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Abstract

A homomorphism from an oriented graph G to an oriented graph H is an arc-preserving mapping ¢ from V(G) to V (H), that
is (x)@(y) is an arc in H whenever xy is an arc in G. The oriented chromatic number of G is the minimum order of an oriented
graph H such that G has a homomorphism to H. The oriented chromatic index of G is the minimum order of an oriented graph H

such that the line-digraph of G has a homomorphism to H.

In this paper, we determine for every k > 3 the oriented chromatic number and the oriented chromatic index of the class of

oriented outerplanar graphs with girth at least k.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we consider oriented graphs, that is di-
graphs without opposite arcs. For an oriented graph G,
we denote by V(G) its set of vertices, by A(G) its set
of arcs, and by uv an arc from vertex u to vertex v. The
number of vertices of G is the order of G.

The girth of a graph G is the size of a smallest cycle
in G. We denote by O the class of oriented outerplanar
graphs with girth at least g.
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An oriented k-vertex-coloring of an oriented graph
G is a mapping ¢ from V (G) to a set of k colors such
that

(i) ¢(u) # ¢(v) whenever uv € A(G),
(i) ¢(v) #£ @(x) whenever uv, xy € A(G) and ¢(u) =
P(y).

Note that these two conditions ensure that any two ver-
tices linked by a directed path of length one or two are
assigned distinct colors in any oriented vertex-coloring.

The oriented chromatic number of G, denoted by
Xo(G), is the smallest integer k such that G admits
an oriented k-vertex-coloring. The oriented chromatic
number x,(¥) of a class of oriented graphs ¥ is de-
fined as the maximum of x,(G) taken over all graphs G
in .

Let G and H be two oriented graphs. A homomor-
phism from G to H is a mapping ¢ from V(G) to V(H)
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that preserves the arcs (that is, ¢ (1)@ (v) € A(H) when-
ever uv € A(G)). An oriented k-vertex-coloring of an
oriented graph G can thus be viewed as a homomor-
phism from G to H, where H is an oriented graph of
order k. The existence of such a homomorphism from
G to H is denoted by G — H. The vertices of H are
called colors, and we say that G is H -vertex-colorable.
The oriented chromatic number of G can then be equiv-
alently defined as the smallest order of an oriented graph
H such that G — H. Links between colorings and ho-
momorphisms are presented in more details in the recent
monograph [5] by Hell and NeSetfil.

The notion of oriented vertex-coloring, introduced
by Courcelle in [3], has been studied by several au-
thors in the last decade and the problem of bounding
the oriented chromatic number has been investigated for
various graph classes (see e.g. [1,2,7,9-12]).

Concerning outerplanar graphs, Sopena proved in
[10] that the class of oriented series-parallel graphs (also
called partial 2-trees), which contains the class of ori-
ented outerplanar graphs, has oriented chromatic num-
ber at most 7 and that this bound is tight (he provided
an outerplanar graph with oriented chromatic num-
ber 7). In [4], Hosseini Dolama constructed an oriented
triangle-free outerplanar graph with oriented chromatic
number 6 and asked whether the oriented chromatic
number of the class of oriented triangle-free outerpla-
nar graphs is 6 or 7. Our first result gives a complete
classification of the oriented chromatic numbers of ori-
ented outerplanar graphs with given girth:

Theorem 1.

(1) x0(04) =6,
(2) x0(Og) =5 forevery g, g 2 5.

An oriented arc-coloring of an oriented graph G is
an oriented vertex-coloring of its line digraph LD(G)
(recall that LD(G) is given by V(LD(G)) = A(G) and
ab € A(LD(G)) if there exists u, v, w € V(G) such that
a =uv and b = vw). We say that an oriented graph G is
H -arc-colorable if there exists a homomorphism ¢ from
LD(G) to H. The mapping ¢ is then an H -arc-coloring,
or simply an arc-coloring, of G. Therefore, an oriented
arc-coloring ¢ of G must satisfy

(1) ¢(uv) # ¢(vw) whenever uv and vw are two con-
secutive arcs in G,

(i) ¢(vw) # @(xy) whenever uv, vw, xy, yz € A(G)
with @ (uv) = ¢(yz).

