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a b s t r a c t

An oriented k-coloring of an oriented graph G is a homomorphism from G to an oriented
graph H of order k. We prove that every oriented graph with a maximum average degree
less than 103 and girth at least 5 has an oriented chromatic number at most 16. This implies
that every oriented planar graph with girth at least 5 has an oriented chromatic number at
most 16, that improves the previous known bound of 19 due to Borodin et al. [O.V. Borodin,
A.V. Kostochka, J. Nešetřil, A. Raspaud, É. Sopena, On the maximum average degree and the
oriented chromatic number of a graph, Discrete Math. 206 (1999) 77–89].

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Oriented graphs are directed graphs without loops or opposite arcs. For an oriented graph G, we denote by V (G) the
vertices and by A(G) its set of arcs. For two adjacent vertices u and v, we denote by −→uv the arc from u to v or simply uv
whenever its orientation is not relevant (therefore, uv = −→uv or uv = −→vu). The number of vertices of G is the order of G.
An oriented k-coloring of an oriented graph G is a mapping ϕ from V (G) to a set of k colors such that (1) ϕ(u) 6= ϕ(v)

whenever−→uv is an arc in G, and (2) ϕ(u) 6= ϕ(x)whenever−→uv and−→wx are two arcs in Gwith ϕ(v) = ϕ(w). In other words,
an oriented k-coloring of G is a partition of the vertices of G into k stable sets S1, S2, . . . , Sk such that all the arcs between
any pair of stable sets Si and Sj have the same direction (either from Si to Sj, or from Sj to Si). The oriented chromatic number
of an oriented graph, denoted by χo(G), is defined as the smallest k such that G admits an oriented k-coloring.
Let G and H be two oriented graphs. A homomorphism from G to H is a mapping ϕ : V (G) → V (H) that preserves the

arcs:−−−−−→ϕ(x)ϕ(y) ∈ A(H)whenever−→xy ∈ A(G).
An oriented k-coloring of G can be equivalently defined as a homomorphism from G toH , whereH is an oriented graph of

order k. The existence of such a homomorphism from G toH is denoted by G→ H . The vertices ofH are called colors, andwe
say that G isH-colorable. The oriented chromatic number of G can then be defined as the smallest order of an oriented graph
H such thatG→ H . Links between colorings and homomorphisms are presented inmore details in the recentmonograph [6]
by Hell and Nešetřil.
The notion of oriented coloring introduced by Courcelle [5] has been studied by several authors in the last decade and the

problem of bounding the oriented chromatic number has been investigated for various graph classes: outerplanar graphs
(with given girth) [13,15], planar graphs (with given girth) [1–4,10,14], graphs with bounded maximum average degree [3,
4], graphs with bounded degree [7], graphs with bounded treewidth [11,15,16], and graph subdivisions [18].
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A very challenging question in this area is to determine the oriented chromatic number of planar graphs. Raspaud and
Sopena [14] proved in 1994 that their oriented chromatic number is at most 80. Recently, Marshall [8] proved that there
exist planar graphs with an oriented chromatic number at least 17. The gap between the lower and the upper bound is very
large, but it seems very hard to reduce.
In this paper, we focus on the oriented chromatic number of graphswith boundedmaximumaverage degree. The average

degree of a graph G, denoted by ad(G), is defined as twice the number of edges over the number of vertices (ad(G) = 2|E(G)|
|V (G)| ).

The maximum average degree of G, denoted by mad(G), is then defined as the maximum of the average degrees taken over
all subgraphs of G:

mad(G) = max
H⊆G
{ad(H)}.

The girth of a graph G is the length of a shortest cycle of G.
Borodin et al. [3,4] gave bounds of the oriented chromatic number of graphs with bounded maximum average degree:

Theorem 1 ([3,4]). Let G be a graph.

(1) If mad(G) < 12
5 and G has girth at least 5, then χo(G) ≤ 5 [3].

(2) If mad(G) < 11
4 and G has girth at least 5, then χo(G) ≤ 7 [4].

(3) If mad(G) < 3, then χo(G) ≤ 11 [4].
(4) If mad(G) < 10

3 , then χo(G) ≤ 19 [4].

We focus here on the class of graphs with maximum average degree less than 103 and girth at least 5. The main result of
this paper is given by the following theorem:

Theorem 2. Let G be a graph withmad(G) < 10
3 and girth at least 5. Then χo(G) ≤ 16.

Actually, we prove a stronger result: we show that every oriented graph G with mad(G) < 10
3 and girth at least

5 admits a homomorphism to T16, where T16 is the Tromp graph of order 16 whose construction is described in
Section 2.
When considering planar graphs, the maximum average degree and the girth are linked by the following well-known

relation:

Claim 3 ([4]). Let G be a planar graph with girth g. Then,mad(G) < 2+ 4
g−2 .

