Oriented vertex and arc colorings of partial 2-trees

Pascal Ochem1 Alexandre Pinlou2

LaBRI, Université Bordeaux 1
351 Cours de la Libération
33405 Talence Cedex, France

1 Introduction

We consider finite simple oriented graphs, that is digraphs with no opposite arcs. For an oriented graph G, we denote by $V(G)$ its set of vertices and by $A(G)$ its set of arcs. The number of vertices of G is the order of G. The girth of a graph G is the size of a smallest cycle in G. We denote by T_g the class of partial 2-trees (also known as series-parallel graphs) with girth at least g.

The notion of oriented vertex-coloring was introduced by Courcelle \cite{2} as follows: an oriented k-vertex-coloring of an oriented graph G is a mapping φ from $V(G)$ to a set of k colors such that (i) $\varphi(u) \neq \varphi(v)$ whenever $uv \in A(G)$ and (ii) $\varphi(v) \neq \varphi(x)$ whenever $uv, vx \in A(G)$ and $\varphi(u) = \varphi(y)$. The oriented chromatic number of G, denoted by $\chi_o(G)$, is defined as the smallest k such that G admits an oriented k-vertex-coloring. The oriented chromatic number $\chi_o(\mathcal{F})$ of a class of oriented graphs \mathcal{F} is defined as the maximum of $\chi_o(G)$ taken over all graphs G in \mathcal{F}.

Let G and H be two oriented graphs. A homomorphism from G to H is a mapping φ from $V(G)$ to $V(H)$ that preserves the arcs: $\varphi(u)\varphi(v) \in A(H)$ whenever

1 Email:Pascal.Ochem@labri.fr
2 Email: Alexandre.Pinlou@labri.fr
An oriented \(k \)-vertex-coloring of an oriented graph \(G \) can be equivalently defined as a homomorphism \(\varphi \) from \(G \) to \(H \), where \(H \) is an oriented graph of order \(k \). The oriented chromatic number of \(G \) can then be viewed as the smallest order of an oriented graph \(H \) such that \(G \) admits a homomorphism to \(H \). Links between colorings and homomorphisms are presented in more details in the monograph [3] by Hell and Nešetřil.

Oriented vertex-colorings have been studied by several authors in the last decade and the problem of bounding the oriented chromatic number has been investigated for various graph classes (see e.g. [1,8,9]). Concerning partial 2-trees, Sopena proved [9] that their oriented chromatic number is at most 7 (this bound was shown to be tight). Pinlou and Sopena [8] obtained tight bounds for the oriented chromatic number of outerplanar graphs with given girth (outerplanar graphs form a strict subclass of partial 2-trees). Moreover, they proved that \(\chi_o(T_g) = 7 \) for every \(g, 3 \leq g \leq 4 \). In this paper, we complete the characterization of the oriented chromatic numbers of partial 2-trees with given girth:

Theorem 1.1

1. \(\chi_o(T_g) = 6 \) for every girth \(g, 5 \leq g \leq 6 \);
2. \(\chi_o(T_g) = 5 \) for every girth \(g, g \geq 7 \);

One can define oriented arc-colorings of oriented graphs in a natural way by saying that, as in the undirected case, an oriented arc-coloring of an oriented graph \(G \) is an oriented vertex-coloring of its line digraph \(LD(G) \) (recall that \(LD(G) \) is given by \(V(LD(G)) = A(G) \) and \(ab \in A(LD(G)) \) whenever \(a = uv \) and \(b = vw \)). Therefore, an oriented arc-coloring \(\varphi \) of \(G \) must satisfy (i) \(\varphi(uv) \neq \varphi(vw) \) whenever \(uv \) and \(vw \) are two consecutive arcs in \(G \), and (ii) \(\varphi(vw) \neq \varphi(xy) \) whenever \(uv, vw, xy, yz \in A(G) \) with \(\varphi(uv) = \varphi(yz) \). The oriented chromatic index of \(G \), denoted by \(\chi'_o(G) \), is defined as the smallest order of an oriented graph \(H \) such that \(LD(G) \) admits a homomorphism to \(H \). The oriented chromatic index \(\chi'_o(\mathcal{F}) \) of a class of oriented graphs \(\mathcal{F} \) is defined as the maximum of \(\chi'_o(G) \) taken over all graphs \(G \) in \(\mathcal{F} \).

The oriented chromatic index of oriented graphs was recently studied and several upper and lower bounds are known (see [6,7,8]).

Upper bounds for the oriented chromatic index can be easily derived from oriented chromatic number:

Claim 1.2 [6] For every oriented graph \(G \), \(\chi'_o(G) \leq \chi_o(G) \).