Note that these two conditions ensure that any two arcs
belonging to a directed path of length two or three must
get distinct colors in any oriented arc-coloring. Also
note that two arcs incoming to (resp. outgoing from) the
same vertex can get the same color since the two corre-
sponding vertices in LD(G) are not adjacent and do not
belong to a directed 2-path.

The oriented chromatic index of G, denoted by
x,(G), is the smallest order of an oriented graph H
such that G is H-arc-colorable. The oriented chromatic
index x,(¥) of a class of oriented graphs ¥ is defined
as the maximum of x/ (G) taken over all graphs G in ¥ .

Let G and H be two oriented graphs and ¢ be a ho-
momorphism from G to H. It is not difficult to check
that the mapping ¢’ : A(G) — V (H), givenby ¢’ (xy) =
¢(x) for every arc xy in G is a homomorphism from
LD(G) to H. Hence we have:

Observation 2. [8] For every oriented graph G, x,(G)
< Xo(G).

From that, we get that every oriented outerplanar
graph has oriented chromatic index at most 7. Our sec-
ond result gives a complete classification of the oriented
chromatic indexes of oriented outerplanar graphs with
given girth:

Theorem 3.

(1) x,(03) =1,

(2) x,(04) =6,

(3) x,(Og) =5 foreveryg, 5< g <9,
4) x,(O4) =4 forevery g, g > 10.

This paper is organized as follows. We give in Sec-
tion 2 some notation and preliminary results that will
be used later. We prove Theorem 1 in Section 3 and
Theorem 3 in Section 4. Finally, we discuss the case
of oriented series-parallel graphs in Section 5.

2. Notation and preliminary results

In the rest of the paper, we will use the following no-
tation. A k-vertex is a vertex of degree k. The minimum
degree of a graph G is denoted by §(G). If uv is an arc,
u is a predecessor of v and v is a successor of u. For a
given vertex u in G, we denote by Na’ (u) (resp. N (u))
the set of successors (resp. predecessors) of u in G.

A k-path in G is a sequence xgxi...x; such that
Xixi+1 € A(G) or xj+1x; € A(G) forevery i,0<i <k.
A directed k-path in G is a sequence XxpX] ...Xx; such
that x;x;+1 € A(G) for every i, 0 <i < k. The notions
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Fig. 1. Three target tournaments. (a) The tournament 7. (b) The tour-
nament 75. (c) The tournament Tg.

of a k-cycle and of a directed k-cycle are defined in a
similar way.

For a graph G and a vertex v of V(G), we denote by
G \ v the graph obtained from G by removing v together
with the set of its incident arcs. This notion is extended
to sets of vertices in a standard way.

Let G be an oriented graph and f be an oriented arc-
coloring of G. For a given vertex v of G, we denote
by C}'(v) and C;(v) the outgoing color set of v (i.e.,
the set of colors of the arcs outgoing from v) and the
incoming color set of v (i.e., the set of colors of the arcs
incoming to v), respectively.

The upper bounds of Theorems 1 and 3 will be ob-
tained by proving that the corresponding oriented outer-
planar graphs are T -vertex- or T -arc-colorable for some
tournament 7. The three tournaments that will be used
are depicted in Fig. 1.

The tournament 7y is the only tournament on four
vertices containing a directed 4-cycle.

Note that the tournament 75 is a circular tournament
and thus is vertex-transitive. Moreover, this tournament
has the following property:

Proposition 4. [2] For every pair of (not necessarily
distinct) vertices u,v € V(Ts), there exists an oriented
4-path connecting u with v for any of the 16 possible
orientations of such an oriented 4-path.