In particular, bymeans of Theorem 1(4), we get as a corollary that every planar graphwith girth at least 5 has an oriented
chromatic number at most 19. Theorem 2 improves this bound and gives that every planar graph with girth at least 5 has
an oriented chromatic number at most 16.
The best current knowledge for the upper bounds of the oriented chromatic number of planar graphs is then the

following:

Theorem 4 ([1–4,11,14]). Let G be a planar graph.

(1) If G has girth at least 12, then χo(G) ≤ 5 [3].
(2) If G has girth at least 11, then χo(G) ≤ 6 [11].
(3) If G has girth at least 7, then χo(G) ≤ 7 [1].
(4) If G has girth at least 6, then χo(G) ≤ 11 [4].
(5) If G has girth at least 5, then χo(G) ≤ 16.
(6) If G has girth at least 4, then χo(G) ≤ 47 [2].
(7) If G has no restriction of girth, then χo(G) ≤ 80 [14].

Note that among the bounds of the previous theorem, only the one for girth 12 is tight.
In the remainder, we use the following notations. For a vertex v of a graph G, we denote by d−G (v) its indegree, by d

+

G (v)
its outdegree, and by dG(v) its degree (subscripts are omitted when the considered graph is clearly identified from the
context). We denote by N+G (v) the set of outgoing neighbors of v, by N

−

G (v) the set of incoming neighbors of v and by
NG(v) = N+G (v) ∪ N

−

G (v) the set of neighbors of v. A vertex of degree k (resp. at least k, at most k) is called a k-vertex (resp.
≥k-vertex, ≤k-vertex). If a vertex u is adjacent to a k-vertex (resp. ≥k-vertex, ≤k-vertex) v, then v is a k-neighbor (resp. ≥k-
neighbor, ≤k-neighbor) of u. A path of length k (i.e. formed by k edges) is called a k-path. If two graphsG andH are isomorphic,
we denote it by G ∼= H .
The paper is organized as follows. The next section is devoted to the target graph T16 and some of its properties.We prove

Theorem 2 in Section 3. We finally give some concluding remarks in the last section.
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Fig. 1. The Tromp graph Tr(G).

Fig. 2. The graph QR7 .

2. The Tromp graph T16

In this section, we describe the construction of the target graph T16 used to prove Theorem 2 and give some useful
properties.
Tromp’s construction was proposed by Tromp [17]. Let G be an oriented graph and G′ be an isomorphic copy of G. The

Tromp graph Tr(G) has 2|V (G)| + 2 vertices and is defined as follows:

• V (Tr(G)) = V (G) ∪ V (G′) ∪ {∞,∞′}
• ∀u ∈ V (G) : −→u∞,

−−→
∞u′,

−−→
u′∞′,

−−→
∞
′u ∈ A(Tr(G))

• ∀u, v ∈ V (G),−→uv ∈ A(G) : −→uv,
−→
u′v′,
−→
vu′,
−→
v′u ∈ A(Tr(G)).

Fig. 1 illustrates the construction of Tr(G). We can observe that, for every u ∈ V (G) ∪ {∞}, there is no arc between
u and u′. Such pairs of vertices will be called twin vertices, and we denote by t(u) the twin vertex of u. Remark that
t(t(u)) = u. This notion can be extended to sets in a standard way: for a given W ⊆ V (G), W = {v1, v2, . . . , vk}, then
t(W ) = {t(v1), t(v2), . . . , t(vk)}.
By construction, the graph Tr(G) satisfies the following property:

∀u ∈ Tr(G) : N+(u) = N−(t(u)) and N−(u) = N+(t(u)).

In the remainder, we focus on the specific graph family obtained via the Tromp’s construction applied to Paley tournaments.
For a prime power p ≡ 3(mod 4), the Paley tournament QRp is defined as the oriented graph whose vertices are the integers
modulo p and such that−→uv is an arc if and only if v−u is a non-zero quadratic residue of p. For instance, the Paley tournament
QR7 has vertex set V (QR7) = {0, 1, . . . , 6} and−→uv ∈ A(QR7) whenever v − u ≡ r(mod 7) for r ∈ {1, 2, 4}; see Fig. 2. Note
that the bounds of Theorems 1(2), 1(3), and 1(4) have been obtained by proving that all the graphs of the considered classes
admit a homomorphism to the Paley tournaments QR7, QR11, and QR19, respectively.
Let T16 = Tr(QR7) be the Tromp graph on sixteen vertices obtained fromQR7. In the remainder of this paper, the vertex set

of T16 is {0, 1, . . . , 6,∞, 0′, 1′, . . . , 6′,∞′} where {0, 1, . . . , 6} is the vertex set of the first copy of QR7 and {0′, 1′, . . . , 6′}
is the vertex set of the second copy of QR7; thus, for every u ∈ {0, 1, . . . , 6,∞}, we have t(u) = u′. In addition, for every
u ∈ V (T16), we have by construction |N+T16(u)| = |N

−

T16
(u)| = 7. The graph T16 has remarkable symmetry and some useful

properties given below.