Our second result gives estimates of the oriented chromatic indexes of partial 2-trees with girth 4, 5 and 6, and a characterization for all other girths:
Theorem 1.3

(1) \(\chi'_o(T_3) = 7 \);
(2) \(6 \leq \chi'_o(T_4) \leq 7 \);
(3) \(5 \leq \chi'_o(T_g) \leq 6 \) for every girth \(g \), \(5 \leq g \leq 6 \);
(4) \(\chi'_o(T_g) = 5 \) for every girth \(g \), \(7 \leq g \leq 17 \);
(5) \(\chi'_o(T_g) = 4 \) for every girth \(g \), \(g \geq 18 \);

In the rest of the paper, we will use the following notation. A vertex of degree \(k \) will be called a \(k \)-vertex. We denote by \(\delta(G) \) the minimum degree of the graph \(G \).

A \(k \)-path in a graph \(G \) is a path \(P = [u, v_1, v_2, \ldots, v_{k-1}, w] \) of length \(k \) (i.e. a path with \(k \) arcs); the vertices \(u \) and \(w \) are the endpoints of \(P \). Note that a 1-path is an arc. A \((k, d) \)-path is a \(k \)-path such that all internal vertices \(v_i \) have degree \(d \).

A 2-vertex contraction is the contraction of an edge incident to a 2-vertex.

2 Sketches of proof

The proofs of Theorems 1.1 and 1.3 use some structural properties on partial 2-trees with given girth and on graph classes closed under 2-vertex contraction. These properties are given in the two following lemmas.

Lemma 2.1 Let \(\mathcal{C} \) be a graph class closed under 2-vertex contraction such that every non-empty graph \(G \in \mathcal{C} \) with girth at least \(g \) contains either a 1-vertex or a \((k,2) \)-path, for some \(k \geq 2 \). Then, for every \(n \geq 0 \), every non-empty graph \(G' \in \mathcal{C} \) with girth at least \(g + n \left\lceil \frac{g}{k-1} \right\rceil \) contains either a 1-vertex or a \((k+n,2) \)-path.

For a graph \(G \) with girth at least \(g \) and a vertex \(v \in V(G) \), we denote:

\[D^G_g(v) = |\{ u \in V(G), \ d(u) \geq 3 \text{ such that there exists a unique path of 2-vertices linking } u \text{ and } v \text{ or } u \text{ and } v \text{ are the endpoints of at least a } \left(\left\lceil \frac{g}{k} \right\rceil + 2 \right) \text{-path} \}|. \]

Lemma 2.2 Let \(G \) be a partial 2-tree with girth \(g \) such that \(\delta(G) \geq 2 \). Then, either there exists a \(\left(\left\lceil \frac{g}{2} \right\rceil + 1,2 \right) \)-path, or there exists a \(\geq 3 \)-vertex \(v \) such that \(D^G_g(v) \leq 2 \).

Note that this lemma generalizes Lemma 2 p. 305 of Lih et al. [4] which characterizes partial 2-trees with girth 3.

Upper bounds

Thanks to the above lemmas, the upper bounds of Theorems 1.1 and 1.3 are obtained by showing that the considered partial 2-trees admit a homomorphism to one of the tournaments \(T_4, T_5, T_6, \) and \(T_7 \) depicted on Fig. 1.
Lower bounds

Finally, to get the lower bounds of Theorems 1.1 and 1.3, we construct partial 2-trees with the required girth which need the specified number of colors. More fully:

• The graph G_6 depicted in Fig. 2(b) is a partial 2-tree with girth 6 such that
\(\chi_o(G_6) = 6\). Therefore, \(\chi_o(T_g) \geq 6\) for every \(g \leq 6\).

- Nešetřil et al. [5] constructed for every \(g \geq 3\), an oriented outerplanar graph with girth \(g\) which has oriented chromatic number 5. Therefore, \(\chi_o(T_g) \geq 5\) for every \(g \geq 7\).

- The first three assumptions of Theorem 1.3 directly follow from Claim 1.2, Theorem 1.1(1) and some results of Pinlou and Sopena [8], namely \(\chi_o(T_3) = 7\), \(\chi'_o(O_4) = 6\), and \(\chi'_o(O_6) = 5\).

- The graph \(G_{17}\) depicted in Fig. 3(c) is a partial 2-tree with girth 17 such that \(\chi'_o(G_{17}) = 5\). Therefore, \(\chi'_o(T_g) \geq 5\) for every \(g \leq 17\).

- It not difficult to check that, for every \(g \geq 3\), the partial 2-tree \(G\) obtained from two vertex-disjoint circuits, the first one of size \(g\) and the second one of size \(k \geq g\) with \(k \not\equiv 0 \pmod{3}\) has girth \(g\) and \(\chi'_o(G) = 4\). Therefore \(\chi'_o(T_g) \geq 4\) for every \(g \geq 18\).

References