By a case analysis, it is tedious but not difficult to
prove the following:

Proposition 5. For every pair of (not necessarily dis-
tinct) vertices u,v € V(Tg), there exists an oriented
3-path connecting u with v for any of the 8 possible
orientations of such an oriented 3-path.

Finally, we will extensively use the following obvi-
ous property of outerplanar graphs with high girth:

Proposition 6. Every outerplanar graph G with girth
at least k and §(G) > 2 contains a face of length |l > k
with at least | — 2 consecutive 2-vertices.

3. The oriented chromatic number of outerplanar
graphs

In this section we prove our Theorem 1.

Proof of Theorem 1(1). We first prove that x,(04) <
6. To show that, we prove that every triangle-free outer-
planar graph has a homomorphism to the tournament 7g
depicted in Fig. 1(c). Let H be a minimal (with respect
to inclusion as a subgraph) triangle-free outerplanar
graph having no homomorphism to 7. We show that
H contains neither a 1-vertex nor two adjacent 2-ver-
tices.

(1) Suppose that H contains a 1-vertex u#. Then,
due to the minimality of H, the triangle-free outerpla-
nar graph H' = H \ u admits an oriented Tg-vertex-
coloring f. Since every vertex of Tg has at least two
successors and at least two predecessors, f can easily
be extended to H.

(2) Suppose now that H contains two adjacent 2-ver-
tices v and w. Then, due to the minimality of H, the
triangle-free outerplanar graph H' = H \ {v, w} admits
an oriented Tg-vertex-coloring f. By Proposition 5, f
can be extended to H.

We thus get a contradiction thanks to Proposition 6.

In [4], Hosseini Dolama constructed an oriented
triangle-free outerplanar graph G with oriented chro-
matic number 6 (see Fig. 2). For completion, we prove
now that x,(G) > 6.

Assume to the contrary that f is a T-vertex-coloring
of G for some tournament 7 on five vertices (V(T) =
{1,2,3,4,5)) and let f(u) =1, f(v) =2, f(w) =23,
f(x) =4 and f(y) =5 (these five vertices belong to a
directed 5-cycle in G and thus must be assigned distinct
colors).

Since every vertex in {u, v, w, x, y} has 2 successors
and 2 predecessors that are linked by a directed 2-path
in G, each vertex of T must have 2 predecessors and
2 successors. Hence, T is necessarily the tournament 75
depicted in Fig. 1(b). (Note that since the tournament
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Fig. 2. An oriented triangle-free outerplanar graph with oriented chro-
matic number 6.

Ts is arc-transitive, we may still assume, without loss of
generality, that f(u) =1, f(v) =2, f(w) =3, f(x)=
4and f(y)=5.)

Finally, observe that we necessarily have f(uz) =3
and that we cannot color the remaining vertices z; and
77 since there is no directed 3-path in 75 from 1 to 3.

This completes the proof of Theorem 1(1). O

Proof of Theorem 1(2). We first prove that x,(0,) <5
for every g, g 2 5. Note that it is enough to consider the
case g = 5. More precisely, we prove that every outer-
planar graph with girth at least 5 has a homomorphism
to the tournament 75 depicted in Fig. 1(b).

Let H be a minimal (with respect to inclusion as a
subgraph) outerplanar graph with girth 5 having no ho-
momorphism to 75. We show that H contains neither a
1-vertex nor three adjacent 2-vertices.

(1) Suppose that H contains a 1-vertex u. Then, due
to the minimality of H, the outerplanar graph H' =
H \ u (which has girth at least 5) admits an oriented
Ts-vertex-coloring f. Since every vertex of 75 has two
successors and two predecessors, f can easily be ex-
tended to H.

(2) Suppose now that H contains three adjacent
2-vertices u, v and w. Then, due to the minimality of
H, the outerplanar graph H = H \ {u, v, w} (which has
girth at least 5) admits an oriented 7T5-vertex-coloring f.
By Proposition 4, f can be extended to H.