Proposition 5 ([8]). For any QRp, the graph Tr(QRp) is such that:

∀u ∈ V (Tr(QRp)) : N+(u) ∼= QRp and N−(u) ∼= QRp.
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Proposition 6 ([8]). For any QRp, if {a1, a2, a3} and {b1, b2, b3} span triangles t1 and t2 respectively in Tr(QRp) and the mapψ
taking ai to bi (1 ≤ i ≤ 3) is an isomorphism t1 → t2, then ψ can be extended to an automorphism of Tr(QRp).

It is then clear that Tr(QRp) is vertex-transitive and arc-transitive.

Proposition 7. Let G be an oriented graph such that G → T16. Then, for any vertex v of G, the graph G′ obtained from G by
reversing the orientation of every arc incident to v admits a homomorphism to T16.
Proof. Let ϕ be a T16-coloring of G. For every w ∈ V (T16), we have N+T16(w) = N

−

T16
(t(w)) and N−T16(w) = N

+

T16
(t(w)).

Therefore, the mapping ϕ′ : V (G′)→ V (T16) defined by ϕ′(u) = ϕ(u) for all u ∈ V (G′) \ {v} and ϕ′(v) = t(ϕ(v)) is clearly
a T16-coloring of G′. �

An orientation n-vector is a sequenceα = (α1, α2, . . . , αn) ∈ {0, 1}n of n elements. Let S = (v1, v2, . . . , vn) be a sequence
of n (not necessarily distinct) vertices of T16; a vertex u is said to be an α-successor of S if for any i, 1 ≤ i ≤ n, we have
−→uvi ∈ A(T16) whenever αi = 1 and −→viu ∈ A(T16) otherwise. For instance, the vertex 3′ of T16 is a (1, 1, 0, 1, 0, 0)-successor
of (1, 2, 6′, 1,∞, 2′) since the arcs

−→
3′1,
−→
3′2,
−→
6′3′,
−−→
∞3′, and

−→
2′3′ belong to A(T16).

If, for a sequence S = (v1, v2, . . . , vn) of n vertices of T16 and an orientation n-vector α = (α1, α2, . . . , αn), there exist
i 6= j such that vi = vj and αi 6= αj, then there does not exist any α-successor of S; indeed, T16 does not contain opposite
arcs. In addition, if there exist i 6= j such that vi = t(vj) and αi = αj, then there does not exist any α-successor of S; indeed,
for any pair of vertices x and y of T16 with x = t(y), we have N+T16(x) ∩ N

+

T16
(y) = ∅ and N−T16(x) ∩ N

−

T16
(y) = ∅. A sequence

S = (v1, v2, . . . , vn) of n vertices of T16 is said to be compatiblewith an orientation n-vector α = (α1, α2, . . . , αn) if and only
if for any i 6= j, we have αi 6= αj whenever vi = t(vj), and αi = αj whenever vi = vj. Note that if the n vertices of S induce
an n-clique subgraph of T16 (i.e. v1, v2, . . . , vn are pairwise distinct and induce a complete graph), then S is compatible with
any orientation n-vector since a vertex u and its twin t(u) cannot belong together to the same clique.
In the remainder, we say that T16 has Property Pn,k if, for every sequence S of n distinct vertices of T16 and any orientation

n-vector α which is compatible with S, there exist k α-successors of S. This set of k α-successors is denoted by Succα(S).

Proposition 8. The graph T16 has Properties P1,7, P2,3, and P3,1.
Proof. (1) Property P1,7 is trivial since every vertex of T16 has seven successors and seven predecessors.
(2) To prove that T16 has Property P2,3, we have to show that, for every sequence S = (u, v) and any compatible orientation
2-vector α, there exist at least three α-successors of S. We have two cases to consider: the case uv ∈ A(T16) and the case
u = t(v). Since T16 is arc-transitive, we will consider w.l.o.g. S = (0, 1) and S = (∞,∞′).
A case study shows that the three α-successors of S = (0, 1) are 2, 6′, and∞ (resp. 2′, 6, and∞′; 3′, 4, and 5′; 3, 4′,

and 5) if α = (0, 0) (resp. (1, 1); (0, 1); (1, 0)).
Consider now the case S = (∞,∞′). By definition, the only two compatible orientation 2-vectors with S are (0, 1)

and (1, 0). It is then clear by construction of T16 that we have seven α-successors of S in each case.
(3) Property P3,1 was proved by Marshall [8]. �

Proposition 9. Let u, v1, and v2 be three distinct vertices of T16, and Si = (u, vi) for every 1 ≤ i ≤ 2. Let α be an orientation
2-vector compatible with S1 and S2. Then Succα(S1) 6= Succα(S2).
Proof. Suppose to the contrary that there exist such S1 and S2 with Succα(S1) = Succα(S2).
By Proposition 7, we may assume w.l.o.g. that α2 = 0. If v1 = t(v2), we clearly have Succα(S1) 6= Succα(S2) since

