
f that can be extended to H thanks to Property (P2) since for any orientation of H ,
C−

f (u1) ∩ C+
f (u2) = ∅. �

Proof of Theorem 2: By Lemmas 10, 16 and 17, a minimal counter-example to Theorem
5 does not exist.

We now say that a QR7-arc-coloring f of an oriented subcubic graph G is quasi-good
if and only if for every 2-source u, |C+

f (u)| = 1.
Note that if a subcubic graph admits a quasi-good QR7-arc-coloring f , we have

|C+
f (v)| ≤ 1 for every ≤2-vertex v of G.
We shall then prove Theorem 2 by showing that every subcubic graph admits a quasi-

good QR7-arc-coloring.

Let H be a minimal counter-example to Theorem 2.
If H contains no special cycle, by Theorem 5, H admits a good QR7-arc-coloring which

is a quasi-good QR7-arc-coloring.
Suppose now that H contains at least one special cycle. By definition, a special cycle

contains at least one 2-source. We inductively define a sequence of graphs H0, H1, . . . , Hn

for n ≥ 0, and a sequence of vertices u0, u1, . . . , un−1 such that:

• H0 = H ;

• Hi contains a special cycle, and thus a 2-source ui for 0 ≤ i < n;

• Hi+1 = Hi \ ui for 0 ≤ i < n;

• Hn has no special cycle.

By Theorem 5, Hn admits a good QR7-arc-coloring, and therefore a quasi-good QR7-arc-
coloring. Suppose that Hi+1 admits a quasi-good QR7-arc-coloring fi+1 for 1 ≤ i < n; we
claim that we can extend fi+1 to a quasi-good QR7-arc-coloring fi of Hi as follows. To see
that, let vi and wi be the two neighbors of ui which are ≤2-vertices in Hi+1. Therefore,
we have |C+

fi+1
(vi)| ≤ 1 and |C+

fi+1
(wi)| ≤ 1 and thanks to Property (P2), we can set

fi(
−−→uivi) = fi(

−−→uiwi).
Therefore, any quasi-good QR7-arc-coloring of Hn can be extended to H0 = H , that is

a contradiction. A minimal counter-example to Theorem 2 does not exist, that completes
the proof. �
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Figure 6: Cubic graph G with χ′
o(G) = 6

Currently, we cannot provide an oriented subcubic graph with oriented chromatic
index 7. However, the oriented cubic graph G depicted in Figure 6 has oriented chromatic
index 6.

Suppose we want to color G with five colors 1, 2, 3, 4, 5. Necessarily the colors of −→vw,−→xy and −→zu are pairwise distinct and we may assume w.l.o.g. that f(−→vw) = 1, f(−→xy) = 2
and f(−→zu) = 3. Clearly, each of the colors 4 and 5 will appear at most once on −→uv, −→wx
and −→yz. Therefore, w.l.o.g. we may assume that f(−→yz) = 1, which implies w.l.o.g. that
we must set f(−→ux) = 4. Thus, we must set f(−→yv) = 5, and then we have no remaining
color to color f(−→wz).

Therefore, we have the following:

Proposition 18 Let C be the class of subcubic graphs. Then 6 ≤ χ′
o(C) ≤ 7.
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