We thus get a contradiction thanks to Proposition 6.

In [6], Nesetfil et al. constructed for every g, g > 3,
an oriented outerplanar graph G, with girth at least g
which has no homomorphism to the tournament 74. We
recall this construction here.

Let P be the oriented path on | g/2] vertices whose
edges have alternatively forward and backward direc-

up  3,4,6 U 1,34 7

Ui 3’5 Ug

IZ300) Uug

Fig. 3. An oriented outerplanar graph with oriented chromatic index 7.

tion and let # and v denote its end-vertices. The graph
G, is then constructed as follows: let xjx3...x), be a
directed cycle on p > g vertices, such that p =1 or
2 (mod 3). To every vertex x; attach two copies of P,
by identifying the two u-vertices with x; and adding an
arc (with any direction) linking the two v-vertices. The
graph G, thus obtained has clearly girth g or g + 1.
Moreover, for every homomorphism f: G, — T4, one
vertex x; at least satisfies f(x;) = 3. It is then easy to
check that the two v-vertices of the paths attached to x;
are mapped to the same vertex of 74, namely O or 3 de-
pending on the parity of | g/2]. Since these two vertices
are joined by an arc in G, we obtain the desired contra-
diction and the result follows.
This completes the proof of Theorem 1(2). O

4. The oriented chromatic index of outerplanar
graphs

In this section we prove our Theorem 3.

Proof of Theorem 3(1). In [10], Sopena proved that
every outerplanar graph has oriented chromatic number
at most 7. By Observation 2, we thus get that the ori-
ented chromatic index of every outerplanar graph is at
most 7.

To show that this bound is tight, we shall prove that
the oriented outerplanar graph G depicted on Fig. 3 has
oriented chromatic index 7.

Assume to the contrary that f is an arc-coloring of G
using at most six colors (say 1,2, 3,4, 5, 6). Necessar-
ily, the colors of the arcs uuy, ususz, usua, uaus, usig
and ugu are pairwise distinct since any two such arcs
belongs to a directed 2- or 3-path in G. Suppose with-
out loss of generality, that f(u;u;) =i (as drawn on
Fig. 3). This forbids for each remaining uncolored arc
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3 or 4 colors. The sets of available colors for each of
these arcs are given in Fig. 3.

Suppose first that f(ueuz) = 6 and f(uzuq) = 3.
This implies f(u11ug) =5 and f(uqu19) =4 and then
f(uious) =1 and f(usuq1) =2 since we already have
1 — 2 with ujuy and urus. Therefore, since we have
2 — 5 with usuq1 and ujjue (resp. 4 — 1 with uguqg
and ujous), we necessarily have f(ujuz) =1 (resp.
f(upug) = 2). Finally, this implies f(uju7) =4 and
f(uguz) =5 and there is no remaining available color
for uque.

Suppose now that f(ueguz) =1 and f(ugue) = 4.
This implies f(uoug) =2 and f(uous) = 3 and then
f(uguz) =5 and f(uzug) = 6 since we already have
5 — 6 with usue and ugu;. Therefore, since we have
6 — 3 with u3ug and ugug (resp. 2 — 5 with uoug
and wugu3), we necessarily have f(uauig) =4 (resp.
f(ueu12) = 6). Finally, this implies f(u1ous5) =2 and
f(u1pu1) = 3 and there is no remaining available color
for usug4.

Finally, suppose that f(upu4) =2 and f(uaug) =5.
This implies f(u7u2) =1 and f(ueu12) = 6 and then
f(uipur) =3 and f(uju7) =4 since we already have
3 — 4 with usu4 and ugus. Therefore, since we have
6 — 3 with uguip and uppuy (resp. 4 — 1 with ujuy
and u7uy), we necessarily have f(ujjue) =5 (resp.
f(uouq) = 3). Finally, this implies f(usu11) =1 and
f(u3ug) = 6 and there is no remaining available color
for Uuel).