N+T16(v1)∩N
+

T16
(v2) = ∅. Thus, we may assume w.l.o.g. that v1v2 ∈ A(T16), and since T16 is arc-transitive, we assume w.l.o.g.

that v1 = 0 and v2 = 1.
Therefore, the vertices of Succα(S1) = Succα(S2)must be the common successors of 0 and 1.We haveN+T16(0)∩N

+

T16
(1) =

{2, 6′,∞}. If α1 = 0, then a case study allows us to check that T16 has no vertex u distinct from 0 and 1 having 2, 6′, and∞ as
successors. Therefore, we should have α1 = 1 and then we can check that u should necessarily be either 0′ or 1′. However,
in each case, we will have | Succα(Si)| = 7 and | Succα(S3−i)| = 3 for some i ∈ [1, 2]. �

3. Proof of Theorem 2

In this section, we prove Theorem 2, that is that every graph G with mad(G) < 10
3 and girth at least 5 admits a

homomorphism to T16.
Let us define the partial order �. Let n3(G) be the number of ≥3-vertices in G. For any two graphs G1 and G2, we have

G1 ≺ G2 if and only if at least one of the following conditions hold:
• G1 is a proper subgraph of G2;
• n3(G1) < n3(G2).

Note that this partial order is well-defined, since if G1 is a proper subgraph of G2, then n3(G1) ≤ n3(G2). So� is a partial
linear extension of the subgraph poset.
Let H be a hypothetical minimal counterexample to Theorem 2 according to≺. We first prove that H does not contain a

set of thirteen configurations. Then, using a discharging procedure, we show that every graph with girth 5 which contains
none of these thirteen configurations has an average degree at least 103 ; this implies thatH hasmad(H) ≥

10
3 , a contradiction.
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3.1. Structural properties of H

A weak 5-vertex is a 5-vertex adjacent to three 2-vertices. A weak 4-vertex is a 4-vertex adjacent to one 2-vertex.

Lemma 10. The graph H does not contain the following configurations:

(C1) a ≤1-vertex;
(C2) a k-vertex adjacent to (k− 2) 2-vertices for 3 ≤ k ≤ 4;
(C3) a k-vertex adjacent to (k− 1) 2-vertices for 2 ≤ k ≤ 7;
(C4) a k-vertex adjacent to k 2-vertices for 1 ≤ k ≤ 15;
(C5) a 3-vertex;
(C6) a k-vertex adjacent to (k− 2) 2-vertices and one weak 5-vertex for 5 ≤ k ≤ 6;
(C7) a 4-vertex adjacent to three weak 5-vertices;
(C8) a weak 5-vertex adjacent to two weak 4-vertices;
(C9) a 5-vertex adjacent to two 2-vertices and two weak 5-vertices;
(C10) a 5-vertex adjacent to one 2-vertex and four weak 5-vertices;
(C11) a 6-vertex adjacent to three 2-vertices and three weak 5-vertices;
(C12) a 7-vertex adjacent to five 2-vertices and two weak 5-vertices;
(C13) an 8-vertex adjacent to seven 2-vertices and one weak 5-vertex.

The drawing conventions for a configuration C contained in a graph G are the following. If u and v are two vertices of C ,
then they are adjacent in G if and only if they are adjacent in C . Moreover, the neighbors of a white vertex in G are exactly
its neighbors in C , whereas a black vertex may have neighbors outside of C . Two or more black vertices in C may coincide in
a single vertex in G, provided they do not share a common white neighbor. Finally, an edge will represent an arc with any
of its two possible orientations.
LetG be an oriented graph, v be a k-vertexwithN(v) = {v1, v2, . . . , vk} andα be an orientation k-vector such thatαi = 0

whenever−→viv ∈ A(G) and αi = 1 otherwise. Let ϕ be a T16-coloring of G \ {v} and S = (ϕ(v1), ϕ(v2), . . . , ϕ(vk)). Recall that
a necessary condition to have α-successors of S is that α must be compatible with S, that is for any pair of vertices vi and vj,
ϕ(vi) 6= ϕ(vj) whenever αi 6= αj and ϕ(vi) 6= t(ϕ(vj)) whenever αi = αj. Hence, every vertex vj forbids one color for each
vertex vi, i ∈ [1, k], i 6= j. We define f ϕvi (vj) to be the forbidden color for vi by ϕ(vj) (i.e. f

ϕ
vi
(vj) = ϕ(vj) whenever αi 6= αj

and f ϕvi (vj) = t(ϕ(vj)) whenever αi = αj). Therefore, α is compatible with S if and only if we have ϕ(vi) 6= f
ϕ
vi
(vj) for every

pair i, j, 1 ≤ i < j ≤ k. Note that if ϕ(vi) 6= f ϕvi (vj), then we necessarily have ϕ(vj) 6= f
ϕ
vj
(vi).