Therefore, the colors of usuy, usue and uguy are re-
spectively either 3,5, 1 or 2, 4, 6.

Suppose first that f(uus) = 3, f(uaue) =5 and
f(ueur) = 1. This implies f(uouq) =3 and f(u11us)
= 5. Then, we necessarily have f(u3ug) = 6 and
f(usuiy) = 2. Finally, this implies f(u4qu19) = 4, and
there is no remaining available color for ugus.

Finally, suppose that f(upu4) = 2, f(uaue) = 4
and f(ueuz) = 6. This implies f(uau19) = 4 and
f(uoug) = 2. Then, we necessarily have f(ujous) =1
and f(uguz) = 5. Finally, this implies f(uguq) = 3,
and there is no remaining available color for u3ug.

Hence, there exists no tournament 7' on six vertices
such that G is T-arc-colorable, which completes the
proof of Theorem 3(1). O

Proof of Theorem 3(2). By Theorem 1(1), every
triangle-free outerplanar has oriented chromatic num-
ber at most 6 and thus, by Observation 2, has oriented
chromatic index at most 6.

To show that this bound is tight, we shall prove that
the oriented triangle-free outerplanar graph G depicted
on Fig. 4(a) has oriented chromatic index 6.

21 24
2 23
ui Uy
u
5 1
Y2 V1
y v
Y1 V2
4 2
X 3 w
X2 wi
X1 w2
(a)
21 24
2 3
1
uy Uy
P
2 u ! 3
5 1
2 5 5 vy
y
Y1 3 v 2 %)
4 2
1 4
X w
4 3 |
X2 2 3 w1
X1 5 wo
(b)
21 24
2 23
5
ul )
5
3 ~C 4
5 1
2 1 1 X v
y %
N4 3 %)
4 2
5
2 5 X 3 w 5
X2 3 4 w1
X1 1 wo
(c)

Fig. 4. An oriented triangle-free outerplanar graph with oriented chro-
matic index 6.



102 A. Pinlou, E. Sopena / Information Processing Letters 100 (2006) 97-104

Assume to the contrary that f is an oriented arc-
coloring of G using at most 5 colors, say 1,2,3,4,5.
Necessarily, the colors of the arcs uv, vw, wx, xy and
yu have to be pairwise distinct. Suppose without loss
of generality, that f(uv) =1, f(vw) =2, f(wx) =3,
fxy)=4and f(yu)=>5.

We first prove that f is an oriented 75-arc-coloring
(T5 is the tournament depicted on Fig. 1(b)). Suppose to
the contrary that f is an oriented 75-arc-coloring of G,
with T{ # T5. We may assume without loss of general-
ity, that N}Z(l) = {2}, which implies NT_S,(l) ={3,4,5}.
This successively implies f(vvy) =2, f(wiw) =3,
flww) =3, flxix) =2, f(xxz2) =4, f1y) =2,
f(iv) =1 and f(uuy) = 3. Then, the only available
color for uju and yy» is 5, a contradiction.

Therefore, f is an oriented 7Ts-arc-coloring of G.
(Note that since the tournament 75 is arc-transitive, we
may still assume without loss of generality that f(uv) =
L, flow) =2, f(wx) =3, f(xy)=4and f(yu) =5.)

Observe now that we have either f(uup) =1 or
f(uuy) = 2. In each case, the color of f(uuy) fixes the
colors of all but five arcs of G (see Fig. 4(b) for the case
f(uuz) =1 and Fig. 4(c) for the case f(uuz)=2).

To complete the Ts-arc-coloring f, we thus need a
directed 3-path in 75 from color 1 to 3 (when f(uujy) =
1) or from color 3 to 5 (when f(uu;) = 2). Since such
paths do not exist in 75, we get a contradiction which
completes the proof of Theorem 1(1). O

Proof of Theorem 3(3). By Theorem 1(2), every out-
erplanar graph with girth g, 5 < g < 9, has oriented
chromatic number at most 5 and thus, by Observation 2,
has oriented chromatic index at most 5.