For each configuration, we suppose that H contains it and we consider a reduction H ′ with a girth at least 5 such that
H ′ ≺ H andmad(H ′) < 10

3 ; therefore, byminimality ofH , H
′ admits a T16-coloring ϕ. Wewill then show that we can choose

ϕ so that it can be extended to H by Proposition 8, contradicting the fact that H is counterexample.
In what follows, if H contains a configuration, then H∗ will denote the graph obtained from H be removing all the white

vertices of this configuration.

Proof of Configurations (C1)–(C4). Trivial. �

For Configurations (C1)–(C4), the reductions H ′ have been obtained from H by removing some vertices and/or arcs;
therefore, we clearly hadmad(H ′) ≤ mad(H). To prove that Configuration (C5) is forbidden in H , we considered a reduction
H ′ obtained from H by removing one 3-vertex and by adding new vertices and arcs. The following lemma shows that this
reduction H ′ has nevertheless a maximum average degree less that 103 .
Let G be a graph containing a 3-vertex v adjacent to three vertices u1, u2, and u3; see Fig. 4(a). We denote by R(G) the

graph obtained from G \ {v} by adding 2-paths joining respectively u1 and u2, u2 and u3, and u3 and u1; see Fig. 4(b).

Lemma 11. If mad(G) < 10
3 , thenmad(R(G)) <

10
3 .

The proof of this lemma is left to the reader.

Proof of Configuration (C5). Suppose that H contains the configuration depicted in Fig. 3(d). Since Configurations (C1) and
(C2) are forbidden, u1, u2, and u3 are ≥3-vertices. Let H ′ be the graph obtained from H∗ by adding, for every 1 ≤ i < j ≤ 3, a
2-path joining ui to uj in such a way that its orientation is the same orientation of the path [ui, v, uj] in H . We have H ′ ≺ H
since n3(H ′) = n3(H)− 1, mad(H ′) < 10

3 by Lemma 11, and H
′ has clearly girth at least 5. Any T16-coloring ϕ of H ′ induces

a coloring of H∗ such that ϕ(ui) 6= f
ϕ
ui (uj) for any i, j, 1 ≤ i < j ≤ 3. �

Configurations (C6)–(C13) all contain a weak 5-vertex. To shorten the proofs, we will often use the following lemma,
later called Main Lemma.

Lemma 12 (Main Lemma). Let G be an oriented graph containing a weak 5-vertex u (see Fig. 5) and let ϕ be a T16-coloring of
G∗. Then, for a fixed coloring of u′1, u

′

2, u
′

3, and v1, at most two colors are forbidden for v2.



A. Pinlou / Discrete Mathematics 309 (2009) 2108–2118 2113

(a) C2. (b) C3. (c) C4. (d) C5.

Fig. 3. Configurations C2–C5.

(a) The graph G. (b) The graph R(G).

Fig. 4. Configurations of Lemma 11.

Fig. 5. Configuration of Lemma 12.

Fig. 6. Configuration (C6): a k-vertex adjacent to (k− 2) 2-vertices and one weak 5-vertex for 5 ≤ k ≤ 6.

Fig. 7. Configuration (C7): a 4-vertex adjacent to three weak 5-vertices.

Proof. The color ϕ(v1) together with each of the fifteen colors for v2 distinct from f1 = f ϕv2(v1) give three possible colors
for u by Property P2,3. Proposition 9 ensures that at most one of these fifteen colors, say f2, gives the three colors f

ϕ
u (u′1),

f ϕu (u′2), and f
ϕ
u (u′3) for u. Thus, for any ϕ(v2) 6∈ {f1, f2}, we have three available colors for u whose one of them is distinct

from f ϕu (u′1), f
ϕ
u (u′2), and f

ϕ
u (u′3). �

Proof of Configuration (C6). Suppose that H contains the configuration depicted in Fig. 6 and let ϕ be a T16-coloring of H∗.
By Main Lemma, the weak 5-vertex u forbids two colors for v, say f1 and f2. By Property P1,7, we can choose ϕ such that
ϕ(v) 6∈ {f1, f2, f ϕv (v

′

1), . . . , f
ϕ
v (v

′
n)}. �

Proof of Configuration (C7). Suppose that H contains the configuration depicted in Fig. 7 and let ϕ be a T16-coloring of H∗.
By Main Lemma, each of the weak 5-vertices u, v, and w forbids two colors for x, say f1, f2, . . . , f6. By Property P1,7, we can
choose ϕ such that ϕ(x) 6∈ {f1, f2, . . . , f6}. �
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Fig. 8. Configuration (C8): a weak 5-vertex adjacent to two weak 4-vertices.

Fig. 9. Configuration (C9): a 5-vertex adjacent to two 2-vertices and two weak 5-vertices.

Proof of Configuration (C8). Suppose that H contains the configuration depicted in Fig. 8 and let H ′ = H \
{u, u1, u2, u3, v1, w1}. Let ϕ be a T16-coloring of H ′. We clearly have ϕ(v′) 6= f

ϕ

v′
(v′′) (resp. ϕ(w′) 6= f ϕ

w′
(w′′)) since v (resp.

w) is colored in H ′. Property P2,3 ensures that we have two available colors for v (resp. w), say c1 and c2 (resp. d1 and d2),
distinct from f ϕv (v

′

1) (resp. f
ϕ
w (w

′

1)).
Therefore, we have to show that there exists i, j ∈ [1, 2] such that assigning ci to v and di to w allows us to extend ϕ to

a T16-coloring of H . LetW = {f
ϕ
u (u′1), f

ϕ
u (u′2), f

ϕ
u (u′3)}, and V1 = {c1, c2}, V2 = {d1, d2}. Let α = (α1, α2) be an orientation

2-vector such that α1 = 0 (resp. α2 = 0) whenever−→vu ∈ A(G) (resp.−→wu ∈ A(G)), and α1 = 1 (resp. α2 = 1) otherwise.
Note that we must have ϕ(u) 6∈ W . Suppose first that V1 = V2 (more precisely, ci = di for every i ∈ [1, 2]). If α1 = α2,

then we set ϕ(v) = ϕ(w), and we get | Succα(ϕ(v), ϕ(w))| = 7. Thus, ϕ can be extended to H . If α1 6= α2, then let
S1 = (c1, d2) and S2 = (c2, d1). The sequences S1 and S2 are compatiblewithα, and by Property P2,3we have | Succα(Si)| ≥ 3
for every i ∈ [1, 2]. Moreover, a case study shows that Succα(S1) = t(Succα(S2)). Therefore, there exists i ∈ [1, 2] such that
Succα(Si) 6= W , and so ϕ can be extended to H .
Suppose now that V1 6= V2. If there exists i ∈ [1, 2] such that the arcs cid1 and cid2 exist in T16, say i = 1, then

c1 6= d1 6= d2 6= c1 and therefore the sequences S1 = (c1, d1) and S2 = (c1, d2) are compatible with α and Proposition 9
ensures that there exist i ∈ [1, 2] such that Succα(Si) 6= W . If there exists i ∈ [1, 2] such that the arcs cid1 and cid2 donot exist
in T16, say i = 1, then it means that c1 = d1 and c1 = t(d2). This leads us to the previous case, that is that the two arcs c2d1
and c2d2 exist in T16 and c2 6= d1 6= d2 6= c2. The last case to consider is the onewhere c1d1 and c2d2 exist in T16, and c1d2 and
c2d1 do not exist in T16. We can check that we then have either (1) c1 = d2 and c2 = t(d1), or (2) c1 = t(d2) and c2 = t(d1). If
α1 6= α2, then for both Cases (1) and (2), the sequence S = (c2, d1) is compatible with α and we clearly have Succα(S) 6= W
since | Succα(S)| = 7. Finally, if α1 = α2, then for Case (1), the sequence S = (c1, d2) is compatible with α and we clearly
have Succα(S) 6= W since | Succα(S)| = 7; for Case (2), the sequences S1 = (c1, d1) and S2 = (c2, d2) are compatible with
α, and since N+T16(c1) ∩ N

+

T16
(d2) = ∅, we clearly have Succα(S1) 6= Succα(S2) and thus there exists i ∈ [1, 2] such that

Succα(Si) 6= W . �

Proof of Configuration (C9). Suppose that H contains the configuration depicted in Fig. 9 and let ϕ be a T16-coloring of H∗.
The weak 5-vertices u and v forbid four colors for x, say f1, f2, f3, f4, by Lemma 12. By Property P1,7, we can choose ϕ such
that ϕ(x) 6∈ {f1, f2, f3, f4, f

ϕ
x (x′1), f

ϕ
x (x′2)}. �

Proof of Configuration (C10). Suppose that H contains the configuration depicted in Fig. 10 and let ϕ be a T16-coloring of
H∗. By Main Lemma, the weak 5-vertices u, v,w, and x forbid eight colors for y, say f1, . . . , f8. We clearly can choose ϕ such
that ϕ(y) 6∈ {f1, . . . , f8, f

ϕ
y (y′1)}. �

Proof of Configuration (C11). Suppose that H contains the configuration depicted in Fig. 11 and let ϕ be a T16-coloring of
H∗. The weak 5-vertices v, w, and x forbid six colors for u, say f1, . . . , f6, by Lemma 12. We clearly can choose ϕ such that
ϕ(u) 6∈ {f1, . . . , f6, f

ϕ
u (u′1), f

ϕ
u (u′2), f

ϕ
u (u′3)}. �
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Fig. 10. Configuration (C10): a 5-vertex adjacent to one 2-vertex and four weak 5-vertices.

Fig. 11. Configuration (C11): a 6-vertex adjacent to three 2-vertices and three weak 5-vertices.

Fig. 12. Configuration (C12): a 7-vertex adjacent to five 2-vertices and two weak 5-vertices.