To show that this bound is tight, we construct an
outerplanar graph with girth 9 and oriented chromatic
index 5.

Consider the configuration H, made of an alternating
path of ten vertices and four directed 9-cycles arranged
as depicted on Fig. 5. Observe first that the tourna-
ment 7, (depicted on Fig. 1(a)) contains only two di-
rected 3-cycles, namely 124 and 134. Hence, any ori-
ented Ty-arc-coloring of the directed 9-cycle has the
form 1x41x41x4 with x € {2,3}. Let now & be a Ty-
arc-coloring of H with h(y;y2) = 1. We then necessar-
ily have h(y,z) € {2, 3} and, by the observation before,
h(z'y3) = 4, which implies /(y3y2) = h(y3ys) = 1. By
repeating this argument for the four directed 9-cycles of
H, we get h(ygyio) = 1.

Consider finally the oriented graph G obtained from
the directed 10-cycle Cjg = xox1...x9 by gluing ten
copies of H to the ten arcs of Cy¢ by identifying y;
with x; and yj9 with x;_; (subscripts are taken mod-

)1 V2 y3 V4 Vs Y6 Y7 8 Yo Y10

Fig. 5. The configuration H for the proof of Theorem 3(3).

ulo 10) for every i, 0 <i < 9. The so-obtained graph
G has clearly girth 9. If T is a tournament on four ver-
tices such that G admits a T-arc-coloring then 7" must
contain a directed 4-cycle since G contains a directed
10-cycle. Therefore, T is necessarily the tournament 7j.

Let now f be a Ty-arc-coloring of G. Since 10 =
1 (mod 3), the color 4 must be used on some arc of the
cycle Cio, say f(xpx;) = 4. Considering the copy of
H glued to xox;, we necessarily have f(xjy2) =1 and
thus f(y9xg) = 1 from the above discussion, a contra-
diction.

Hence, the graph G has no Ty-arc-coloring and has
thus oriented chromatic index 5. That completes the
proof of Theorem 1(2). O

In order to prove Theorem 3(4) we need the follow-
ing technical results.

We say that a T-arc-coloring f of an oriented graph
G is good if

(1) Yu € V(G), Cr) e {{1},{2}), (3}, {4}, 12,3},
{3,4}},

(2) Yu € V(G), C ) e {{1},{2}.{3}.{4},{1.2},
{2, 3}}.

Ochem et al. [8] proved the following:

Proposition 7. [8] Let P = vy, vy, ..., Vg, V19 be an ori-
ented 10-path. Any good Ty-arc-coloring of P’ = P \
{va, ..., vg} can be extended to a good Ty-arc-coloring
of P.

A computer check shows the following:
Proposition 8. Let P = u, vy, v, ..., v8, w be an ori-

ented 9-path. Any good Ty-arc-coloring of P’ = P \
{va, ..., v7} such that C (u) N CF (w) # B or Cf ()N

C ’ (w) # O can be extended to a good Ty-arc-coloring
of P.

We are now able to prove Theorem 3(4).

Proof of Theorem 3(4). We first prove that x,(0,) < 4
for every g, g > 10. Note that it is enough to consider
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the case g = 10. More precisely, we prove that every
outerplanar graph with girth at least 10 admits a good
Ty-arc-coloring (where Tj is the tournament depicted in
Fig. 1(a)).

Let H be a minimal (with respect to inclusion as a
subgraph) outerplanar graph with girth 10 having no ho-
momorphism to 73. We show that H contains neither a
1-vertex nor a face F' of length / > 10 with [ — 2 con-
secutive 2-vertices.