Proof of Configuration (C12). Suppose that H contains the configuration depicted in Fig. 12 and let ϕ be a T16-coloring of
H∗. The weak 5-vertices v and w forbid four colors for u, say f1, . . . , f4, by Lemma 12. We clearly can choose ϕ such that
ϕ(u) 6∈ {f1, . . . , f4, f

ϕ
u (u′1), f

ϕ
u (u′2), . . . , f

ϕ
u (u′5)}. �

Proof of Configuration (C13). Suppose that H contains the configuration depicted in Fig. 13 and let ϕ be a T16-coloring
of H∗. The weak 5-vertex u forbids two colors for v, say f1, f2, by Lemma 12. We clearly can choose ϕ such that ϕ(v) 6∈
{f1, f2, f ϕv (v

′

1), f
ϕ
v (v

′

2), . . . , f
ϕ
v (v

′

7)}. �
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Fig. 13. Configuration (C13): an 8-vertex adjacent to seven 2-vertices and one weak 5-vertex.

3.2. Discharging procedure

To complete the proof of Theorem 2, we use a discharging procedure. We define the weight function ω by ω(v) =
3d(v)− 10 for every v ∈ V (H). Since mad(H) < 10

3 , we have:∑
v∈V (H)

ω(v) =
∑
v∈V (H)

(3d(v)− 10) < 0.

In what follows, we will define discharging rules (R1), (R2) and (R3) and redistribute weights accordingly. Once the
discharging is finished, a newweight functionω∗ is produced. However, the total sum of weights is fixed by the discharging
rules. Nevertheless, we can show that ω∗(v) ≥ 0 for every v ∈ V (H). This leads to the following obvious contradiction:

0 ≤
∑
v∈V (H)

ω∗(v) =
∑
v∈V (H)

ω(v) < 0.

Therefore, no such counterexample H exists.
The discharging rules are defined as follows:

(R1) Each weak 4-vertex gives 2 to its 2-neighbor.
(R2) Each non weak 4-vertex gives 1 to their weak 5-neighbors.
(R3) Each ≥5-vertex gives 2 to their 2-neighbors and 1 to their weak 5-neighbors.

Let v be a k-vertex of H . Note that k > 1 by (C1) and k 6= 3 by (C5).

• If k = 2, then ω(v) = −4. Since every 2-vertex of H has two ≥4-neighbors by (C2) and (C3), v receives 2 from each
neighbor by (R1) and (R3). Hence ω∗(v) = 0.
• If k = 4, then ω(v) = 2. By (C2), a 4-vertex has at most one 2-neighbor. If v has one 2-neighbor (i.e. v is weak), then it
gives 2 by (R1). If v has no 2-neighbor, then it has at most two weak 5-neighbors by (C7). Therefore, v gives at most 1×2
by (R2). Hence ω∗(v) ≥ 2−max{2; 1× 2} = 0.
• If k = 5, thenω(v) = 5. By (C3), a 5-vertex has at most three 2-neighbors. If v has three 2-neighbors (i.e. v is weak), then
it has no weak 5-neighbors by (C6); it thus gives 2 × 3 by (R3). Moreover, by (C8), v has at most one weak 4-neighbor;
therefore, v has at least either one non weak 4-neighbor or one ≥5-neighbor; thus, v receives at least 1 by (R2) or (R3). If
v has two 2-neighbors, then it has at most one weak 5-neighbor by (C9), and then gives at most 2×2+1 by (R3). If v has
one 2-neighbor, then it has at most three weak 5-neighbors by (C10), and then gives at most 2+ 1× 3 by (R3). Finally, if
v has no 2-neighbor, it gives at most 1× 5 by (R3). Hence,ω∗(v) ≥ 5−max{2× 3− 1; 2× 2+ 1; 2+ 1× 3; 1× 5} = 0.
• If k = 6, then ω(v) = 8. By (C3), a 6-vertex has at most four 2-neighbors. If v has four 2-neighbors, then it has no weak
5-neighbor by (C6), and then gives 2× 4 by (R3). If v has three 2-neighbors, then it has at most two weak 5-neighbors by
(C11), and then gives atmost 2×3+1×2by (R3). Finally, ifv has l2-neighbors, 0 ≤ l ≤ 2, then v has atmost (6−l)weak5-
neighbors and then gives atmost 2×l+1×(6−l)by (R3). Hence,ω∗(v) ≥ 8−max{2×4; 2×3+1×2; 2×l+1×(6−l)} = 0
for any 0 ≤ l ≤ 2.
• If k = 7, then ω(v) = 11. By (C3), a 7-vertex has at most five 2-neighbors. If v has five 2-neighbors, then it has
at most one weak 5-neighbor by (C12) and then gives at most 2 × 5 + 1 by (R3). Finally, if v has l 2-neighbors,
0 ≤ l ≤ 4, then it has at most (7 − l) weak 5-neighbors and then gives at most 2 × l + 1 × (7 − l) by (R3). Hence,
ω∗(v) ≥ 11−max{2× 5+ 1; 2× l+ 1× (7− l)} = 0 for any 0 ≤ l ≤ 4.
• If k = 8, then ω(v) = 14. By (C4), an 8-vertex has at most seven 2-neighbors. If v has seven 2-neighbors, then it has no
weak 5-neighbor by (C13) and then gives 2×7 by (R3). Finally, if v has l 2-neighbors, 0 ≤ l ≤ 6, then it has at most (8− l)
weak 5-neighbors and then gives atmost 2×l+1×(8−l) by (R3). Hence,ω∗(v) ≥ 14−max{2×7; 2×l+1×(8−l)} = 0
for any 0 ≤ l ≤ 6.
• If k = 9, thenω(v) = 17. By (C4), a 9-vertex has atmost eight 2-neighbors. If v has l 2-neighbors, 0 ≤ l ≤ 8, then it has at
most (9−l)weak 5-neighbors and then gives atmost 2×l+1×(9−l) by (R3). Hence,ω∗(v) ≥ 17−2×l+1×(9−l) ≥ 0
for any 0 ≤ l ≤ 8.
• If k ≥ 10, then ω(v) = 3k− 10. If v has l 2-neighbors, 0 ≤ l ≤ k, then v has at most (k− l)weak 5-neighbors and then
gives at most 2× l+ 1× (k− l) by (R3). Hence, ω∗(v) ≥ 3k− 10− 2× l+ 1× (k− l) ≥ 0 for any 0 ≤ l ≤ k.