(1) Suppose that H contains a 1-vertex u. Let v be
its neighbor and suppose that uv € A(H). The graph
H' = H \ u is an outerplanar graph with girth at least
10 and, due to minimality of H, admits a good Tj-arc-
coloring f. Therefore, we have C;f(v) e {{1}, {2}, {3},
{4}, {2, 3}, {3, 4}}. For each possible case, there clearly
exists a predecessor in 74 that can be used to extend f
to a good Ty-arc-coloring of H. The proof of the case
vu € A(H) is similar.

(2) Suppose now that H contains a face F' of length
[ > 10 with [ — 2 consecutive 2-vertices. We consider
two cases:

(a) [ =10.
Let F =u,vq,vy,...,vs, w. Due to the minimal-
ity of H, the graph H' = H \ {v2, ..., v7} admits a
good oriented T4-arc-coloring f. Moreover, since
uw € A(H) or wu € A(H), we have C;(u) N
C}“(u)) # 0 or C;(u) N C;(w) # ), respectively.
By Proposition 8, f can be extended to H.

(b) 1> 10.
The face F contains nine consecutive 2-vertices,
say ui,...,u9. Due to the minimality of H, the
graph H' = H \ {u, ..., ug} admits a good Ty-arc-
coloring f. By Proposition 7, f can be extended
to H.

We thus get a contradiction thanks to Proposition 6.

We finally prove that for every k > 3 there exist
outerplanar graphs with girth k and oriented chromatic
index at least 4, using a construction proposed in [8].
Observe first that any arc-coloring of a directed cycle of
length p, p =1 or 2 (mod 3), must use at least 4 colors.
Hence, the graph G; made of two directed cycles shar-
ing one arc, one with length k, the other with length p,
p=1or2 (mod3), p >k, has the desired property.

This completes the proof of Theorem 3(4). O

5. Oriented series-parallel graphs

Recall that a series-parallel graph is a K4-minor-
free graph (also known in the literature as a partial 2-

w1

Fig. 6. An oriented triangle-free series-parallel graph with oriented
chromatic number 7.

tree) and that the class of oriented series-parallel graph
strictly contains the class of outerplanar graphs.

A natural question is thus to extend our results to the
case of series-parallel graphs.

As discussed before, Sopena proved in [10] that
every oriented series-parallel graph has oriented chro-
matic number at most 7 and that this bound is tight.
Moreover, we can prove that this bound is also tight for
oriented triangle-free series-parallel graphs:

Theorem 9. There exist oriented triangle-free series-
parallel graphs with oriented chromatic number 7.

Proof. We shall prove that the oriented triangle-free
series-parallel graph G depicted on Fig. 6 has oriented
chromatic number 7.

Suppose that G admits an oriented 6-vertex-coloring
f . Clearly, the colors of the vertices u, wi, wa, w3, wa, v
have to be pairwise distinct. Without loss of general-
ity, we assume that f(u) =1, f(v) =2, f(wy) =3,
fw3) =4, f(w3)=>5and f(ws) =6.

Suppose first that f(w) =3 (resp. f(w) =4). Then,
the two vertices vy and v4 (resp. vy and v3) must get
distinct colors and the two only available colors are 2
and 5 (resp. 2 and 6). Therefore, we will have an arc in
G from the color 2 to the color 1 (resp. from 1 to 2).
Now, the vertices #1 and u4 (resp. up and u3) must get
distinct colors and the only two available colors are 1
and 6 (resp. 1 and 5). We get a contradiction since we
will then have an arc in G from the color 1 to the color
2 (resp. from 2 to 1).
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The remaining cases f(w) =5 and f(w) = 6 lead to
a contradiction in a similar way. O

Finally note that Theorem 3(1) implies that the ori-
ented chromatic index of every oriented series-parallel
is at most 7 and that this bound is tight.

It would thus be interesting to determine the ex-
act value of the oriented chromatic number (resp. of
the oriented chromatic index) of oriented series-parallel
graphs with girth k, for every k > 5 (resp. k > 4).
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