Thus, for every v ∈ V (H), we have ω∗(v) ≥ 0 once the discharging is finished, that completes the proof.



A. Pinlou / Discrete Mathematics 309 (2009) 2108–2118 2117

4. Concluding remarks

4.1. Graphs with maximum average degree of less that 103

In this paper, we proved that every oriented graph with maximum average degree less than 103 and girth at least 5 has
oriented chromatic number atmost 16.We recently proved in a companionpaper that the restriction of girth canbedropped:

Theorem 13 ([12]). Let G be an oriented graph with maximum average degree less than 103 . Then, χo(G) ≤ 16.

The proof of this theorem is based on the same techniques than the one used in this paper. The discharging procedure
is the same. The difference lies in the forbidden configurations. Recall that the case where two black vertices coincide
in a configuration (provided they do not share a white neighbor) is taken into account in the proofs. However, the cases
where black vertices coincide with white vertices (creating cycles of lengths 3 and 4) was not taken into account here since
we considered graphs with girth at least 5. So, to drop the restriction of girth, and thus get Theorem 13, we considered
configurations with cycles of lengths 3 and 4.

4.2. Strong oriented coloring

In 1999, Nešetřil and Raspaud [9] introduced the notion of strong oriented coloring, which is a stronger version of the
notion of oriented coloring studied in this paper.
Let M be an additive abelian group. An M-strong-oriented coloring of an oriented graph G is a mapping ϕ from V (G) to

M such that ϕ(u) 6= ϕ(v) whenever −→uv is an arc in G and ϕ(v) − ϕ(u) 6= −(ϕ(t) − ϕ(z)) whenever −→uv and −→zt are two
arcs in G. The strong oriented chromatic number of an oriented graph is the minimal order of a group M such that G has an
M-strong-oriented coloring. It is clear that any strong oriented coloring of an oriented graph G is an oriented coloring of G
and therefore the oriented chromatic number of G is less than its strong oriented chromatic number.
Nešetřil and Raspaud showed that a strong oriented coloring of an oriented graph G can be equivalently defined as a

homomorphism ϕ from G to H , where H is an oriented graphwith k vertices labeled by the k elements of an abelian additive
group M , such that for any pair of arcs −→uv and −→zt of A(H), v − u 6= −(t − z). For every prime power p ≡ 3(mod 4), the
Paley graph QRp (defined in Section 2,) is clearly an oriented graph with p vertices labeled by the p elements of the field Z

pZ

and such that for any pair of arcs−→uv and−→zt of A(QRp), v − u 6= −(t − z).
Borodin et al. [4] proved that the oriented chromatic number of the graphs with maximum average degree less that 103

is at most 19 by showing that these graphs admit a homomorphism to the Paley graph QR19. Therefore, their result applies
for the strong oriented chromatic number: the graphs with maximum average degree of less that 103 have a strong oriented
chromatic number at most 19. So, a natural question to ask is:

Question 14. Does there exist an abelian additive group M on 16 elements such that we can label the vertices of T16 with the
elements of M in such a way that v − u 6= −(t − z) whenever −→uv and−→zt are two arcs of T16?

If it is true, that would imply that 16 colors are enough for a strong oriented coloring of an oriented graphwithmaximum
average degree less than 103 , and therefore, for a strong oriented coloring of a planar graph with girth at least 5.
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